JPS6256786B2 - - Google Patents

Info

Publication number
JPS6256786B2
JPS6256786B2 JP57081647A JP8164782A JPS6256786B2 JP S6256786 B2 JPS6256786 B2 JP S6256786B2 JP 57081647 A JP57081647 A JP 57081647A JP 8164782 A JP8164782 A JP 8164782A JP S6256786 B2 JPS6256786 B2 JP S6256786B2
Authority
JP
Japan
Prior art keywords
oxide
catalyst
weight
alumina
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57081647A
Other languages
Japanese (ja)
Other versions
JPS58199044A (en
Inventor
Hiroo Matsuoka
Seiichi Matsuoka
Kenji Mori
Koichi Fuje
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Corp
Original Assignee
JGC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Corp filed Critical JGC Corp
Priority to JP57081647A priority Critical patent/JPS58199044A/en
Publication of JPS58199044A publication Critical patent/JPS58199044A/en
Publication of JPS6256786B2 publication Critical patent/JPS6256786B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は芳香族炭化水素の核水素化触媒に関
し、さらに詳しくはアルミナと酸化ニツケルとア
ルカリ金属、アルカリ土類金属、亜鉛の酸化物か
ら選ばれる1種以上とを特定割合で含有する芳香
族炭化水素の核水素化触媒に関する。 従来、芳香族炭化水素の核水素化触媒としては
ラネー触媒やパラジウム、白金、その他の貴金属
触媒をはじめ種々の触媒が知られているが、触媒
性能が十分でないのみならず、取扱いや経済性の
面で欠点を有するものなども多く、芳香族炭化水
素の核水素化触媒としては必ずしも満足される状
態に至つていない。 また、従来にあつては一般的に、アルカリ金属
やアルカリ土類金属はニツケル触媒を用いる芳香
族炭化水素の核水素化反応において助触媒効果は
ないと考えられており、例えばトルエンの核水素
化反応においてニツケル―シリカ触媒にアルカリ
を添加すると活性が急減するとの報告〔工業化学
68、1835(1965)〕やベンゼンの水素化反応にお
いて酸化鉄を担体としたニツケル触媒に炭酸バリ
ウムを添加すると活性は低下するとの報告〔触媒
工学講座、触媒反応(1)水素化、240 1967年9月
発行〕がなされている。そこで、特公昭46−
25368号公報においては、ナトリウム、マグネシ
ウム、カルシウム、ストロンチウム、やバリウム
をフツ化物とし、これをニツケル及びケイソウ土
に組み合わせたものを芳香族炭化水素の核水素化
触媒として提案しているが、この触媒にあつては
ニツケルやフツ化物の担持量が各々2〜60重量
%、2〜80重量%と比較的多く必要になるため、
必ずしも有効な触媒とは言えなかつた。 本発明は、かかる欠点を解決すべくなされたも
のであつて、触媒性能にすぐれかつ取扱いや経済
性の面においても利点を有する芳香族炭化水素の
核水素化触媒を提供することを目的とする。 本発明者らは、この目的に沿つて鋭意研究を重
ねた結果、アルミナ―ニツケル触媒において、ア
ルカリ金属、アルミナ土類金属、亜鉛の酸化物か
ら選ばれる1種以上を添加することによつて、ニ
ツケル金属の表面積を増加させ、つまりはニツケ
ル金属の分散度を上げる効果があることを知見し
本発明に到達した。 すなわち本発明は、アルミナ100重量部と、酸
化ニツケル5〜20重量部と、アルカリ金属、アル
カリ土類金属、亜鉛の酸化物から選ばれる1種以
上0.3〜9重量部とからなることを特徴とする芳
香族炭化水素の核水素化触媒にあり、かかる触媒
は高活性を有し、しかも取扱いや経済性等にもす
ぐれている。 本発明においてニツケルの含有量は、アルミナ
100重量部に対して酸化ニツケルとして5〜20重
量部である。この酸化ニツケル含有量が20重量部
超の触媒ではアルカリ金属、アルカリ土類金属、
亜鉛の酸化物から選ばれる1種以上を添加するこ
とによつてニツケル金属の表面積の増加が期待で
きず、5重量部未満では触媒活性に劣る。 また、アルカリ金属、アルカリ土類金属、亜鉛
の酸化物から選ばれる1種以上として、好ましく
は酸化リチウム、酸化ナトリウム、酸化カリウ
ム、酸化セシウム、酸化マグネシウム、酸化カル
シウム、酸化ストロンチウム、酸化バリウム及び
酸化亜鉛の1種以上であり、更に好ましくは酸化
バリウムである。アルカリ金属、アルカリ土類金
属や亜鉛の酸化物の担持量が増すに従つて核水素
化活性は上がり、アルミナ100重量部に対する含
有の量が1〜2重量部付近で最大値を示し、それ
以降はゆるやかに低下してくる。従つて、これら
酸化物はアルミナ100重量部に対し、0.3〜9重量
部、好ましくは0.4〜6重量部、更に好ましくは
0.5〜4重量部担持される。アルカリに対する担
持量が0.3重量部未満の場合には触媒活性が小さ
く効果的でない。また、9重量部を超えると触媒
活性が小さく、さらには硫酸バリウム、水酸化バ
リウム等の溶液を用いた場合には、その溶解度が
小さいため、一度に所望の量を担持することがで
きないので、数回担持操作を繰り返さなければな
らず実用性にも乏しい。 アルミナ担体へ、酸化ニツケル及びアルカリ金
属、アルカリ土類金属、亜鉛の酸化物を担持する
方法としては、これら金属成分の適当な水溶液と
して加えれば良く、周知の含浸法や混練法が適用
できる。適当な水溶液としては、例えば硝酸ニツ
ケル、アルカリ金属、アルカリ土類金属、亜鉛の
硝酸塩、水酸化塩等が例示される。 このようないずれの製法を用いても、本発明の
触媒はアルミナと酸化ニツケルとからなる従来の
触媒に比較して、活性の向上した触媒が得られ
る。その中でもより活性のある触媒が得られる方
法は、アルミナに酸化ニツケルを担持する際に、
含浸法を採用することであり、より望ましくはア
ルカリ金属、アルカリ土類金属、亜鉛の酸化物を
担持する際にも含浸法を採用することであり、含
浸法のみにて触媒を造るには以下の方法がある。 (1) アルミナにアルカリ金属塩等の溶液を加え、
加熱分解してアルカリ金属等の酸化物を担持し
た後に、ニツケル塩溶液を加えて、同様に酸化
ニツケルを担持する方法、 (2) アルカリ金属塩等の溶液とニツケル塩溶液と
の混合溶液にして、アルミナにアルカリ金属等
の酸化物および酸化ニツケルを一度に担持する
方法、および (3) 初めに酸化ニツケルを担持し、その後アルカ
リ金属等の酸化物を担持させる方法、 であり、いずれの方法も可能であるが本発明にお
いては特に(1)の方法が望ましい。また、このニツ
ケル塩溶液、アルカリ金属塩等の溶液は酸性液の
状態でアルミナに担持させることが、触媒活性の
向上により役立ち好ましい。 本発明の触媒が使用される芳香族炭化水素とし
てはベンゼン、トルエン、エチルベンゼン、キシ
レン、ジフエニルメタン、ナフタリン、フエノー
ル等が例示される。この芳香族炭化水素の核水素
化の反応条件は通常気相にて行なわれ、反応温度
は80〜350℃、好ましくは100〜250℃で行なわれ
る。W/Fは1〜100g―cat hr/mo好ましく
は3〜70g―cat h2/moである。芳香族炭化
水素と水素とのモル比は1:3〜15、好ましくは
1:3〜10である。 以上のごとき本発明の触媒によつて触媒活性が
著しく向上することから、芳香族炭化水素の核水
素化反応にきわめて有効に使用される。 以下、実施例および比較例に基づいて本発明を
具体的に説明する。 比較例 1 成型したアルミナ担体(吸水率0.75c.c./g)
100gを500c.c.のビーカーに入れ、担体を振り混ぜ
ながら2.53mo/の硝酸ニツケル溶液(PH
1.7)75c.c.を室温で滴下しながら含浸した。均一
に担持するためにそのまま室温で12時間静置し、
しかる後、常法により乾燥器で乾燥し、電気炉に
て空気中500℃、3時間焼成して触媒Aを得た。 この触媒Aのベンゼンの核水素化反応における
活性試験を常圧下で通常の固定層流通型反応装置
を用いて行なつた。触媒Aは内径14mmのパイレツ
クスガラス反応管に充填し、500℃、3時間水素
還元したものを用い、H2/C6H6=3(モル比)、
反応温度140℃でベンゼンをマイクロフイーダで
供給し、水素活性(ベンゼンの消失速度)を測定
した。結果を第1表に示す。 実施例 1 比較例1で使用したアルミナ担体100gを500c.c.
のビーカーに入れ、振り混ぜながら0.26mo/
の硝酸バリウム溶液(PH4.9)75c.c.を室温で担
体に滴下しながら含浸した。しかる後、常法によ
り乾燥器にて乾燥した後、マツフル炉にて800
℃、3時間焼成して酸化バリウムをアルミナ担体
に担持した。この酸化バリウムを担持したアルミ
ナ担体100gに2.53mo/の硝酸ニツケル溶液
(PH1.7)75c.c.を滴下しながら含浸した。12時間静
置後、常法により乾燥し、電気炉にて空気中500
℃、3時間焼成して触媒Bを得た。 この触媒Bの水素活性(ベンゼンの消失速度)
を比較例1と同様に測定した。結果を第1表に示
す。 実施例 2〜9 実施例1において、酸化バリウムに代えて酸化
リチウム、酸化ナトリウム、酸化カリウム、酸化
セシウム、酸化マグネシウム、酸化カルシウム、
酸化ストロンチウム、酸化亜鉛を担持させる以外
はすべて実施例1と同様に行つて触媒C1〜C8
得た。 この触媒(C1〜C8)の水素活性(ベンゼンの消
失速度)を比較例1と同様に測定した。結果を第
