JPS625676B2 - - Google Patents

Info

Publication number
JPS625676B2
JPS625676B2 JP10762379A JP10762379A JPS625676B2 JP S625676 B2 JPS625676 B2 JP S625676B2 JP 10762379 A JP10762379 A JP 10762379A JP 10762379 A JP10762379 A JP 10762379A JP S625676 B2 JPS625676 B2 JP S625676B2
Authority
JP
Japan
Prior art keywords
ultrasonic
frequency
ultrasonic transducers
alternately
half cycle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10762379A
Other languages
Japanese (ja)
Other versions
JPS5631481A (en
Inventor
Sadao Kanai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JINMEIDAI KOGYO KK
Original Assignee
JINMEIDAI KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JINMEIDAI KOGYO KK filed Critical JINMEIDAI KOGYO KK
Priority to JP10762379A priority Critical patent/JPS5631481A/en
Publication of JPS5631481A publication Critical patent/JPS5631481A/en
Publication of JPS625676B2 publication Critical patent/JPS625676B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Cleaning By Liquid Or Steam (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は2つの異なる周波数出力で交互に超音
波振動子を駆動して洗浄物を超音波洗浄する方法
および装置に関するものである。 超音波放射面から洗浄物または洗浄液面等、振
動の反射する面までの距離によつて超音波強度
(振幅)が異なるので、超音波振動が最大となり
洗浄効果が高まるように常に超音波周波数を手動
または自動(自動追尾と呼ばれる)により調整し
ている。 第1図Aは従来方法の一例の説明図を示し、1
は洗浄槽、2は洗浄液、3は超音波振動子、4は
超音波発振器、5は洗浄物で、超音波振動子3を
貼着した洗浄槽1の超音波放射面との距離が部分
的に異なるように洗浄液2に浸漬された状態を示
す。このように洗浄物5の表面の各点は超音波放
射面からの距離が一定しないことが普通である。
いま、超音波放射面から洗浄物5の超音波反射面
までの距離のうち、特定な点までの距離をl1〜l7
としてこの距離と超音波振動の波長との関係を考
察する。1個の超音波発振器4を使用する方法で
は距離l2に合わせて超音波振動子3の共振周波数
f0、例えば26kHzで超音波発振器4を発振させ、
洗浄物5を洗浄を行うとすると、距離l2とこれよ
り半波長(λ/2)の整数倍離れた距離l6=l2+n
λ/2(n=1、2、3…………)の反射面では最大 の超音波振動が得られるが、それらの反射面より
1/4波長(λ/4)離れた距離l4=l2+nλ/2±λ/4
の反 射面では超音波振動が最少となり、この部分の洗
浄効果は悪くなる。 第1図Bはこの場合のf0による超音波の強度分
布を示すものである。 第2図Aは上記の欠点を改良した従来方法の他
例の説明図を示し、4a,4bは2個の超音波発
振器で、商用電源6の周波数の半サイクル毎にダ
イオード7aまたは7bを介して交互に作動せし
められて超音波振動子3a〜3dの共振周波数f0
より僅かに異なる周波数f1=f0+Δf0=26.3kHz、
f2=f0−Δf0=25.7kHzの出力をそれぞれ発生す
る。このように2個の超音波発振器4a,4bを
使用する方法では、第2図Bに示すように距離
l1,l5の反射面ではf1=26.3kHz、l3,l7の反射面
ではf2=25.7kHzによりそれぞれ超音波振動が最
大となり、距離に関係なくほぼ均一な洗浄効果が
得られるが、超音波振動子の使用数が多くなり、
その配線も複雑になる欠点がある。 本発明は上記の欠点を改良することを目的とし
たもので、以下本発明の一実施方法および装置を
第3図によつて詳細に説明する。 この第3図示の本発明は、商用電源6の周波数
の半サイクル毎にダイオード7aまたは7bを介
して交互に作動せしめられ、1個の磁歪型超音波
振動子3の共振特性で共振周波数f0、例えば
26kHzを中心とする実質的に平坦とみなされる範
囲内にある僅かに異なる周波数f1=f0+Δf0=26
+0.3=26.3kHz、f2=f0−Δf0=26−0.3=
25.7kHzの出力をそれぞれ発生する2個の超音波
発振器4a,4bを用い、これらの周波数f1,f2
の出力で前記磁歪型超音波振動子3を商用電源周
波数の半サイクル毎に交互に駆動する際に、該磁
歪型超音波振動子3に直列接続した容量C1とこ
れに半導体スイツチ回路SCを介して並列接続し
た容量C2よりなる容量Cを、商用電源周波数の
半サイクル毎に前記半導体スイツチ回路SCを交
互にオン・オフさせることによりC=C1+C2
たはC=C1に変え、磁歪型超音波振動子3の巻
線によるインダクタンスLdと容量Cによる直列
共振回路を2つの周波数f1,f2に対してそれぞれ
共振させ整合させて洗浄物5を超音波洗浄する方
法および装置である。 なお、容量C1+C2、C1と共振周波数f1,f2との
間には
The present invention relates to a method and apparatus for ultrasonically cleaning an object by driving an ultrasonic transducer alternately with two different frequency outputs. Since the ultrasonic intensity (amplitude) varies depending on the distance from the ultrasonic emission surface to the surface where the vibrations are reflected, such as the object to be cleaned or the surface of the cleaning liquid, the ultrasonic frequency should always be adjusted so that the ultrasonic vibrations are maximized and the cleaning effect is enhanced. Adjustments are made manually or automatically (called automatic tracking). FIG. 1A shows an explanatory diagram of an example of a conventional method, and 1
is a cleaning tank, 2 is a cleaning liquid, 3 is an ultrasonic vibrator, 4 is an ultrasonic oscillator, and 5 is an object to be cleaned. 2 shows the state immersed in the cleaning liquid 2 in different ways. In this way, each point on the surface of the object to be cleaned 5 is usually not at a constant distance from the ultrasonic emission surface.
