JPS6256892B2 - - Google Patents

Info

Publication number
JPS6256892B2
JPS6256892B2 JP5034180A JP5034180A JPS6256892B2 JP S6256892 B2 JPS6256892 B2 JP S6256892B2 JP 5034180 A JP5034180 A JP 5034180A JP 5034180 A JP5034180 A JP 5034180A JP S6256892 B2 JPS6256892 B2 JP S6256892B2
Authority
JP
Japan
Prior art keywords
acid
polyesteramide
parts
polyepoxide
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5034180A
Other languages
Japanese (ja)
Other versions
JPS56147842A (en
Inventor
Chiaki Tanaka
Kazumi Nagai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP5034180A priority Critical patent/JPS56147842A/en
Publication of JPS56147842A publication Critical patent/JPS56147842A/en
Publication of JPS6256892B2 publication Critical patent/JPS6256892B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はすぐれた耐薬品性、耐加水分解性、耐
摩耗性、接着性および高温特性を有する、改良さ
れたポリエステルアミド樹脂組成物に関するもの
である。 本発明者らはブチレンテレフタレート単位およ
び/もしくはブチレンイソフタレート単位にアミ
ド単位を共重合せしめてなる新規なポリエステル
アミドがすぐれた機械強度、耐衝撃性、透明性、
柔軟性、耐油性、耐熱エージング性および接着性
などの性質を有し、しかも着色のない高重合度の
ポリマとして容易に製造し得ることを見出し、先
に特願昭54−165588号および特願昭55−6214号と
して出願した。ところがこのようにすぐれた特性
を有するポリエステルアミドを特定の用途に応用
する場合には、高温特性、耐加水分解性および耐
薬品性などにさらに改良された性能が要求され
る。例えば、スチームホースや温水バルブなどの
用途ではさらにすぐれた耐加水分解性や高温特性
を兼備していることが必要となり、また油圧ホー
ス、コネクタ、ガソリンタンクおよび電線被覆な
どの用途では耐油性、耐薬品性、耐摩耗性および
高温特性を兼備していることが必要となる。 そこで本発明者らはポリエステルアミドに耐薬
品性、耐加水分解性、耐摩耗性および高温特性な
どのさらにすぐれた性能を賦与するべく鋭意検討
した結果、ポリエステルアミドに特定のエポキシ
化合物を特定量配合することにより上記目的が一
挙に解決できることを見出し、本発明に到達し
た。 すなわち本発明は(A)下記式()および/もし
くは()で示されるエステル単位20〜85重量%
と下記式()および/もしくは()で示され
るアミド単位80〜15重量%からなるポリエステル
アミド100重量部に対し、(B)2個以上の官能基を
有するポリエポキシド0.5〜100重量部を配合して
なる樹脂組成物を提供するものである。 (ただし、式()中のlは10もしくは11、式
()中のRは−(CH2)−oもしくは単環式芳香核で
あり、mは6〜12、nは6〜10の整数である。) 本発明で使用するポリエステルアミドとは、上
記式()および/もしくは()で示されるエ
ステル単位と上記式()および/もしくは
()で示されるアミド単位からなる共重合体で
ある。ここでいうエステル単位とは具体的にはブ
チレンテレフタレートおよび/もしくはブチレン
イソフタレート単位であり、テレフタル酸およ
び/もしくはイソフタル酸と1・4−ブタンジオ
ールとから縮合反応により製造したポリエステル
単位を意味する。このポリエステル単位は上記式
()および()を統合して下記式()のポ
リマ単位で表わすことができる。 ここでp=0のときポリブチレンテレフタレー
ト、o=0のときポリブチレンイソフタレート、
o≠0、p≠0のときポリブチレンテレフタレー
ト/ポリブチレンイソフタレート共重合体とな
る。o:pの比は目的と用途に応じて自由に選択
できるが、一般にポリエステル単位がポリブチレ
ンテレフタレート単独である場合には高結晶性、
高融点、高強度のポリエステルアミドが得られ
る。ポリエステル単位がポリブチレンイソフタレ
ート単独の場合には柔軟で、比較的融点の低い非
晶ポリエステルアミドとなる。またポリエステル
単位がポリブチレンテレフタレート/ポリブチレ
ンイソフタレート共重合体の場合には最も融点が
低く、溶剤への溶解性に優れた柔軟なポリエステ
ルアミドとすることができる。 本発明のポリエステルアミドの他の一成分であ
る上記式()および/もしくは()で示され
るアミド単位とは具体的には12−アミノドデカン
酸、11−アミノウンデカン酸および/もしくは
H2N(CH2nNH2なるジアミン成分と、HOOC−
R−COOHなるジカルボン酸成分から形成され
るポリアミド単位を意味する。ここでいうジアミ
ン成分としてはヘキサメチレンジアミン、デカメ
チレンジアミン、ウンデカメチレンジアミン、ド
デカメチレンジアミンが挙げられ、またジカルボ
ン酸成分としてはアゼライン酸、セバシン酸、デ
カンジカルボン酸、テレフタル酸、イソフタル酸
などが挙げられる。これらのアミド構成成分は
各々単独もしくは共重合体の形で用いることがで
きるが、融点、結晶性、溶解性、耐熱性、耐薬品
性などをコントロールする目的で適宜選択して用
いてよい。 本発明のポリエステルアミドにおいてエステル
単位としてブチレンテレフタレートおよび/もし
くはブチレンイソフタレートを、アミド単位とし
て式()および/もしくは式()に示したア
ミドを選択的に組み合わせて用いることは重要で
ある。この共重合系のポリエステルアミドにおい
ては単量体の系外留出という問題もなく、相分離
することなく均一に重合が進み、着色のない高重
合度のポリマが得られるばかりでなく、得られた
新規な共重合体は機械強度、耐衝撃性、透明性、
柔軟性、耐油性、耐溶剤性、耐水性、耐熱エージ
ング性、接着性、溶剤溶解性などのいずれか乃至
全部の性能を有する、可撓性のあるポリマであ
る。 ポリエステルアミドにおけるエステル単位とア
ミド単位との共重合組成比は重量比で20:80〜
85:15、より好ましくは25:75〜80:20の範囲で
ある。この共重合組成を有するポリエステルアミ
ドは、ポリブチレンテレフタレートやポリブチレ
ンテレフタレート/ポリブチレンイソフタレート
共重合体などのポリエステル、およびポリヘキサ
メチレンセバカミド、ポリヘキサメチレンイソフ
タラミド、ポリヘキサメチレンドデカノアミド、
ポリウンデカメチレンドデカノアミド、ポリドデ
カンアミド、ポリウンデカンアミドなどのポリア
ミドからは予想しえない新規な性能を顕著に示す
ようになる。 本発明のポリエステルアミドは(a)テレフタル酸
および/もしくはイソフタル酸から成るジカルボ
ン酸、(b)1・4−ブタンジオールおよび(c)脂肪族
ジアミンH2N(CH2)mNH2(mは6〜12の整
数)と脂肪族ジカルボン酸HOOC(CH2
nCOOH(nは6〜10の整数)もしくは芳香族ジ
カルボン酸HOOC−Ar−COOH(Arは単環式芳
香核)からのナイロン塩および/もしくは12−ア
ミノドデカン酸や11−アミノウンデカン酸などの
ω−アミノカルボン酸を溶融重合することによつ
て達成される。好適な重合方法の一例を示すと、
テレフタル酸および/もしくはイソフタル酸から
成る芳香族ジカルボン酸を、芳香族ジカルボン酸
に対し1.05〜2.0倍モルの1・4−ブタンジオー
ルと共に先ず通常のエステル化触媒の存在におい
て、約150〜260℃のエステル化条件で平均重合度
3〜8のポリエステルプレポリマを作つておき、
このプレポリマと上記アミノカルボン酸および/
もしくはナイロン塩を重合缶に供給して重合触媒
の存在下に10mmHg以下、好ましくは1mmHg以下
の減圧下に200〜270℃で加熱重縮合させることに
よつて溶融時透明な高重合度のポリエステルアミ
ドとすることができる。また芳香族ジカルボン酸
と1・4−ブタンジオールおよび上記アミノカル
ボン酸もしくはナイロン塩の三者をエステル化反
応の初期段階から同時に存在させ、N2シールさ
れた常圧反応系で150〜260℃の温度で反応させた
後、前記したと同様の重合条件下で加熱重縮合さ
せることによつても同様に高重合度の均一なポリ
エステルアミドが得られる。ポリエステルプレポ
リマとアミノカルボン酸および/もしくはナイロ
ン塩を用いて重合させる場合には予めポリエステ
ルプレポリマを作る際にテレフタル酸および/も
しくはイソフタル酸の低級アルキルエステルを用
いてもよい。また上記したアミノカルボン酸や脂
肪酸ジアミンと脂肪族ジカルボン酸もしくは芳香
族ジカルボン酸とのナイロン塩は予めプレポリマ
の形にして重合反応に供してもよい。例えば、ヘ
キサメチレンジアンモニウムセバケート(610
塩)を少量のセバシン酸と共に加熱反応してナイ
ロン610プレポリマの形にしておき、エステル化
反応時に添加するかもしくはエステル化終了した
ポリブチレンテレ(イソ)フタレートオリゴマと
共に重合反応に供して同様にポリエステルアミド
とすることができる。本発明に用いられるアミド
成分のうち、例えばポリヘキサメチレンセバカミ
ドやポリドデカンアミドの如きポリブチレンテレ
(イソ)フタレートとの相溶性がよいポリアミド
では、その目的とする用途と要求性能および共重
合組成領域によつては平均重合度50以上の高分子
量物の形ですらポリエステルアミド重合反応に供
することができる場合がある。 ポリエステルアミドの製造にはチタン系触媒が
良好な結果を与える。特にテトラブチルチタネー
ト、テトラメチルチタネートのごときテトラアル
キルチタネート、シユウ酸チタンカリのごときシ
ユウ酸チタン金属塩等が好ましい。またその他の
触媒としてはジブチルスズオキサイド、ジブチル
スズラウレートのごときスズ化合物、酢酸亜鉛や
酢酸鉛のごとき亜鉛化合物や鉛化合物があげられ
る。 また少量共重合範囲ではナフタレンジカルボン
酸、アジピン酸、シクロヘキサンジカルボン酸な
どの他のジカルボン酸、シクロヘキサンジメタノ
ール、1・6−ヘキサンジオールなどの他のジオ
ール成分、m−キシリレンジアミン、p−キシリ
レンジアミン、トリメチルヘキサメチレンジアミ
ンなどを含むナイロン塩およびトリメシン酸、グ
リセリン、ペンタエリスリトールなどの多官能化
合物が含有されていてもよい。 上記したポリエステルアミドの製造法において
エステル単位およびアミド単位の平均セグメント
長は一般には共重合組成比によつて決定される
が、反応条件によつてコントロールすることもで
き、例えばポリエステルプレポリマの段階でナイ
ロン塩を加えて重合せしめたポリマでは、全ての
単量体を一挙に反応させる方法でえたポリマより
各単位の平均セグメント長が長くなり、その結果
として融点が数℃〜20℃程度高いポリマとなる。
従つてポリマの製造条件は目的とする用途に応じ
て適宜最適な方法を選択すべきである。 本発明で使用する2個以上の官能性を有するポ
リエポキシドとは下記一般式()および/もし
くは()で示されるものであり、オレフインの
エポキシ化 (ただし式中nは2〜10、R′はHもしくは低級ア