1表に示す。 実施例 10 比較例1で調製した触媒A100gを500c.c.のビー
カに入れ、振り混ぜながら0.26mo/の硝酸
バリウム溶液(PH4.9)75c.c.を室温で滴下しなが
ら含浸した。12時間室温で静置後、常法により乾
燥し、電気炉にて空気中500℃、3時間焼成して
触媒Dを得た。 この触媒Dの水素活性(ベンゼンの消失速度)
を比較例1と同様に測定した。結果を第1表に示
す。 実施例 11 γ―アルミナ粉末500gを撹拌機ニーダに入れ
少量の純水を加えた。別に硝酸バリウム25.6gを
純水500c.c.に溶解して、これを前記アルミナに撹
拌しながら少量ずつ加えた。このペーストを混練
しながら加熱し、水分20重量%程度に調節し、ス
クリユー式押し出し成型機を用いて成型し、乾燥
及び800℃、3時間焼成して酸化バリウムを担持
したアルミナを調製した。この酸化バリウムを担
持したアルミナ担体(吸水率0.75c.c./g)に実施
例1と同様に硝酸ニツケル溶液を含浸した後、乾
燥、焼成して触媒Eを調製した。 この触媒Eの水素活性(ベンゼンの消失速度)
を比較例1と同様に測定した。結果を第1表に示
す。 実施例 12 γ―アルミナ粉末500gを撹拌式ニーダーに入
れ少量の純水を加えた。次いで、硝酸バリウム
25.6gの500c.c.溶液と硝酸ニツケル2.53mo/
溶液75c.c.を上記アルミナに撹拌しながら少量ずつ
加えていつた。このペーストを混練しながら加熱
し、水分20重量%程度に調節し、スクリユー式押
し出し成型機を用いて成型し乾燥後500℃3時間
焼成して触媒Fを調製した。 この触媒Fの水素活性(ベンゼンの消失速度)
を比較例1と同様に測定した。結果を第1表に示
す。 実施例 13 比較例1で使用したのと同じアルミナ担体100
gを500c.c.ビーカーに入れ、0.26mo/の水酸
化バリウム溶液75c.c.を実施例1と同じように担体
へ滴下しながら含浸した。しかる後常法により乾
燥器にて乾燥した後、マツフル炉にて800℃3時
間焼成して酸化バリウムをアルミナ担体に担持し
た。この酸化バリウムを担持したアルミナ担体
100gに2.53mo/の硝酸ニツケル溶液75c.c.を
担体へ滴下しながら含浸した。12時間静置した
後、常法により乾燥し、電気炉にて空気中500
℃、3時間焼成して触媒Gを調製した。 この触媒Gの水素活性(ベンゼンの消失速度)
を比較例1と同様に測定した。結果を第1表に示
す。
The present invention relates to a catalyst for the nuclear hydrogenation of aromatic hydrocarbons, and more particularly to an aromatic hydrocarbon catalyst containing alumina, nickel oxide, and one or more selected from oxides of alkali metals, alkaline earth metals, and zinc in specific proportions. Concerning hydrogen nuclear hydrogenation catalysts. Conventionally, various catalysts have been known as catalysts for the nuclear hydrogenation of aromatic hydrocarbons, including Raney catalysts, palladium, platinum, and other noble metal catalysts, but they not only lack sufficient catalytic performance but also lack handling and economic efficiency. Many of them have drawbacks in terms of aspects, and they are not necessarily satisfactory as catalysts for nuclear hydrogenation of aromatic hydrocarbons. Furthermore, in the past, it was generally believed that alkali metals and alkaline earth metals had no promoter effect in the nuclear hydrogenation reaction of aromatic hydrocarbons using a nickel catalyst; for example, in the nuclear hydrogenation reaction of toluene. It has been reported that when an alkali is added to the nickel-silica catalyst in the reaction, the activity decreases rapidly [Industrial Chemistry]
68 , 1835 (1965)] and a report that in the hydrogenation reaction of benzene, adding barium carbonate to a nickel catalyst using iron oxide as a carrier reduces its activity [Catalyst Engineering Course 6 , Catalytic Reaction (1) Hydrogenation, 240 1967 Published in September 2017]. Therefore, the special public official
Publication No. 25368 proposes a fluoride of sodium, magnesium, calcium, strontium, and barium combined with nickel and diatomaceous earth as a catalyst for nuclear hydrogenation of aromatic hydrocarbons. In this case, relatively large amounts of nickel and fluoride are required to be supported, 2 to 60% by weight and 2 to 80% by weight, respectively.
It could not necessarily be said that it was an effective catalyst. The present invention has been made to solve these drawbacks, and an object of the present invention is to provide a catalyst for nuclear hydrogenation of aromatic hydrocarbons that has excellent catalytic performance and has advantages in terms of handling and economy. . As a result of extensive research in line with this objective, the present inventors have found that by adding one or more selected from alkali metals, alumina earth metals, and zinc oxides to an alumina-nickel catalyst, The present invention was achieved based on the discovery that the surface area of nickel metal is increased, which means that the degree of dispersion of nickel metal is increased. That is, the present invention is characterized in that it consists of 100 parts by weight of alumina, 5 to 20 parts by weight of nickel oxide, and 0.3 to 9 parts by weight of one or more selected from oxides of alkali metals, alkaline earth metals, and zinc. This catalyst has high activity and is also excellent in handling and economy. In the present invention, the content of nickel is
The amount is 5 to 20 parts by weight as nickel oxide per 100 parts by weight. In catalysts containing more than 20 parts by weight of nickel oxide, alkali metals, alkaline earth metals,