Now, among the distances from the ultrasonic emission surface to the ultrasonic reflection surface of the object to be cleaned 5, the distance to a specific point is l 1 to l 7
Let us consider the relationship between this distance and the wavelength of ultrasonic vibration. In the method using one ultrasonic oscillator 4, the resonance frequency of the ultrasonic transducer 3 is adjusted according to the distance l 2 .
oscillate the ultrasonic oscillator 4 at f 0 , for example 26kHz,
When cleaning the object 5, the distance l 2 and the distance l 6 which is an integer multiple of a half wavelength (λ/2) from this distance = l 2 + n
The maximum ultrasonic vibration can be obtained from the reflecting surfaces of λ/2 (n=1, 2, 3...), but the
Distance 1/4 wavelength (λ/4) apart l 4 = l 2 +nλ/2±λ/4
The ultrasonic vibration is at its minimum on the reflective surface, and the cleaning effect in this area is poor. FIG. 1B shows the ultrasonic intensity distribution according to f 0 in this case. FIG. 2A shows an explanatory diagram of another example of the conventional method that improves the above-mentioned drawbacks, in which 4a and 4b are two ultrasonic oscillators, and every half cycle of the frequency of the commercial power supply 6, a diode 7a or 7b is used. The resonant frequency f 0 of the ultrasonic transducers 3a to 3d is
A slightly different frequency f 1 = f 0 + Δf 0 = 26.3kHz,
Each generates an output of f 2 =f 0 −Δf 0 =25.7kHz. In this method of using two ultrasonic oscillators 4a and 4b, the distance
The ultrasonic vibration reaches its maximum at f 1 = 26.3 kHz on the reflecting surfaces of l 1 and l 5 , and at f 2 = 25.7 kHz on the reflecting surfaces of l 3 and l 7 , and a nearly uniform cleaning effect can be obtained regardless of the distance. However, as the number of ultrasonic transducers used increases,
The disadvantage is that the wiring is also complicated. The present invention aims to improve the above-mentioned drawbacks, and a method and apparatus for implementing the present invention will be explained in detail below with reference to FIG. The present invention shown in the third diagram is operated alternately via the diode 7a or 7b every half cycle of the frequency of the commercial power supply 6, and the resonance frequency f 0 is set by the resonance characteristic of one magnetostrictive ultrasonic transducer 3. ,for example
Slightly different frequencies f 1 = f 0 + Δf 0 = 26 within a range that is considered substantially flat and centered around 26 kHz.
+0.3=26.3kHz, f2 = f0Δf0 =26−0.3=
Using two ultrasonic oscillators 4a and 4b that each generate an output of 25.7kHz, these frequencies f 1 and f 2
When driving the magnetostrictive ultrasonic transducer 3 alternately every half cycle of the commercial power frequency with the output of By alternately turning on and off the semiconductor switch circuit SC every half cycle of the commercial power frequency, a capacitor C consisting of a capacitor C 2 connected in parallel through a capacitor C 2 is changed to C=C 1 +C 2 or C=C 1 ; A method and apparatus for ultrasonically cleaning an object 5 by resonating and matching a series resonant circuit consisting of an inductance Ld and a capacitance C formed by the winding of a magnetostrictive ultrasonic transducer 3 to two frequencies f 1 and f 2 respectively. be. Note that there is a relationship between capacitance C 1 + C 2 , C 1 and resonance frequency f 1 , f 2