ルキルであり、R″は芳香環を含むことのできる
多価の基で、R′と結合して5〜6員環を形成し
ていてもよい。) によつて得られるポリエポキシド化合物()ま
たはエピハロヒドリンと活性水素化合物の反応に
よつて得られるポリグリシジル化合物()が本
発明の組成物において有用である。 オレフインのエポキシ化によつて得られる代表
的なポリエポキシド()としては、ビニルシク
ロヘキセンジオキシド、ビス(2・3−エポキシ
シクロベンヂル)エーテル、3・4−エポキシシ
クロヘキシルメチル−3・4−エポキシシクロヘ
キサンカルボキシレート、ビス(3・4−エポキ
シ−6−メチルシクロヘキシルメチル)アジペー
ト、3−(3・4−エポキシ−シクロヘキサン)−
8・9−エポキシ−ジオキサスピロ〔5・5〕−
ウンデカン、エポキシ化ブタジエンおよびエポキ
シ化天然油類などが挙げられる。 またエピハロヒドリンと活性水素化合物からの
ポリグリシジル化合物()とは、エピクロルヒ
ドリンとスズフエノールA、テトラブロモビスフ
エノールA、レゾルシン、ヒドロキノン、ピロガ
ロール、クレゾール、4・4′−メチレンビスフエ
ノールやフエノールまたはクレゾールとアルデヒ
ドから誘導したポリフエノール類(ノボラツク)
のような多価フエノールとの反応によつて得られ
たものであり、特に下記式()のビスフエノー
ルAのジグリシジルエーテルや下記式()のフ
エノール−ホルムアルデヒドノボラツク類のポリ
グリシジルエーテルが好ましい。 (ここでx=0〜5、y=1〜6) またエピクロルヒドリンと2〜6のアルコール
性水酸基を有する脂肪族化合物例えば、エチレン
グリコール、ブタンジオール、ポリ(アルキレン
オキシドグリコール)、グリセリン、ペンタエリ
スリトールとの反応物や、アジピン酸、コハク
酸、フタル酸、トリメリツト酸などのポリカルボ
ン酸のポリグリシジルエステルも本発明のポリエ
ポキシドに包含される。これらのポリエポキシド
はポリエステルアミド100重量部に対し、0.5〜
100重量部、好ましくは1〜75重量部の割合で配
合されるが、その配合量は目的とする用途・性能
に応じて適宜選択して決められる。例えば、ポリ
エステルアミドの耐加水分解性の改善を目的とす
る場合には0.5〜10重量部の少量のポリエポキシ
ドを配合するだけで十分有効であり、またポリエ
ステルアミドの耐薬品性や高温特性を改良する目
的のためには20〜100重量部の比較的大量のポリ
エポキシドの添加が必要となる。 ポリエステルアミドとポリエポキシドの混合方
法としては、溶融ブレンドもしくは溶液ブレンド
が好ましいが、またポリエステルアミドの粉末に
ポリエポキシドの液体または粉末を含浸もしくは
付着させた樹脂組成物を型中にて加熱成形するこ
とも可能である。 ポリエステルアミドとポリエポキシドの溶融ブ
レンドは一般にゴムロール、バンバリミキサー、
ニーダ、一軸もしくは多軸のエクストルーダーの
ような混練装置で行なうことができるが、少量の
ポリエポキシド配合のような場合にはポリエステ
ルアミドの重合機中で混合することもできる。ポ
リエステルアミドとポリエポキシドの溶融混練は
通常100−250℃の温度で行なうが、局所的な反応
の暴走を避けるためにポリエステルアミドの融点
の許容する範囲で低温が選ばれるべきである。 またポリエステルアミドとポリエポキシドの混
合は溶液状態で行なうこともでき、例えば、ポリ
エステルアミドのクロロホルム、トリクレン、m
−クレゾール、o−クロルベンゼン、テトラヒド
ロフランなどの溶液中にポリエポキシドを添加混
合する方法によれば、室温〜100℃の比較的低い
温度で混合することができるためゲル化の恐れが
なく、かなりの量のポリエポキシドを安定に混合
することが可能である。こうして得た樹脂組成物
溶液はそのままフイルム状に流延し、加熱乾燥す
ることもできるし、貧溶媒中に再沈して得たパウ
ダを型中で加熱成形することもできる。 本発明のポリエステルアミド組成物には重合時
もしくは重合後および混練時、もしくは混練され
た樹脂組成物の成形前の任意の時点で酸化防止
剤、熱分解安定剤、耐光剤などの安定剤、着色
剤、難燃剤、補強材、充填剤、各種成形助剤、可
塑剤、などの添加剤を任意に配合して用いること
ができる。 また本発明のポリエステルアミドとポリエポキ
シドからなる樹脂組成物には脂肪族第二アミン、
脂肪族第三アミン、有機酸金属塩などのエポキシ
触媒や、芳香族、脂環族、脂肪族のポリアミン、
酸無水物などのエポキシ硬化剤を併用して用いる
こともでき、特に耐薬品性や高温特性などの性能
において一段と優れた性能を得ることが可能にな
る。 以下、実施例によつて本発明を説明する。なお
実施例中「部」または「%」で表示したものは全
て重量比率で表わしたものである。また、相対粘
度はオルトクロロフエノール中25℃、0.5%濃度
の条件で測定した値であり、融点も特に断わらな
い限りDSC(Perkin Elmer DSC−1B)で測定
される融解ピーク温度である。 実施例 1 テレフタル酸166部、1・4−ブタンジオール
135部および12−アミノドデカン酸129部をチタン
テトラブトキシド0.09部と共に反応容器に入れ、
N2パージした後撹拌下に230℃の温度で3時間45
分加熱反応させ、62.5部の水、テトラヒドロフラ
ンおよび1・4−ブタンジオールの混合物を系外
に留去した。次いで反応混合物を重合反応容器に
移し、チタンテトラブトキシド0.18部、“イルガ
ノツクス”1010 0.33部を添加した後約1時間で
245℃、0.1mmHg以下の反応条件にもたらし、さ
らに1時間35分重合反応を続けたところ透明の粘
稠なポリマが得られた。得られたポリエステルア
ミドはポリブチレンテレフタレート:ポリドデカ
ンアミドが65:35の重量組成比を有するものであ
り、相対粘度が1.50、ポリマ融点が158℃を示し
た。 かくして得られたポリエステルアミドに表1に
示す量で前記式()で示されるポリエポキシド
〔“エピコード”815(シエル化学社製、エポキシ
当量約185)〕を配合し、165−170℃に加熱された
ゴムロール機上で5分間混練し、シートとして採
取した。次いで230℃で2mm厚みシートにプレス
成形した後100℃で16時間熱処理した。このシー
トから適当な形状の試験片を切り取り、機械的性
質、耐薬品性を調べた。また100℃における機械
的性質、沸水で2時間処理後の機械的性質を求め
た。これらの結果を表1に示す。 本実施例における試料1−Dはポリエポキシド
を含まないポリエステルアミドであり、比較対照
試料である。
This invention relates to improved polyesteramide resin compositions having excellent chemical resistance, hydrolysis resistance, abrasion resistance, adhesion and high temperature properties. The present inventors have discovered that a novel polyester amide made by copolymerizing an amide unit with a butylene terephthalate unit and/or a butylene isophthalate unit has excellent mechanical strength, impact resistance, transparency,
It was discovered that it could be easily produced as a highly polymerized polymer with properties such as flexibility, oil resistance, heat aging resistance, and adhesiveness, and was free from coloration. The application was filed as No. 1983-6214. However, when polyesteramides having such excellent properties are applied to specific applications, further improved performance is required in terms of high temperature properties, hydrolysis resistance, chemical resistance, and the like. For example, applications such as steam hoses and hot water valves require superior hydrolysis resistance and high-temperature properties, while applications such as hydraulic hoses, connectors, gasoline tanks, and electrical wire coatings require oil resistance and resistance. It is necessary to have chemical resistance, wear resistance, and high temperature properties. Therefore, the inventors of the present invention conducted intensive studies to provide polyesteramide with even better performance such as chemical resistance, hydrolysis resistance, abrasion resistance, and high-temperature properties. The inventors have discovered that the above objects can be solved at once by doing the following, and have arrived at the present invention. That is, the present invention comprises (A) 20 to 85% by weight of ester units represented by the following formula () and/or ().