An increase in the surface area of nickel metal cannot be expected by adding one or more selected from zinc oxides, and if the amount is less than 5 parts by weight, the catalyst activity will be poor. In addition, one or more oxides selected from oxides of alkali metals, alkaline earth metals, and zinc are preferably lithium oxide, sodium oxide, potassium oxide, cesium oxide, magnesium oxide, calcium oxide, strontium oxide, barium oxide, and zinc oxide. More preferably, it is barium oxide. As the supported amount of alkali metal, alkaline earth metal, and zinc oxides increases, the nuclear hydrogenation activity increases, reaching a maximum value when the content is around 1 to 2 parts by weight relative to 100 parts by weight of alumina, and after that, the hydrogenation activity increases. is gradually decreasing. Therefore, these oxides are contained in an amount of 0.3 to 9 parts by weight, preferably 0.4 to 6 parts by weight, and more preferably 0.4 to 6 parts by weight, based on 100 parts by weight of alumina.
It is carried in an amount of 0.5 to 4 parts by weight. If the amount supported on the alkali is less than 0.3 parts by weight, the catalyst activity will be low and it will not be effective. In addition, if the amount exceeds 9 parts by weight, the catalyst activity will be low, and furthermore, if a solution of barium sulfate, barium hydroxide, etc. is used, the desired amount cannot be supported at once due to its low solubility. The carrying operation must be repeated several times and is not practical. Nickel oxide and oxides of alkali metals, alkaline earth metals, and zinc can be supported on the alumina carrier by adding appropriate aqueous solutions of these metal components, and well-known impregnation methods and kneading methods can be applied. Suitable aqueous solutions include, for example, nitrates and hydroxides of nickel nitrate, alkali metals, alkaline earth metals, and zinc. Regardless of which of these production methods is used, the catalyst of the present invention has improved activity compared to conventional catalysts made of alumina and nickel oxide. Among them, the method to obtain a more active catalyst is to support nickel oxide on alumina.
The impregnation method is used, and more preferably the impregnation method is also used when supporting oxides of alkali metals, alkaline earth metals, and zinc.To make a catalyst only by the impregnation method, the following steps are required. There is a method. (1) Add a solution of alkali metal salt etc. to alumina,
After thermal decomposition to support an oxide such as an alkali metal, a nickel salt solution is added and nickel oxide is supported in the same manner. (2) A mixed solution of a solution of an alkali metal salt etc. and a nickel salt solution is prepared. (3) A method in which oxides such as alkali metals and nickel oxide are supported on alumina at the same time; and (3) a method in which nickel oxide is supported first and then oxides such as alkali metals are supported. Although possible, method (1) is particularly preferred in the present invention. Further, it is preferable that the nickel salt solution, alkali metal salt, etc. solution be supported on alumina in the form of an acidic liquid, as this will help improve the catalytic activity. Examples of aromatic hydrocarbons for which the catalyst of the present invention can be used include benzene, toluene, ethylbenzene, xylene, diphenylmethane, naphthalene, and phenol. The reaction conditions for this nuclear hydrogenation of aromatic hydrocarbons are usually carried out in the gas phase, and the reaction temperature is 80 to 350°C, preferably 100 to 250°C. W/F is 1 to 100 g-cat hr/mo, preferably 3 to 70 g-cat h 2 /mo. The molar ratio of aromatic hydrocarbon to hydrogen is 1:3-15, preferably 1:3-10. Since the catalyst of the present invention as described above significantly improves the catalytic activity, it is very effectively used in the nuclear hydrogenation reaction of aromatic hydrocarbons. The present invention will be specifically described below based on Examples and Comparative Examples. Comparative example 1 Molded alumina carrier (water absorption rate 0.75cc/g)
Put 100g into a 500c.c. beaker, shake the carrier and add 2.53mo/nickel nitrate solution (PH
1.7) Impregnated with 75 c.c. dropwise at room temperature. To ensure uniform loading, leave it at room temperature for 12 hours.
Thereafter, it was dried in a dryer using a conventional method and calcined in air at 500°C for 3 hours in an electric furnace to obtain catalyst A. The activity of this catalyst A in the benzene nuclear hydrogenation reaction was tested under normal pressure using a conventional fixed bed flow reactor. Catalyst A was packed in a Pyrex glass reaction tube with an inner diameter of 14 mm and subjected to hydrogen reduction at 500°C for 3 hours, H 2 /C 6 H 6 = 3 (molar ratio),