【式】【formula】

【式】の関係があり、この関 係を満足するようにC1とC2の値を決定しておく
ことはもちろんである。 また半導体スイツチ回路SCとしては、例えば
第4図示のように4つのダイオード9a〜9dよ
りなるブリツジ回路の一方組のブリツジ端子a,
b間を、2つの容量C1,C2を接続・非接続する
2点間、この場合は2つの容量C1とC2の一方の
端子間に接続し、他方組のブリツジ端子c,d間
にはNPN形スイツチングトランジスタ8のコレ
クタ・エミツタを接続すると共に、このスイツチ
ングトランジスタ8のベース・エミツタ間に商用
電源6を接続してなる方向性のない半導体スイツ
チ回路を用いることができる。なお、耐電圧、耐
電流を増大させるため点線で示すように容量
C3,C4の並列回路を直列に接続してもよい。 しかして超音波発振器4a,4bは、商用電源
6の正、負の半周期毎に交互に作動すると共にト
ランジスタ8は商用電源6の正、負の半周期毎に
オン・オフする。正の半周期では、トランジスタ
8がオンしているから、超音波発振器4aの周波
数f1の出力に対しブリツジ回路の端子a,b間は
ダイオード9a、トランジスタ8のコレクタ、エ
ミツタ、ダイオード9bの回路またはダイオード
9c、トランジスタ8のコレクタ、エミツタ、ダ
イオード9dの回路で閉状態にあり、容量C2
C1に並列に接続され全容量CはC1+C2になる。
また負の半周期では、トランジスタ8がオフして
いるから、ブリツジ回路の端子a,b間は開状態
にあり、容量C2はC1に並列接続されず、全容量
CはC1になる。その結果、電源6の正の半周期
では、超音波発振器4aの周波数f1の出力が超音
波振動子3と容量C=C1+C2の直列回路に加わ
つて
There is a relationship as shown in [Formula], and it goes without saying that the values of C 1 and C 2 must be determined so as to satisfy this relationship. Further, as a semiconductor switch circuit SC, for example, as shown in FIG. 4, one set of bridge terminals a,
Connect b between two points where two capacitors C 1 and C 2 are connected/disconnected, in this case between one terminal of two capacitors C 1 and C 2 , and connect the bridge terminals c and d of the other set. A non-directional semiconductor switch circuit can be used in which the collector and emitter of an NPN switching transistor 8 are connected between them, and the commercial power supply 6 is connected between the base and emitter of this switching transistor 8. In addition, in order to increase the withstand voltage and current, the capacitance is increased as shown by the dotted line.
Parallel circuits of C 3 and C 4 may be connected in series. Thus, the ultrasonic oscillators 4a and 4b operate alternately every positive and negative half cycle of the commercial power supply 6, and the transistor 8 is turned on and off every positive and negative half cycle of the commercial power supply 6. In the positive half cycle, the transistor 8 is on, so for the output of the frequency f 1 of the ultrasonic oscillator 4a, the circuit between the terminals a and b of the bridge circuit includes the diode 9a, the collector of the transistor 8, the emitter, and the diode 9b. Or, the circuit of diode 9c, collector and emitter of transistor 8, and diode 9d is in a closed state, and the capacitance C 2 is
It is connected in parallel to C 1 and the total capacitance C becomes C 1 +C 2 .
In addition, in the negative half cycle, since transistor 8 is off, terminals a and b of the bridge circuit are in an open state, capacitance C 2 is not connected in parallel with C 1 , and the total capacitance C becomes C 1 . . As a result, in the positive half cycle of the power supply 6, the output of the frequency f 1 of the ultrasonic oscillator 4a is applied to the series circuit of the ultrasonic vibrator 3 and the capacitance C=C 1 +C 2 .

