JPS6256728B2 - - Google Patents

Info

Publication number
JPS6256728B2
JPS6256728B2 JP14030279A JP14030279A JPS6256728B2 JP S6256728 B2 JPS6256728 B2 JP S6256728B2 JP 14030279 A JP14030279 A JP 14030279A JP 14030279 A JP14030279 A JP 14030279A JP S6256728 B2 JPS6256728 B2 JP S6256728B2
Authority
JP
Japan
Prior art keywords
current
line
current transformer
bus
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14030279A
Other languages
Japanese (ja)
Other versions
JPS5666130A (en
Inventor
Sumiaki Endo
Takashi Kuwabara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP14030279A priority Critical patent/JPS5666130A/en
Publication of JPS5666130A publication Critical patent/JPS5666130A/en
Publication of JPS6256728B2 publication Critical patent/JPS6256728B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Gas-Insulated Switchgears (AREA)

Description

【発明の詳細な説明】 本発明は複数送電回線が接続された母線系統に
おいて、停止回線に流れる屋内電気所の接地誘導
電流による誤動作を防止するようにした母線保護
装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a busbar protection device that prevents malfunctions due to ground induced current of an indoor electric station flowing into a stopped line in a busbar system to which a plurality of power transmission lines are connected.

現在、電気所の母線保護装置としては、電圧差
動方式、比率差動方式によるもの等があるが、何
れにしてもその電気所の全てのフイーダ、バンク
回路等における電流の流出入の総和が零の場合は
母線保護区間で事故が発生していないものとし、
また流出入の総和がある値以上の時は母線保護区
間内で事故が発生しているものと判断して母線保
護を行なうようにしている。
Currently, there are busbar protection devices for electrical stations that use voltage differential methods and ratio differential methods, but in either case, the total amount of current flow in and out of all feeders, bank circuits, etc. of the electrical station is If it is zero, it is assumed that no accident has occurred in the busbar protection section.
Furthermore, when the total sum of inflows and outflows exceeds a certain value, it is determined that an accident has occurred within the busbar protection section, and busbar protection is performed.

この原理を簡単に第1図乃至第3図により説明
する。第1図乃至第3図において、BUS1は母
線で、この母線BUS1にはフイーダ1〜3及び
バンク回路4,5がそれぞれ接続されている。こ
こで母線保護区間とは、フイーダ1〜3では図中
変流器CT1〜CT3より下側、バンク回路4,5
では図中変流器CT4,CT5より上側であり、こ
れら各変流器CT1〜CT5により取り出された各
線路電流を図示しない母線保護装置に入力するよ
うにしている。
This principle will be briefly explained with reference to FIGS. 1 to 3. In FIGS. 1 to 3, BUS1 is a bus line, and feeders 1 to 3 and bank circuits 4 and 5 are connected to this bus line BUS1, respectively. Here, the bus bar protection section means the area below the current transformers CT1 to CT3 in the diagram for feeders 1 to 3, and the bank circuits 4 and 5.
In the figure, it is located above current transformers CT4 and CT5, and each line current taken out by these current transformers CT1 to CT5 is inputted to a bus protection device (not shown).

第1図は無事故の場合で、フイーダ1〜3、バ
ンク回路4,5のそれぞれの電流流出入の総和は
キルヒホツフの法則により零である。
FIG. 1 shows a case where there is no accident, and the sum of currents flowing in and out of feeders 1 to 3 and bank circuits 4 and 5 is zero according to Kirchhoff's law.

また第2図はフイーダ1における母線保護区間
外部の事故例で、これも無事故の場合と同様フイ
ーダ1〜3、バンク回路3,4のそれぞれの電流
流出入の総和は零である。
Further, FIG. 2 shows an example of an accident outside the bus protection section in the feeder 1, in which the sum of the current inflow and outflow of each of the feeders 1 to 3 and the bank circuits 3 and 4 is zero, as in the case without an accident.