Benzene was supplied using a microfeeder at a reaction temperature of 140°C, and hydrogen activity (benzene disappearance rate) was measured. The results are shown in Table 1. Example 1 100g of alumina carrier used in Comparative Example 1 was added to 500c.c.
0.26 mo/
The carrier was impregnated with 75 c.c. of barium nitrate solution (PH4.9) dropwise at room temperature. After that, dry it in a dryer using the usual method, and then dry it in a Matsufuru oven for 800
C. for 3 hours to support barium oxide on the alumina support. 100 g of this barium oxide-supported alumina carrier was impregnated with 75 c.c. of a 2.53 mo/nickel nitrate solution (PH 1.7) dropwise. After standing still for 12 hours, dry in the usual manner and heat in the air at 500 °C in an electric furnace.
C. for 3 hours to obtain catalyst B. Hydrogen activity of this catalyst B (benzene disappearance rate)
was measured in the same manner as in Comparative Example 1. The results are shown in Table 1. Examples 2 to 9 In Example 1, lithium oxide, sodium oxide, potassium oxide, cesium oxide, magnesium oxide, calcium oxide,
Catalysts C 1 to C 8 were obtained in the same manner as in Example 1 except that strontium oxide and zinc oxide were supported. The hydrogen activity (benzene disappearance rate) of this catalyst (C 1 to C 8 ) was measured in the same manner as in Comparative Example 1. The results are shown in Table 1. Example 10 100 g of the catalyst A prepared in Comparative Example 1 was placed in a 500 c.c. beaker, and 75 c.c. of 0.26 mo/barium nitrate solution (PH4.9) was added dropwise at room temperature while shaking and impregnating the beaker. After standing at room temperature for 12 hours, it was dried by a conventional method and calcined in air at 500° C. for 3 hours in an electric furnace to obtain catalyst D. Hydrogen activity of this catalyst D (benzene disappearance rate)
was measured in the same manner as in Comparative Example 1. The results are shown in Table 1. Example 11 500 g of γ-alumina powder was placed in a stirrer kneader, and a small amount of pure water was added. Separately, 25.6 g of barium nitrate was dissolved in 500 c.c. of pure water, and this was added little by little to the alumina while stirring. This paste was heated while being kneaded to adjust the water content to about 20% by weight, molded using a screw extruder, dried and fired at 800°C for 3 hours to prepare barium oxide-supported alumina. Catalyst E was prepared by impregnating this barium oxide-supported alumina carrier (water absorption rate: 0.75 cc/g) with a nickel nitrate solution in the same manner as in Example 1, followed by drying and calcining. Hydrogen activity of this catalyst E (benzene disappearance rate)
was measured in the same manner as in Comparative Example 1. The results are shown in Table 1. Example 12 500 g of γ-alumina powder was placed in a stirring kneader, and a small amount of pure water was added. Then barium nitrate
25.6g of 500c.c. solution and nickel nitrate 2.53mo/
75 c.c. of the solution was added little by little to the above alumina while stirring. This paste was heated while being kneaded to adjust the water content to about 20% by weight, molded using a screw type extrusion molding machine, dried and calcined at 500°C for 3 hours to prepare catalyst F. Hydrogen activity of this catalyst F (benzene disappearance rate)
was measured in the same manner as in Comparative Example 1. The results are shown in Table 1. Example 13 Same alumina carrier 100 as used in Comparative Example 1
g was placed in a 500 c.c. beaker, and 75 c.c. of a 0.26 mo/barium hydroxide solution was added dropwise to the carrier in the same manner as in Example 1 to impregnate it. Thereafter, it was dried in a dryer using a conventional method, and then calcined in a Matsufuru furnace at 800°C for 3 hours to support barium oxide on the alumina support. Alumina carrier supporting this barium oxide
100 g of the carrier was impregnated with 75 c.c. of a 2.53 mo/nickel nitrate solution by dropping it onto the carrier. After leaving it for 12 hours, dry it by the usual method and heat it in the air at 500 °C in an electric furnace.
C. for 3 hours to prepare catalyst G. Hydrogen activity of this catalyst G (benzene disappearance rate)
was measured in the same manner as in Comparative Example 1. The results are shown in Table 1.