(B) 0.5 to 100 parts by weight of a polyepoxide having two or more functional groups is blended with 100 parts by weight of a polyester amide consisting of 80 to 15% by weight of amide units represented by the following formulas () and/or (). The present invention provides a resin composition comprising: (However, l in formula () is 10 or 11, R in formula () is -(CH 2 )- o or a monocyclic aromatic nucleus, m is an integer of 6 to 12, and n is an integer of 6 to 10. ) The polyesteramide used in the present invention is a copolymer consisting of an ester unit represented by the above formula () and/or () and an amide unit represented by the above formula () and/or (). . The ester unit here specifically refers to a butylene terephthalate and/or butylene isophthalate unit, and means a polyester unit produced from terephthalic acid and/or isophthalic acid and 1,4-butanediol by a condensation reaction. This polyester unit can be represented by a polymer unit of the following formula () by integrating the above formulas () and (). Here, when p=0, polybutylene terephthalate, when o=0, polybutylene isophthalate,
When o≠0 and p≠0, a polybutylene terephthalate/polybutylene isophthalate copolymer is obtained. The o:p ratio can be freely selected depending on the purpose and use, but generally when the polyester unit is polybutylene terephthalate alone, it has high crystallinity,
A polyesteramide with a high melting point and high strength is obtained. When the polyester unit is polybutylene isophthalate alone, the resulting amorphous polyester amide is flexible and has a relatively low melting point. Further, when the polyester unit is a polybutylene terephthalate/polybutylene isophthalate copolymer, a flexible polyester amide having the lowest melting point and excellent solubility in solvents can be obtained. Specifically, the amide unit represented by the above formula () and/or (), which is another component of the polyesteramide of the present invention, is 12-aminododecanoic acid, 11-aminoundecanoic acid, and/or
H 2 N (CH 2 ) n NH 2 diamine component and HOOC−
It means a polyamide unit formed from a dicarboxylic acid component called R-COOH. The diamine components mentioned here include hexamethylene diamine, decamethylene diamine, undecamethylene diamine, and dodecamethylene diamine, and the dicarboxylic acid components include azelaic acid, sebacic acid, decanedicarboxylic acid, terephthalic acid, and isophthalic acid. Can be mentioned. Each of these amide constituents can be used alone or in the form of a copolymer, and may be appropriately selected and used for the purpose of controlling melting point, crystallinity, solubility, heat resistance, chemical resistance, etc. In the polyesteramide of the present invention, it is important to selectively use butylene terephthalate and/or butylene isophthalate as the ester unit and the amide shown in formula () and/or formula () as the amide unit in combination. In this copolymerized polyester amide, there is no problem of monomer distillation out of the system, the polymerization proceeds uniformly without phase separation, and a polymer with a high degree of polymerization without coloration can be obtained, as well as a polymer with a high degree of polymerization. The new copolymer has excellent mechanical strength, impact resistance, transparency,
It is a flexible polymer that has any or all of the following properties: flexibility, oil resistance, solvent resistance, water resistance, heat aging resistance, adhesiveness, solvent solubility, etc. The copolymerization composition ratio of ester units and amide units in polyester amide is 20:80 to 20:80 by weight.
The ratio is 85:15, more preferably 25:75 to 80:20. Polyesteramides having this copolymerization composition include polyesters such as polybutylene terephthalate and polybutylene terephthalate/polybutylene isophthalate copolymers, as well as polyhexamethylene sebamide, polyhexamethylene isophthalamide, and polyhexamethylene dodecanoamide. ,
Polyamides such as polyundecamethylenedodecanoamide, polydodecanamide, and polyundecaneamide have begun to exhibit remarkable new performance that could not be expected from polyamides. The polyesteramide of the present invention comprises (a) a dicarboxylic acid consisting of terephthalic acid and/or isophthalic acid, (b) 1,4-butanediol and (c) an aliphatic diamine H2N ( CH2 ) mNH2 (m is 6 ~12 integers) and aliphatic dicarboxylic acids HOOC ( CH2 )
Nylon salt from nCOOH (n is an integer from 6 to 10) or aromatic dicarboxylic acid HOOC-Ar-COOH (Ar is a monocyclic aromatic nucleus) and/or ω such as 12-aminododecanoic acid and 11-aminoundecanoic acid. - achieved by melt polymerizing aminocarboxylic acids. An example of a suitable polymerization method is as follows:
An aromatic dicarboxylic acid consisting of terephthalic acid and/or isophthalic acid is first heated at about 150 to 260°C in the presence of a conventional esterification catalyst together with 1.05 to 2.0 times the molar amount of 1,4-butanediol to the aromatic dicarboxylic acid. A polyester prepolymer with an average degree of polymerization of 3 to 8 is prepared under esterification conditions,
This prepolymer and the above aminocarboxylic acid and/or