さらに第3図は母線保護区間内部事故の場合
で、この場合はフイーダ1〜3、バンク回路5,
4のそれぞれの電流流出入の総和は母線事故部の
事故電流分だけ有限の値を持つことになる。
Furthermore, Figure 3 shows the case of an accident inside the busbar protection section, in which case feeders 1 to 3, bank circuit 5,
The total sum of the currents flowing in and out of each of the four currents has a finite value corresponding to the fault current at the bus fault section.

したがつて、母線保護装置においては、この値
を感知してフイーダ1〜3、バンク回路4,5の
図示しないしや断器を全てトリツプし、母線保護
を行なつている。
Therefore, in the busbar protection device, this value is sensed and all disconnectors (not shown) of the feeders 1 to 3 and bank circuits 4 and 5 are tripped to protect the busbar.

ところで、上記系統の送電形態は一般的に2回
線併架となつており、また回線停止時には安全対
策上必ず回線の接地装置を投入することを原則と
している。したがつて1回線停止時に停止回線の
両端の接地装置が投入されると、大地を帰路にし
た閉回路が形成される。そのため、2回線併架の
場合、健全回線より誘導を受け、停止回線にはこ
れによる電流(以下接地誘導電流と称す)が流れ
る。第4図はこのような送電形態の系統図で、第
1図乃至第3図に示されているフイーダ1,2を
2回線併架として示したものであり、ここではフ
イーダ2の一方の回線が停止している状態を表わ
している。6はフイーダ2の各回線両端に設けら
れた接地装置、7は同じく各回線の両端を自電気
所母線BUS1および相手電気所母線BUS2から
切離するための断路器である。またI2は健全回線
に流れる電流、I0は健全回線に流れる電流I2によ
る接地誘導電流である。
By the way, the power transmission system of the above-mentioned system generally has two lines installed side by side, and when a line is stopped, a grounding device for the line is always turned on as a safety measure. Therefore, if the grounding devices at both ends of the stopped line are turned on when one line is stopped, a closed circuit with the earth as the return path is formed. Therefore, when two circuits are installed together, the circuit receives induction from the healthy circuit, and a current (hereinafter referred to as ground induced current) flows through the stopped circuit. Figure 4 is a system diagram of such a power transmission system, showing feeders 1 and 2 shown in Figures 1 to 3 as two-line parallel systems; This indicates a state in which the machine is stopped. 6 is a grounding device provided at both ends of each line of the feeder 2, and 7 is a disconnector for disconnecting both ends of each line from the own electric station bus line BUS1 and the opposite electric station bus line BUS2. Further, I 2 is the current flowing in the healthy line, and I 0 is the ground induced current due to the current I 2 flowing in the healthy line.

しかし、第4図に示すような送電形態の場合、
接地装置6が母線保護区間内にあるため、接地誘
導電流の総和は無事故にもかかわらず、接地誘導
電流I0に相当する分だけの値をもつことになり、
母線保護装置を誤動作させるに十分な値となる。
またこの接地誘導電流I0は健全回線電流の値によ
るので大容量負荷線のみならず、近接事故電流が
通過する場合を規定すれば、この接地誘導電流の
値は無視できない。
However, in the case of the power transmission form shown in Figure 4,
Since the grounding device 6 is within the busbar protection zone, the sum of the ground induced currents has a value equivalent to the ground induced current I 0 even though there is no accident.
The value is sufficient to cause the busbar protection device to malfunction.
Furthermore, since this ground induced current I 0 depends on the value of the normal line current, the value of this ground induced current cannot be ignored if it is specified that not only a large-capacity load line but also a nearby fault current passes through.

そこでこのような不具合をなくすためには回線
の接地装置を母線保護区間外部に設置すれば変流
器は接地誘導電流I0を感知しないので、問題とな
らない。
Therefore, in order to eliminate such a problem, if the line grounding device is installed outside the bus bar protection area, the current transformer will not sense the ground induced current I0 , so there will be no problem.