【式】で直列共振し、また電源6 の負の半周期では超音波発振器4bの周波数f2
出力が超音波振動子3と容量C=C1の直列回路
に加わつて
[Formula] causes series resonance, and in the negative half cycle of the power supply 6, the output of the frequency f 2 of the ultrasonic oscillator 4b is added to the series circuit of the ultrasonic vibrator 3 and the capacitance C=C 1.

【式】で直列共振 し、各周波数f1,f2に対して超音波振動子3の電
気的整合を図る。 このように第3図示の本発明方法では、超音波
振動子3に対し、商用電源6の周波数の半サイク
ル毎に容量C2を変えて共振させ整合させて2つ
の周波数f1,f2出力を加えるようにしたので、超
音波振動子3の使用数を1個にでき、その配線も
簡単になると共に超音波反射面と洗浄物5の反射
面との距離に関係なく、超音波振動の大きさをほ
ぼ均一にでき、洗浄物全体に亘り均一な洗浄効果
を得ることができる。 なお、第3図では2個の超音波発振器4a,4
bが全く別個のものであるが、これらは同時に動
作することがないので、f1,f2の発振部のみを別
個にし、電圧・電力増幅部を共通とし、2つの発
振部を第3図示の如く商用電源6の半サイクル毎
に作動するようにしてもよいことはもちろんであ
り、さらに洗浄槽の大きさ等によつては1個の超
音波振動子の代りに同一共振特性を有する複数個
の超音波振動子を並列に接続して本発明を実施し
てもよいことはもちろんである。また第3図示の
方法および装置では、1個の超音波発振子に接続
する容量の変化は、2つの容量C1,C2の接続・
非接続を並列にするか否かで行う場合であるが、
2つの容量C1,C2を直列に接続しておき、その
一方の容量を半導体スイツチ回路SCでシヨート
するか否かで行つてもよいことはもちろんであ
る。 次に、実験例を示せば、4cm×4cm×16cmの鋼
鉄製のブロツクに水溶性の塗料を塗布し、10日間
自然放置したものを洗浄物とし、これを超音波密
度0.5W/cm2の20容量を有する洗浄槽に斜めに
ワイヤで吊し、10秒間1つの周波数出力で超音波
振動子を駆動する従来方法と、2つの周波数出力
で超音波振動子を駆動する本発明方法とで洗浄し
たところ、前者の従来方法では超音波放射面との
距離が半波長ごとに洗浄むらが認められたが、後
者の本発明方法ではこの洗浄むらが大幅に改善さ
れ、実用上全く問題がなかつた。
[Formula] causes series resonance, and electrical matching of the ultrasonic transducer 3 is achieved for each frequency f 1 and f 2 . In this way, in the method of the present invention shown in FIG. 3, the capacitance C 2 of the ultrasonic transducer 3 is changed every half cycle of the frequency of the commercial power supply 6 to cause resonance and matching, and output two frequencies f 1 and f 2 . As a result, the number of ultrasonic vibrators 3 used can be reduced to one, and the wiring thereof is simplified, and the ultrasonic vibrations can be controlled regardless of the distance between the ultrasonic reflecting surface and the reflecting surface of the object 5 to be cleaned. The size can be made almost uniform, and a uniform cleaning effect can be obtained over the entire object to be cleaned. In addition, in FIG. 3, two ultrasonic oscillators 4a, 4
b are completely separate, but since they do not operate at the same time, only the oscillation parts of f 1 and f 2 are made separate, the voltage/power amplification part is shared, and the two oscillation parts are combined as shown in Figure 3. It goes without saying that it may be activated every half cycle of the commercial power supply 6, as shown in FIG. Of course, the present invention may be practiced by connecting several ultrasonic transducers in parallel. In addition, in the method and apparatus shown in Figure 3, the change in the capacitance connected to one ultrasonic oscillator is the change in the capacitance connected to the two capacitors C 1 and C 2 .
This is done depending on whether or not to make disconnections parallel,