Alternatively, a polyester amide with a high degree of polymerization that is transparent when melted is obtained by supplying a nylon salt to a polymerization reactor and polycondensing it under reduced pressure of 10 mmHg or less, preferably 1 mmHg or less at 200 to 270°C in the presence of a polymerization catalyst. It can be done. In addition, aromatic dicarboxylic acid, 1,4-butanediol, and the above aminocarboxylic acid or nylon salt are simultaneously present from the initial stage of the esterification reaction, and the temperature is set at 150 to 260°C in an atmospheric pressure reaction system sealed with N2 . A uniform polyesteramide with a high degree of polymerization can be similarly obtained by carrying out the reaction at high temperature and then carrying out heating polycondensation under the same polymerization conditions as described above. When polymerizing a polyester prepolymer with an aminocarboxylic acid and/or a nylon salt, a lower alkyl ester of terephthalic acid and/or isophthalic acid may be used in advance to prepare the polyester prepolymer. Further, the above-mentioned nylon salt of aminocarboxylic acid or fatty acid diamine and aliphatic dicarboxylic acid or aromatic dicarboxylic acid may be prepared in advance in the form of a prepolymer and subjected to the polymerization reaction. For example, hexamethylene diammonium sebacate (610
salt) with a small amount of sebacic acid to form a nylon 610 prepolymer, which is added during the esterification reaction or subjected to a polymerization reaction with the polybutylene tere(iso)phthalate oligomer after esterification to form a polyester. It can be an amide. Among the amide components used in the present invention, polyamides having good compatibility with polybutylene tere(iso)phthalate, such as polyhexamethylene sebacamide and polydodecanamide, are suitable for their intended use, required performance, and copolymerization. Depending on the composition range, even a high molecular weight product with an average degree of polymerization of 50 or more may be able to be subjected to the polyesteramide polymerization reaction. Titanium-based catalysts give good results in the production of polyesteramides. Particularly preferred are tetraalkyl titanates such as tetrabutyl titanate and tetramethyl titanate, and metal salts of titanium oxalate such as potassium titanium oxalate. Other catalysts include tin compounds such as dibutyltin oxide and dibutyltin laurate, zinc compounds and lead compounds such as zinc acetate and lead acetate. In addition, in the small amount copolymerization range, other dicarboxylic acids such as naphthalene dicarboxylic acid, adipic acid, and cyclohexane dicarboxylic acid, other diol components such as cyclohexanedimethanol, 1,6-hexanediol, m-xylylene diamine, p-xylylene dicarboxylic acid, etc. Nylon salts containing amines, trimethylhexamethylene diamine, etc., and polyfunctional compounds such as trimesic acid, glycerin, pentaerythritol, etc. may be included. In the above-mentioned method for producing polyester amide, the average segment length of the ester units and amide units is generally determined by the copolymerization composition ratio, but it can also be controlled by the reaction conditions, for example at the polyester prepolymer stage. In polymers polymerized by adding nylon salts, the average segment length of each unit is longer than in polymers obtained by reacting all monomers at once, and as a result, the melting point is several degrees Celsius to 20 degrees Celsius higher. Become.
Therefore, the optimum method for producing the polymer should be selected depending on the intended use. The polyepoxide having two or more functionalities used in the present invention is represented by the following general formula () and/or (), and is a polyepoxide having two or more functionalities. (However, in the formula, n is 2 to 10, R' is H or lower alkyl, and R'' is a polyvalent group that can contain an aromatic ring and is combined with R' to form a 5- to 6-membered ring. Useful in the compositions of the present invention are polyepoxide compounds () obtained by epoxidation of olefins () or polyglycidyl compounds () obtained by reaction of epihalohydrin with active hydrogen compounds. Typical polyepoxides () obtained by this process include vinylcyclohexene dioxide, bis(2,3-epoxycyclobenzyl)ether, 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate, and bis(3-epoxycyclohexanecarboxylate).・4-epoxy-6-methylcyclohexylmethyl)adipate, 3-(3,4-epoxy-cyclohexane)-
8,9-Epoxy-dioxaspiro [5,5]-
Examples include undecane, epoxidized butadiene, and epoxidized natural oils. Polyglycidyl compounds () derived from epihalohydrin and active hydrogen compounds include epichlorohydrin, tinphenol A, tetrabromobisphenol A, resorcinol, hydroquinone, pyrogallol, cresol, 4,4'-methylenebisphenol, phenol, or cresol and aldehyde. Polyphenols derived from (novolac)
Diglycidyl ether of bisphenol A of the following formula () and polyglycidyl ether of phenol-formaldehyde novolacs of the following formula () are particularly preferred. . (Here, x = 0 to 5, y = 1 to 6) In addition, epichlorohydrin and aliphatic compounds having 2 to 6 alcoholic hydroxyl groups, such as ethylene glycol, butanediol, poly(alkylene oxide glycol), glycerin, and pentaerythritol, Polyglycidyl esters of polycarboxylic acids such as adipic acid, succinic acid, phthalic acid, and trimellitic acid are also included in the polyepoxide of the present invention. These polyepoxides are used in amounts of 0.5 to 100 parts by weight of polyesteramide.