しかし、開閉装置を屋内に設置する場合には一
般的に架線を引込みを壁抜形のウオールブツシン
グを用い、このブツシングに変流器を取付けるよ
うにしたブツシング形変流器としてあるため、接
地装置だけを変流器の回線側(母線保護区間外)
に設置することはできない。これは硝子形変流器
に比べてブツシング形変流器が小形で、非常に安
価であり、また他の機器との絶縁距離をとらなく
てもすみ、スペースの有効利用を図れる等の理由
からである。また、近年ガス絶縁開閉装置が広く
使われるようになつてきており、このガス絶縁開
閉装置を使用する場合も前記屋内形開閉装置と同
様に変流器はブツシング部に取付けるのが最も経
済的であるばかりか、全体の機器配置を決めるに
際して機器の相対位置に制約が少ない方が経済設
計ができることは言うまでもない。
However, when installing a switchgear indoors, generally a wall bushing cut out from the wall is used to lead the overhead wires, and a bushing-type current transformer is installed in which the current transformer is attached to the bushing. Install only the device on the line side of the current transformer (outside the bus protection area)
It cannot be installed in This is because bushing type current transformers are smaller and much cheaper than glass type current transformers, and they do not require insulation distance from other equipment, allowing for effective use of space. It is. In addition, gas-insulated switchgear has become widely used in recent years, and when using this gas-insulated switchgear, it is most economical to install the current transformer in the bushing, as in the indoor type switchgear. Not only that, but it goes without saying that when determining the overall equipment layout, economical design is possible when there are fewer restrictions on the relative positions of equipment.

本発明は上記のような事情に鑑みてなされたも
ので、その目的は母線に2以上の送電回線が接続
された母線系統において、接地装置が母線保護区
間内にある場合に健全回線に流れる電流に起因し
て停止回線に接地誘導電流が流れてもこの接地誘
導電流による誤動作を防止することができる母線
保護装置を提供しようとするものである。
The present invention has been made in view of the above-mentioned circumstances, and its purpose is to reduce the current flowing in a healthy line when the grounding device is within the bus protection zone in a bus system in which two or more power transmission lines are connected to the bus. An object of the present invention is to provide a busbar protection device that can prevent malfunctions due to ground induced current even if a ground induced current flows through a stopped line due to this.

以下本発明の一実施例を図面を参照して説明す
る。第5図は第2図のフイーダ2についての並行
2回線を母線BUS1に接続した場合を一例とし
て示すものである。すなわち、第5図において、
各回線の母線保護区間内側に接続された接地装置
6の接地回路に変流器CT6をそれぞれ設け、そ
の2次回線に設けられた変流器CT2の2次回路
に接地誘導電流によつて生ずる電流が相殺される
ように接続する構成とするものである。
An embodiment of the present invention will be described below with reference to the drawings. FIG. 5 shows, as an example, a case where two parallel lines for the feeder 2 in FIG. 2 are connected to the bus line BUS1. That is, in FIG.
A current transformer CT6 is provided in the grounding circuit of the grounding device 6 connected to the inside of the busbar protection section of each line, and a ground-induced current is generated in the secondary circuit of the current transformer CT2 provided in the secondary line. The configuration is such that the connections are made so that the currents cancel each other out.