Of course, this can be done by connecting the two capacitors C 1 and C 2 in series and switching off one of the capacitors by the semiconductor switch circuit SC. Next, to give an example of an experiment, a steel block measuring 4 cm x 4 cm x 16 cm was coated with water-soluble paint and left for 10 days to be cleaned. Cleaning was carried out using a conventional method in which the ultrasonic vibrator was hung diagonally with a wire in a cleaning tank with a capacity of 20 mL, and was driven with one frequency output for 10 seconds, and an inventive method in which the ultrasonic vibrator was driven with two frequency outputs. As a result, in the former conventional method, cleaning unevenness was observed at every half wavelength of the distance from the ultrasonic emission surface, but in the latter method of the present invention, this cleaning unevenness was greatly improved, and there was no problem at all in practice. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図A,Bはそれぞれ従来方法の一例の説明
用接続図およびこの方法における超音波の強度分
布図、第2図A,Bはそれぞれ従来方法の他例の
説明用接続図およびこの方法における超音波の強
度分布図、第3図は本発明方法および装置の一実
施例の説明用接続図、第4図は本発明方法および
装置で使用する半導体スイツチ回路の一例を示す
接続図である。 1……洗浄槽、2……洗浄液、3……超音波振
動子、4a,4b……超音波振動子3の共振特性
で共振周波数f0を中心とする実質的に平坦とみな
される範囲内にある2つの周波数f1,f2の出力
を、商用電源周波数の半サイクル毎に交互に発生
する2つの超音波発振器、5……洗浄物、6……
商用電源、7a,7b……ダイオード、8……ス
イツチングトランジスタ、9a〜9d……ブリツ
ジ回路のダイオード、a,b……一方組のブリツ
ジ端子、c,d……他方組のブリツジ端子、
C1,C2……容量、C……超音波振動子3に接続
される容量、Ld……超音波振動子3の巻線によ
るインダクタンス、SC……半導体スイツチ回
路。
Figures 1A and B are an explanatory connection diagram of an example of the conventional method and an ultrasonic intensity distribution diagram in this method, respectively, and Figures 2A and B are an explanatory connection diagram of another example of the conventional method and a diagram of the ultrasonic intensity distribution in this method, respectively. FIG. 3 is an explanatory connection diagram of an embodiment of the method and apparatus of the present invention, and FIG. 4 is a connection diagram showing an example of a semiconductor switch circuit used in the method and apparatus of the present invention. 1...Cleaning tank, 2...Cleaning liquid, 3...Ultrasonic transducer, 4a, 4b...Resonance characteristics of the ultrasonic transducer 3, within a range that is considered to be substantially flat centered around the resonance frequency f0 . Two ultrasonic oscillators that alternately generate outputs of two frequencies f 1 and f 2 at every half cycle of the commercial power frequency, 5...Cleaning object, 6...
Commercial power supply, 7a, 7b... Diode, 8... Switching transistor, 9a to 9d... Bridge circuit diode, a, b... One set of bridge terminals, c, d... Other set of bridge terminals,
C1 , C2 ...capacitance, C...capacitance connected to the ultrasonic transducer 3, Ld...inductance due to the winding of the ultrasonic transducer 3, SC...semiconductor switch circuit.