It is blended in a proportion of 100 parts by weight, preferably 1 to 75 parts by weight, but the blending amount can be determined as appropriate depending on the intended use and performance. For example, if the purpose is to improve the hydrolysis resistance of polyesteramide, adding a small amount of polyepoxide (0.5 to 10 parts by weight) is sufficient. For this purpose it is necessary to add relatively large amounts of polyepoxide, from 20 to 100 parts by weight. Melt blending or solution blending is preferred as a method for mixing polyesteramide and polyepoxide, but it is also possible to heat-form a resin composition in which polyesteramide powder is impregnated with or adhered to polyepoxide liquid or powder in a mold. It is. Melt blends of polyesteramide and polyepoxide are generally prepared using rubber rolls, Banbury mixers,
The mixing can be carried out using a kneading device such as a kneader, a single-screw extruder, or a multi-screw extruder, but in the case of blending a small amount of polyepoxide, the mixing can also be carried out in a polyesteramide polymerization machine. Melt-kneading of polyesteramide and polyepoxide is usually carried out at a temperature of 100-250°C, but a low temperature should be selected within the range allowed by the melting point of the polyesteramide in order to avoid local reaction runaway. Further, mixing of polyesteramide and polyepoxide can also be carried out in a solution state, for example, chloroform, trichlene, m
- According to the method of adding polyepoxide to a solution of cresol, o-chlorobenzene, tetrahydrofuran, etc., it can be mixed at a relatively low temperature of room temperature to 100°C, so there is no risk of gelation, and a considerable amount of polyepoxide can be mixed. It is possible to stably mix polyepoxides of The resin composition solution thus obtained can be directly cast into a film and dried by heating, or the powder obtained by reprecipitation in a poor solvent can be heated and molded in a mold. The polyesteramide composition of the present invention may be added with stabilizers such as antioxidants, thermal decomposition stabilizers, and light stabilizers, and coloring at any time during polymerization, after polymerization, and kneading, or before molding the kneaded resin composition. Additives such as additives, flame retardants, reinforcing materials, fillers, various molding aids, and plasticizers can be optionally mixed and used. In addition, the resin composition comprising polyesteramide and polyepoxide of the present invention includes aliphatic secondary amine,
Epoxy catalysts such as aliphatic tertiary amines and organic acid metal salts, aromatic, alicyclic and aliphatic polyamines,
Epoxy curing agents such as acid anhydrides can also be used in combination, making it possible to obtain even better performance, particularly in terms of chemical resistance and high temperature properties. The present invention will be explained below with reference to Examples. In the examples, all "parts" or "%" are expressed as weight ratios. Further, the relative viscosity is a value measured in orthochlorophenol at 25° C. and a concentration of 0.5%, and the melting point is also the melting peak temperature measured by DSC (Perkin Elmer DSC-1B) unless otherwise specified. Example 1 166 parts of terephthalic acid, 1,4-butanediol
135 parts and 129 parts of 12-aminododecanoic acid were placed in a reaction vessel along with 0.09 parts of titanium tetrabutoxide;
45 for 3 hours at a temperature of 230 °C under stirring after purging with N2
The mixture was heated for 1 minute to react, and 62.5 parts of a mixture of water, tetrahydrofuran and 1,4-butanediol was distilled out of the system. The reaction mixture was then transferred to a polymerization reaction vessel, and 0.18 parts of titanium tetrabutoxide and 0.33 parts of "Irganox" 1010 were added, and then the reaction mixture was reacted for about 1 hour.
When the reaction conditions were brought to 245°C and 0.1 mmHg or less, and the polymerization reaction was continued for an additional 1 hour and 35 minutes, a transparent viscous polymer was obtained. The obtained polyesteramide had a weight composition ratio of polybutylene terephthalate:polydodecanamide of 65:35, and exhibited a relative viscosity of 1.50 and a polymer melting point of 158°C. The polyepoxide represented by the formula () ["Epicord" 815 (manufactured by Ciel Chemical Co., Ltd., epoxy equivalent: about 185]] was blended with the polyester amide thus obtained in the amount shown in Table 1, and heated to 165-170°C. The mixture was kneaded for 5 minutes on a rubber roll machine and collected as a sheet. Next, it was press-molded into a 2 mm thick sheet at 230°C, and then heat-treated at 100°C for 16 hours. A suitably shaped test piece was cut from this sheet and its mechanical properties and chemical resistance were examined. In addition, the mechanical properties at 100°C and after being treated with boiling water for 2 hours were determined. These results are shown in Table 1. Sample 1-D in this example is a polyesteramide containing no polyepoxide and serves as a comparative sample.