従つて、かかる構成とすれば、フイーダ2の一
方の回線が停止し、この停止回線に健全回線に流
れる電流により接地誘導電流I0が流れてもこの接
地誘導電流I0による変流器CT2の2次電流が接
地回路に設けられた変流器CT6の2次電流によ
り相殺されるので、すなわち、変流器CT2の2
次電流は図示Iocに示すように循環してしまうの
で、母線保護装置としては接地誘導電流を感知し
ないことになる。また接地装置が切離された場合
には接地回路に電流が流れず、変流器CT2の2
次出力に対しては何ら影響を与えることはない。
一方健全回線では、接地装置6が投入されていな
いので、変流器CT6の一次電流(接地誘導電
流)は流れない。このことにより接地装置6が各
回線の母線保護区間内に設けられても接地誘導電
流による変流器CT2の2次出力で保護装置が誤
動作するようなことがなくなる。
Therefore, with such a configuration, even if one line of the feeder 2 is stopped and a ground induced current I 0 flows through this stopped line due to the current flowing in the healthy line, the ground induced current I 0 causes current transformer CT2 to Since the secondary current is canceled by the secondary current of current transformer CT6 provided in the ground circuit, that is, the secondary current of current transformer CT2
Since the next current circulates as shown in Ioc, the bus protection device does not sense the ground induced current. Also, if the grounding device is disconnected, no current flows in the grounding circuit, and current transformer CT2
It has no effect on the next output.
On the other hand, in a healthy line, the grounding device 6 is not turned on, so the primary current (ground induced current) of the current transformer CT6 does not flow. This prevents the protection device from malfunctioning due to the secondary output of the current transformer CT2 due to the grounding induced current even if the grounding device 6 is provided within the busbar protection section of each line.

次に本発明の他の実施例について述べる。 Next, other embodiments of the present invention will be described.

第6図は接地装置6の投入時に必らず断路器7
を開路することを利用して変流器CT2の接地誘
導電流による2次電流が母線保護装置に入力され
ないようにしたものである。すなわち、第6図に
おいては断路器7の開閉に応動する接点8a,8
bを図示する如く変流器CT2の2次回路に直並
列に設けるようにするものである。
Figure 6 shows that when the earthing device 6 is turned on, the disconnector 7 must be
By opening the circuit, the secondary current due to the ground induced current of the current transformer CT2 is prevented from being input to the bus protection device. That is, in FIG. 6, the contacts 8a, 8 that respond to the opening and closing of the disconnector 7
b are connected in series and parallel to the secondary circuit of the current transformer CT2 as shown in the figure.

従つて、かかる構成とすれば、停止回線は断路
器6の開を条件に変流器CT2の2次回路に直列
に設けられた接点8aは開路し、並列に設けられ
た接点8bは閉路しているので、停止回線に接地
誘導電流が流れてもこの接地誘導電流による変流
器CT2の2次電流Iosは閉回路を環流するのみ
で、母線保護装置には入力するようなことがな
い。また断路器6が閉路すると接点8aが閉じ、
接点8bが開くので、この時は変流器CT2の2
次出力が保護装置に加えられ、通常の運用状態と
なる。
Therefore, with such a configuration, in the stop line, when the disconnector 6 is opened, the contact 8a provided in series with the secondary circuit of the current transformer CT2 is opened, and the contact 8b provided in parallel is closed. Therefore, even if a ground induced current flows in the stopped line, the secondary current Ios of the current transformer CT2 due to this ground induced current only circulates in the closed circuit and does not enter the bus protection device. Further, when the disconnector 6 closes, the contact 8a closes,
Since contact 8b opens, current transformer CT2 2
The following outputs are applied to the protection device and it is in normal operating condition.

このことにより、接地装置6が各回線の保護区
間内に設けられても前述同様に接地誘導電流によ
る保護装置の誤動作を防止することができる。
As a result, even if the grounding device 6 is provided within the protection section of each line, it is possible to prevent the protection device from malfunctioning due to ground induced current, as described above.

第7図は変流器CT2の2次回路にキヤンセル
用補助変流器CT7を設けてこの補助変流器CT7
を断路器7又は接地装置6の開閉条件により活殺
するようにしたものである。すなわち、第7図に
おいては、変流器CT2の2次回路に補助変流器
CT7の1次巻線を直列に設け、また2次巻線を
並列に設けてその両端を断路器7の開路時開く接
点8aにより短絡する如く接続し、また断路器7
の開路時閉じる接点8bを補助変流器CT7の2
次巻線に対して直列に接続するようにしたもので
ある。
Figure 7 shows that an auxiliary current transformer CT7 for canceling is provided in the secondary circuit of the current transformer CT2.
is activated or deactivated depending on the opening/closing conditions of the disconnector 7 or the grounding device 6. That is, in Fig. 7, an auxiliary current transformer is connected to the secondary circuit of current transformer CT2.
The primary windings of the CT 7 are provided in series, and the secondary windings are provided in parallel, and both ends of the CT 7 are connected so as to be short-circuited by a contact 8a that opens when the circuit is opened.
Contact 8b, which closes when open, is connected to auxiliary current transformer CT7-2
It is connected in series to the next winding.