Claims (1)

【特許請求の範囲】 1 共振周波数を有する1個または複数個の同一
共振特性の超音波振動子を洗浄槽に貼着し、この
超音波振動子の共振特性で共振周波数を中心とす
る実質的に平坦とみなされる範囲内にある僅かに
異なる2つの周波数の電力で交互に前記1個の超
音波振動子または複数個の超音波振動子全部を同
時に駆動することを特徴とする2つの周波数を用
いた超音波洗浄方法。 2 共振周波数を有する1個または複数個の同一
共振特性の超音波振動子を洗浄槽に貼着し、この
超音波振動子の共振特性で共振周波数を中心とす
る実質的に平坦とみなされる範囲内にある僅かに
異なる2つの周波数の電力で、商用電源周波数の
半サイクル毎に交互に前記1個の超音波振動子ま
たは複数個の超音波振動子全部を同時に駆動する
際に、該超音波振動子に接続した容量を、商用電
源周波数の半サイクル毎にオン・オフを交互に繰
返す半導体スイツチ回路により変え、超音波振動
子と容量による1個の共振回路を前記2つの周波
数に対しそれぞれ共振させ整合させることを特徴
とする2つの周波数を用いた超音波洗浄方法。 3 洗浄槽に貼着された共振周波数を有する1個
または複数個の同一共振特性の超音波振動子と、
この超音波振動子の共振特性で共振周波数を中心
とする実質的に平坦とみなされる範囲内にある僅
かに異なる2つの周波数出力を、商用電源周波数
の半サイクル毎に交互に発生する2つの超音波発
振器と、商用電源周波数の半サイクル毎にオン・
オフを交互に繰返して2つの容量の接続・非接続
を行つて前記1個または複数個の超音波振動子に
接続する容量を変え、超音波振動子と容量による
1個の共振回路を2つの周波数に対してそれぞれ
共振させ整合させるための半導体スイツチ回路と
よりなり、この半導体スイツチ回路は、4つのダ
イオードよりなるブリツジ回路の一方組のブリツ
ジ端子間を、前記2つの容量を接続・非接続する
2点間に接続し、他方組のブリツジ端子間にはス
イツチングトランジスタのコレクタ・エミツタを
接続すると共にこのスイツチングトランジスタの
ベース・エミツタ間に商用電源を接続せしめて構
成したことを特徴とする2つの周波数を用いた超
音波洗浄装置。
[Claims] 1. One or more ultrasonic transducers having the same resonance characteristics having a resonant frequency are attached to a cleaning tank, and the resonance characteristics of the ultrasonic transducers are used to generate a substantially The ultrasonic transducer or all of the plurality of ultrasonic transducers are simultaneously driven alternately with power of two slightly different frequencies within a range that is considered flat. Ultrasonic cleaning method used. 2. One or more ultrasonic transducers with the same resonance characteristics having a resonant frequency are attached to a cleaning tank, and the range of the resonance characteristics of the ultrasonic transducers is considered to be substantially flat centered around the resonant frequency. When simultaneously driving the one ultrasonic transducer or all of the plurality of ultrasonic transducers alternately every half cycle of the commercial power supply frequency with power of two slightly different frequencies within the The capacitance connected to the transducer is changed by a semiconductor switch circuit that alternately turns on and off every half cycle of the commercial power frequency, and one resonant circuit consisting of the ultrasonic transducer and the capacitor resonates at each of the two frequencies. An ultrasonic cleaning method using two frequencies, characterized in that they are aligned and matched. 3. One or more ultrasonic transducers with the same resonance characteristics and having a resonance frequency attached to the cleaning tank;
The resonance characteristics of this ultrasonic transducer generate two slightly different frequency outputs within a range that is considered to be substantially flat around the resonant frequency, alternately every half cycle of the commercial power frequency. A sonic oscillator that turns on and off every half cycle of the mains frequency.
The two capacitors are connected/disconnected by repeating the off-state alternately to change the capacitance connected to the one or more ultrasonic transducers, thereby converting one resonant circuit by the ultrasonic transducer and the capacitor into two. It consists of a semiconductor switch circuit for resonating and matching each frequency, and this semiconductor switch circuit connects and disconnects the two capacitors between one set of bridge terminals of a bridge circuit consisting of four diodes. 2, the collector and emitter of a switching transistor are connected between the other set of bridge terminals, and a commercial power supply is connected between the base and emitter of this switching transistor. Ultrasonic cleaning equipment using two frequencies.
JP10762379A 1979-08-22 1979-08-22 Ultrasonic washing method using two frequency and its device Granted JPS5631481A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10762379A JPS5631481A (en) 1979-08-22 1979-08-22 Ultrasonic washing method using two frequency and its device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10762379A JPS5631481A (en) 1979-08-22 1979-08-22 Ultrasonic washing method using two frequency and its device