【表】 実施例 14〜16 実施例1における硝酸バリウム溶液の濃度を変
えて、アルミナの重量に対する酸化バリウムの含
有量を0.6重量%、1.5重量%とし、さらに0.39mo
/の硝酸バリウム溶液150c.c.をアルミナ担体
100gに2回に分けて含浸することによつて酸化
バリウム含有量を9重量%とした触媒をそれぞれ
得た。これらの触媒を実施例1と同様に酸化ニツ
ケルを担持して触媒H.I.Jを得た。 この触媒H.I.Jを比較例1と同様に水素活性
(ベンゼンの消失速度)を測定すると共にトルエ
ンの消失速度を測定し第2表、第1図および第2
図に示した。また、比較例1の触媒A、実施例1
の触媒Bのベンゼンおよびトルエン消失速度を併
せて示す。
[Table] Examples 14 to 16 The concentration of the barium nitrate solution in Example 1 was changed to make the barium oxide content relative to the weight of alumina 0.6% by weight, 1.5% by weight, and further 0.39mo
/ barium nitrate solution 150c.c. on alumina carrier
By impregnating 100 g in two portions, catalysts each having a barium oxide content of 9% by weight were obtained. Catalyst HIJ was obtained by supporting these catalysts on nickel oxide in the same manner as in Example 1. The hydrogen activity (disappearance rate of benzene) of this catalyst HIJ was measured in the same manner as in Comparative Example 1, and the dissipation rate of toluene was also measured.
Shown in the figure. In addition, catalyst A of Comparative Example 1, Example 1
The benzene and toluene disappearance rates of catalyst B are also shown.