従つて、かかる構成とすれば、断路器7が開路
すると、接点8aが開き、接点8bが閉じ変流器
CT2の2次回路が補助変流器CT7の1次巻線お
よび2次巻線を通る閉回路が形成されるので、停
止回線に接地誘導電流が流れてもこの電流による
変流器CT2の2次電流Iosは図示する如く環流
し、保護装置に流入するようなことはない。また
断路器7の投入時には接点8aが閉じ、接点8b
が開となつて補助変流器CT7が変流器CT2の2
次回路から外された形となり、この時は変流器
CT2の2次電流は保護装置に流入する。
Therefore, with such a configuration, when the disconnector 7 is opened, the contact 8a is opened and the contact 8b is closed and the current transformer
A closed circuit is formed in which the secondary circuit of CT2 passes through the primary and secondary windings of the auxiliary current transformer CT7. The next current Ios circulates as shown in the figure and does not flow into the protection device. Also, when the disconnector 7 is turned on, the contact 8a closes, and the contact 8b
is open and auxiliary current transformer CT7 is connected to current transformer CT2.
Next, it is removed from the circuit, and this time the current transformer
The secondary current of CT2 flows into the protection device.

このことにより前述同様に接地誘導電流による
保護装置の誤動作を防止することができる。
This makes it possible to prevent the protection device from malfunctioning due to ground induced current, as described above.

上記では断路器7の開閉条件を利用する場合に
ついて述べたが接地装置の開閉条件やその他の条
件を組合せても前述同様の作用効果を得ることが
できる。
Although the case where the opening/closing conditions of the disconnector 7 are used has been described above, the same effects as described above can be obtained by combining the opening/closing conditions of the grounding device and other conditions.

かくして、上記した各実施例からも明らかな如
く、変流器CT2に対して接地装置6の相対位置
が接地誘導電流の問題となる位置関係にあつて
も、母線保護装置の誤動作を防止することができ
る。
Thus, as is clear from the above embodiments, even if the relative position of the grounding device 6 with respect to the current transformer CT2 is in a positional relationship that poses a problem of ground induced current, malfunction of the busbar protection device can be prevented. Can be done.