【表】 実施例 2 イソフタル酸3.00部、1・4−ブタンジオール
2.93部、ヘキサメチレンジアンモニウムセバケー
ト3.00部を出発原料とした以外は実施例1と同様
の方法で、ポリブチレンイソフタレート:ポリヘ
キサメチレンセバカミドの構成単位重量比が60:
40であり、1.45の相対粘度、132℃の融点を有す
るポリエステルアミドを調製した。このポリエス
テルアミド100部に前記式()で示されるポリ
エポキシド〔“エピコート”1001(シエル化学社
製、エポキシ当量約500)〕を20部溶融混練した。
ポリエポキシド配合によつて耐薬品性(70℃で24
時間浸漬)がどのように変化したかを試験した結
果を表2に示す。なおポリエポキシド配合物は
100℃で24時間熱処理後、耐薬品性試験に供し
た。
[Table] Example 2 3.00 parts of isophthalic acid, 1,4-butanediol
In the same manner as in Example 1, except that 2.93 parts and 3.00 parts of hexamethylene diammonium sebacate were used as starting materials, the weight ratio of the constituent units of polybutylene isophthalate:polyhexamethylene sebaamide was 60:
40, a relative viscosity of 1.45, and a melting point of 132°C. To 100 parts of this polyesteramide, 20 parts of a polyepoxide represented by the above formula () ["Epikoat" 1001 (manufactured by Ciel Chemical Co., Ltd., epoxy equivalent: about 500]] was melt-kneaded.
Chemical resistance (24°C at 70°C) due to polyepoxide formulation
Table 2 shows the results of a test to see how the immersion time (immersion time) changed. Furthermore, the polyepoxide compound is
After heat treatment at 100°C for 24 hours, it was subjected to a chemical resistance test.