【表】 実施例 17 実施例16で得られた触媒Iを用いてベンゼンの
核水素化反応を行つたところ、反応開始から145
時間経過後も触媒活性(ベンゼンの消失速度)は
3.4×10-3ベンゼンmo/触媒g.minを維持し
全く変化がなかつた。 以上の実施例および比較例に示されるように、
アルミナと酸化ニツケルとアルカリ金属、アルカ
リ土類金属、亜鉛の酸化物を特定割合で含有して
なる本発明の触媒は、いずれも従来のアルミナと
酸化ニツケルとからなる触媒に比較して触媒活性
にすぐれている。また、本発明の触媒において
は、特に酸化物として酸化バリウムを用いたもの
が触媒活性にすぐれる。さらに担持方法としては
含浸法が好ましく、特にアルカリ金属、アルカリ
土類金属や亜鉛の塩、ニツケル塩の順に含浸させ
て得られた触媒が最もすぐれている。しかも本発
明の触媒にあつては実施例17に示されるごとく触
媒の耐久性も良好である。
[Table] Example 17 When the nuclear hydrogenation reaction of benzene was carried out using the catalyst I obtained in Example 16, 145
Catalytic activity (benzene disappearance rate) remains unchanged even after time elapses.
3.4×10 -3 benzene mo/catalyst g. The min value was maintained and there was no change at all. As shown in the above examples and comparative examples,
The catalyst of the present invention, which contains alumina, nickel oxide, and oxides of alkali metals, alkaline earth metals, and zinc in specific proportions, has higher catalytic activity than conventional catalysts made of alumina and nickel oxide. It is excellent. In addition, in the catalyst of the present invention, especially one using barium oxide as the oxide has excellent catalytic activity. Furthermore, as a supporting method, an impregnation method is preferable, and in particular, a catalyst obtained by impregnating the catalyst with an alkali metal, an alkaline earth metal, a zinc salt, and a nickel salt in this order is most excellent. Furthermore, the catalyst of the present invention has good durability as shown in Example 17.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は、それぞれ触媒中の
Al2O3の重量に対するBaOの含有量とベンゼンの
消失速度、トルエンの消失速度との関係を示すグ
ラフである。
Figures 1 and 2 respectively show the
It is a graph showing the relationship between the content of BaO, the rate of disappearance of benzene, and the rate of disappearance of toluene with respect to the weight of Al 2 O 3 .