Publications (2)

Publication Number Publication Date
JPS5631481A JPS5631481A (en) 1981-03-30
JPS625676B2 true JPS625676B2 (en) 1987-02-05

Family

ID=14463870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10762379A Granted JPS5631481A (en) 1979-08-22 1979-08-22 Ultrasonic washing method using two frequency and its device

Country Status (1)

Country Link
JP (1) JPS5631481A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58190482U (en) * 1982-06-16 1983-12-17 海上電機株式会社 Ultrasonic cleaning machine that uses two frequencies alternately

Also Published As

Publication number Publication date
JPS5631481A (en) 1981-03-30

Similar Documents

Publication Publication Date Title
US4554477A (en) Drive circuit for a plurality of ultrasonic generators using auto follow and frequency sweep
GB1128560A (en) Oscillatory circuits for electro-acoustic converters
US3516645A (en) Ultrasonic cleaner
US3315102A (en) Piezoelectric liquid cleaning device
GB2083695A (en) Ultrasonic transducer
US4256987A (en) Constant current electrical circuit for driving piezoelectric transducer
JPS625676B2 (en)
US4023162A (en) Electronic buzzer
US3581125A (en) Oscillator circuit for ultrasonic apparatus
CN113102208B (en) Automatic frequency tracking device and automatic frequency tracking method for generator of ultrasonic cleaning machine
US3315178A (en) Transistor oscillator for extended frequency operation
KR100468059B1 (en) Tube type ultrasonic oscillation generator
JPH048115B2 (en)
JP3111201B2 (en) Ultrasonic device drive circuit
JP3536876B2 (en) Aerial ultrasonic transducer, aerial ultrasonic transducer, and aerial ultrasonic transducer with them
JPH10180204A (en) Ultrasonic washer and method for driving same
JPH08131978A (en) Ultrasonic washing apparatus
JPH0888899A (en) Ultrasonic vibrator
JPS61221585A (en) Drive circuit of vibration wave motor
JPS6225039Y2 (en)
JPS6254557B2 (en)
JPS5830625Y2 (en) piezoelectric vibration device
JPH0211435A (en) Device for removing water droplet
SU1378929A1 (en) Piezoelectric transducer
JPS622812Y2 (en)