【表】 実施例 3 テレフタル酸200部、イソフタル酸133部、1・
4−ブタンジオール325部、12−アミノドデカン
酸241部を出発原料とし、実施例1と同様の方法
で、ポリブチレンテレフタレート:ポリブチレン
イソフタレート:ポリドデカンアミドの構成単位
重量比が40:27:33のポリエステルアミドを調製
した。このポリエステルアミドの融点は101℃、
相対粘度は1.41であつた。 上記ポリエステルアミド100部をクロルベンゼ
ン/メタノール(80/20)混合溶剤に溶解して20
%溶液とした。これに別途調整したビスフエノー
ル型エポキシ樹脂“エピコート”1001の75%キシ
レン溶液を表3に示す固型分換算の量比で添加
し、均一な透明溶液とした。これらの溶液をガラ
ス板上に流延し、50℃で2時間および100℃で24
時間加熱乾燥した後、80℃におけるフイルム特性
と各種溶剤への耐性を調べた結果を表3に示す。
[Table] Example 3 200 parts of terephthalic acid, 133 parts of isophthalic acid, 1.
Using 325 parts of 4-butanediol and 241 parts of 12-aminododecanoic acid as starting materials, in the same manner as in Example 1, the structural unit weight ratio of polybutylene terephthalate: polybutylene isophthalate: polydodecaneamide was 40:27: 33 polyesteramides were prepared. The melting point of this polyesteramide is 101℃,
The relative viscosity was 1.41. Dissolve 100 parts of the above polyesteramide in a mixed solvent of chlorobenzene/methanol (80/20) and
% solution. A separately prepared 75% xylene solution of bisphenol type epoxy resin "Epicote" 1001 was added to this at the solid content ratio shown in Table 3 to form a uniform transparent solution. These solutions were cast onto a glass plate and incubated at 50°C for 2 hours and at 100°C for 24 hours.
Table 3 shows the results of examining the film properties and resistance to various solvents at 80°C after drying by heating for a period of time.