Claims (1)

【特許請求の範囲】 1 アルミナ100重量部と、酸化ニツケル5〜20
重量部と、アルカリ金属、アルカリ土類金属、亜
鉛の酸化物から選ばれる1種以上0.3〜9重量部
とからなることを特徴とする芳香族炭化水素の核
水素化触媒。 2 酸化物が酸化バリウムである特許請求の範囲
第1項記載の芳香族炭化水素の核水素化触媒。 3 酸化物の含有量が0.4〜6重量部である特許
請求の範囲第1項または第2項記載の芳香族炭化
水素の核水素化触媒。 4 アルミナに対する酸化ニツケルおよび酸化物
の担持が含浸法によつてなされる特許請求の範囲
第1項、第2項または第3項記載の芳香族炭化水
素の核水素化触媒。 5 酸化ニツケルおよび酸化物を含浸法によつて
アルミナに担持する際に、使用するニツケル塩溶
液およびアルカリ金属、アルカリ土類金属、亜鉛
の塩溶液が酸性液である特許請求の範囲第4項記
載の芳香族炭化水素の核水素化触媒。
[Claims] 1 100 parts by weight of alumina and 5 to 20 parts by weight of nickel oxide
1. A catalyst for the hydrogenation of aromatic hydrocarbons, comprising: 1 part by weight, and 0.3 to 9 parts by weight of one or more selected from oxides of alkali metals, alkaline earth metals, and zinc. 2. The aromatic hydrocarbon nuclear hydrogenation catalyst according to claim 1, wherein the oxide is barium oxide. 3. The aromatic hydrocarbon hydrogenation catalyst according to claim 1 or 2, wherein the content of the oxide is 0.4 to 6 parts by weight. 4. The aromatic hydrocarbon nuclear hydrogenation catalyst according to claim 1, 2 or 3, wherein the nickel oxide and oxide are supported on alumina by an impregnation method. 5. Claim 4, wherein the nickel salt solution and the alkali metal, alkaline earth metal, and zinc salt solutions used when supporting nickel oxide and oxides on alumina by an impregnation method are acidic liquids. catalyst for the nuclear hydrogenation of aromatic hydrocarbons.
JP57081647A 1982-05-17 1982-05-17 Nuclear hydrogenation catalyst for aromatic hydrocarbon Granted JPS58199044A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57081647A JPS58199044A (en) 1982-05-17 1982-05-17 Nuclear hydrogenation catalyst for aromatic hydrocarbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57081647A JPS58199044A (en) 1982-05-17 1982-05-17 Nuclear hydrogenation catalyst for aromatic hydrocarbon