【表】【table】

Claims (1)

【特許請求の範囲】 1 (A)下記式()および/もしくは()で示
されるエステル単位20〜85重量%と下記式()
および/もしくは()で示されるアミド単位80
〜15重量%からなるポリエステルアミド100重量
部に対し、(B)2個以上の官能基を有するポリエポ
キシド0.5〜100重量部を配合してなる樹脂組成
物。 (ただし、式()中のlは10もしくは11、式
()中のRは−(CH2)−oもしくは単環式芳香核で
あり、mは6〜12、nは6〜10の整数である。)
[Scope of Claims] 1 (A) 20 to 85% by weight of ester units represented by the following formula () and/or () and the following formula ()
and/or () amide unit 80
A resin composition comprising 0.5 to 100 parts by weight of (B) a polyepoxide having two or more functional groups to 100 parts by weight of a polyesteramide comprising 15% by weight. (However, l in formula () is 10 or 11, R in formula () is -(CH 2 )- o or a monocyclic aromatic nucleus, m is an integer of 6 to 12, and n is an integer of 6 to 10. )
JP5034180A 1980-04-18 1980-04-18 Resin composition Granted JPS56147842A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5034180A JPS56147842A (en) 1980-04-18 1980-04-18 Resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5034180A JPS56147842A (en) 1980-04-18 1980-04-18 Resin composition

Publications (2)

Publication Number Publication Date
JPS56147842A JPS56147842A (en) 1981-11-17
JPS6256892B2 true JPS6256892B2 (en) 1987-11-27

Family

ID=12856208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5034180A Granted JPS56147842A (en) 1980-04-18 1980-04-18 Resin composition

Country Status (1)

Country Link
JP (1) JPS56147842A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6114250A (en) * 1984-06-29 1986-01-22 Toyo Seikan Kaisha Ltd Resin composition
US5852155A (en) * 1995-03-01 1998-12-22 General Electric Company Compositions of polyesteramides
US5744068A (en) * 1996-01-24 1998-04-28 General Electric Company Blends of polyphenylene ethers and polyesteramides
US5731389A (en) * 1996-04-24 1998-03-24 General Electric Company Blends of polyesters and polyesteramides, optionally with polycarbonates

Also Published As

Publication number Publication date
JPS56147842A (en) 1981-11-17

Similar Documents

Publication Publication Date Title
US5030698A (en) Composition of epoxy resin, butadiene-acrylonitrile copolymer and segmented copolyester, copolyamide or copolyesteramide
CA1104287A (en) Reaction products of non-cycloaliphatic epoxy resins and amine-terminated liquid polymers and process for preparation thereof
JPH06220425A (en) Rapidly curable high-strength sealant
KR20170057248A (en) Thermosetting resin composition
JP2018531296A (en) Semi-crystalline polyamide composition with high glass transition temperature for thermoplastic materials, process for its production and use thereof
JP2018531296A6 (en) Semi-crystalline polyamide composition with high glass transition temperature for thermoplastic materials, process for its production and use thereof
JPH02248423A (en) Tough epoxy casting resin
US4555566A (en) Copolymer polyamide resin containing polyolefin moiety
JP3106096B2 (en) Polyvinyl alcohol-based thermoplastic copolymer and method for producing the same
JPS6256892B2 (en)
JP2001240670A (en) Silane modified polyamide-imide resin, its resin composition and method for producing the resin
US2852477A (en) Compositions of polyamides and polyepoxide polyesters
KR20010080961A (en) Epoxy functional polyester resins having an increased molecular weight, process for their preparation, and outdoor durable coating compositions comprising them
JPS5853946A (en) Resin composition
US5254626A (en) High-tenacity, high-impact-strength thermoplastic compositions
JPH05140541A (en) Antistatic agent
JPS5946976B2 (en) Manufacturing method of polyesteramide
JPS6353228B2 (en)
JP2009298833A (en) Epoxy resin composition and cured material of the same
JP2001139774A (en) Epoxy resin composition
JPH10231415A (en) Polyester elastomer
US4677156A (en) Easily flowable, impact resistant polyamides
CN114702672B (en) Preparation method and application of soluble UV-cured polyimide acrylic resin
WO2022201985A1 (en) Modified epoxy resin, manufacturing method therefor, curable resin composition, cured product thereof, coating material, and adhesive agent
JPH07330898A (en) Ring-opening reaction of lactam and production of biodegradable polylactoneamide resin