Publications (2)

Publication Number Publication Date
JPS58199044A JPS58199044A (en) 1983-11-19
JPS6256786B2 true JPS6256786B2 (en) 1987-11-27

Family

ID=13752125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57081647A Granted JPS58199044A (en) 1982-05-17 1982-05-17 Nuclear hydrogenation catalyst for aromatic hydrocarbon

Country Status (1)

Country Link
JP (1) JPS58199044A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11208365B2 (en) 2016-12-20 2021-12-28 Uop Llc Processes and apparatuses for methylation of aromatics in an aromatics complex
US11130719B2 (en) 2017-12-05 2021-09-28 Uop Llc Processes and apparatuses for methylation of aromatics in an aromatics complex
US11130720B2 (en) 2018-03-23 2021-09-28 Uop Llc Processes for methylation of aromatics in an aromatics complex

Also Published As

Publication number Publication date
JPS58199044A (en) 1983-11-19

Similar Documents

Publication Publication Date Title
EP0184451B1 (en) Process for loading platinum into zeolite-l'
JP2001525246A (en) Catalysts for converting paraffinic hydrocarbons to the corresponding olefins
JP2008050338A (en) Method for producing dimethylnaphthalene using metal catalyst
CN108295846A (en) A kind of alkane dehydrogenating catalyst and preparation method thereof
JPH0217944A (en) Catalyst composition, preparation thereof and hydrogenation of chlorofluoroalkene by the composition
US5053377A (en) Catalytic compositions, process for obtaining them and process for hydrogenation of 1,1,2-trichloro-1,2,2-trifluoroethane by means of these compositions
JP2594464B2 (en) Dehydrogenation catalyst
US3962126A (en) Reactivation of a magnesium oxide catalyst
CN1155451A (en) Preparation of low carbon alkane dehydrogenating catalyst
JP7411078B2 (en) Catalyst for cycloalkane dehydrogenation and its production and application
US5243103A (en) Process for obtaining catalytic compositions and process for hydrogenation of chlorofluoroalkenes by means of these compositions
JPS6256786B2 (en)
JPH10180101A (en) Dehydrogenation catalyst
JP4054116B2 (en) Dehydrogenation catalyst
EP0754493A2 (en) Catalyst for purifying exhaust gases and process for producing the same
CN111068747B (en) Catalyst for preparing isopropylbenzene by hydrogenolysis and application thereof
KR102162079B1 (en) Method of preparing catalyst support and dehydrogenation catalysts
JP4235731B2 (en) Process for producing molded catalyst for dehydroaromatization reaction of lower hydrocarbon
WO2017159371A1 (en) Conjugated diene production method
US2976232A (en) Platinum-alumina-ceria hydroforming catalyst and process
CN108033462B (en) Hierarchical porous LTL molecular sieve and synthesis method and application thereof
WO2019176247A1 (en) Method for producing indane
CN114130420B (en) Benzene hydroalkylation catalyst and preparation method and application thereof
CN114433220B (en) Preparation method of benzene and synthesis gas alkylation catalyst
CN115739080A (en) Preparation of Pt-based catalyst and application of Pt-based catalyst in preparation of chloroaniline by selective hydrogenation of chloronitrobenzene