以上述べたように本発明によれば、母線に複数
送電回線が接続された母線系統において、母線保
護区間内の各回線に対応させてそれぞれた接地装
置の接地回路に接地誘導電流を検出する補助変流
器を設け、この補助変流器の2次回路をその回線
に対応する前記電流変成器の2次回路に各々の2
次電流が相殺されるように接続する構成としたの
で、接地装置が母線保護区間内にある場合に健全
回線に流れる電流に起因して停止回線に接地誘導
電流が流れてもこの接地誘導電流による誤動作を
構成簡単にして確実に防止することができる母線
保護装置が提供できる。
As described above, according to the present invention, in a bus system in which a plurality of power transmission lines are connected to a bus, an auxiliary device for detecting ground induced current in the grounding circuit of each grounding device corresponding to each line within the bus protection section. A current transformer is provided, and the secondary circuit of the auxiliary current transformer is connected to the secondary circuit of the current transformer corresponding to the line.
Since the connection is configured so that the secondary current is canceled out, even if the grounding induced current flows to the stopped line due to the current flowing to the healthy line when the grounding device is within the bus protection area, this grounding induced current will It is possible to provide a busbar protection device that has a simple configuration and can reliably prevent malfunctions.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第3図は母線保護装置の動作原理を
説明するための母線系統構成図、第4図は電気所
母線に接続される送電線の送電形態を説明するた
めの系統構成図、第5図は本発明による母線保護
装置の一実施例における入力回路を示す系統構成
図、第6図及び第7図は本発明の要部の他の実施
例をそれぞれ示す第5図と同様の系統構成図であ
る。 BUS1……母線、1〜3……フイーダ、4,
5……バンク回路、6……断路器、7……接地装
置、8a,8b……接点、CT1〜CT6……変流
器、CT7……補助変流器。
Figures 1 to 3 are bus system configuration diagrams for explaining the operating principle of the bus protection device; Figure 4 is a system configuration diagram for explaining the power transmission form of the power transmission line connected to the power station bus; FIG. 5 is a system configuration diagram showing an input circuit in one embodiment of the busbar protection device according to the present invention, and FIGS. 6 and 7 are similar systems to FIG. 5 showing other embodiments of the essential parts of the present invention, respectively. FIG. BUS1...Bus line, 1-3...Feeder, 4,
5...Bank circuit, 6...Disconnector, 7...Grounding device, 8a, 8b...Contact, CT1 to CT6...Current transformer, CT7...Auxiliary current transformer.

Claims (1)

【特許請求の範囲】[Claims] 1 母線に接続された複数の送電回線に流れる電
流を各々電流変成器により取出し、これら各電流
を母線保護装置に夫々入力するようにした母線保
護装置において、母線保護区間内の各回線に対応
させてそれぞれ設けられ回線停止時に投入される
接地装置と、この接地装置の接地回路に設けられ
た接地誘導電流を検出する補助変流器とを備え、
この補助変流器の2次回路をその回線に対応する
前記電流変成器の2次回路に各々の2次電流が相
殺されるように接続したことを特徴とする母線保
護装置。
1. In a bus protection device that extracts the current flowing through multiple power transmission lines connected to the bus using a current transformer and inputs each of these currents to the bus protection device, A grounding device is installed at each line and is turned on when the line is stopped, and an auxiliary current transformer is provided in the grounding circuit of this grounding device to detect the ground induced current.
A bus protection device characterized in that the secondary circuit of the auxiliary current transformer is connected to the secondary circuit of the current transformer corresponding to the line so that the respective secondary currents cancel each other out.
JP14030279A 1979-10-30 1979-10-30 Bus protecting device Granted JPS5666130A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14030279A JPS5666130A (en) 1979-10-30 1979-10-30 Bus protecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14030279A JPS5666130A (en) 1979-10-30 1979-10-30 Bus protecting device

Publications (2)

Publication Number Publication Date
JPS5666130A JPS5666130A (en) 1981-06-04
JPS6256728B2 true JPS6256728B2 (en) 1987-11-27

Family

ID=15265616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14030279A Granted JPS5666130A (en) 1979-10-30 1979-10-30 Bus protecting device

Country Status (1)

Country Link
JP (1) JPS5666130A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10823185B2 (en) 2015-12-18 2020-11-03 Carrier Corporation Motor interface assembly and a method of using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10823185B2 (en) 2015-12-18 2020-11-03 Carrier Corporation Motor interface assembly and a method of using the same

Also Published As

Publication number Publication date
JPS5666130A (en) 1981-06-04

Similar Documents

Publication Publication Date Title
MXPA01012753A (en) Improved line current differential protective relaying method and relay for in-zone tapped transformers.
JPS5810934B2 (en) Ground fault detection device
Perera et al. Application considerations when protecting lines with tapped and in-line transformers
JPS6256728B2 (en)
KR102096992B1 (en) System for protective circuit of 3 phase trasnformer using single pole transformer bank for electric power transmission and transformation
US3113245A (en) Ground fault responsive protective system for electric power distribution apparatus
JP7347952B2 (en) protection device
JP3446775B2 (en) Bus short-circuit protection device
Kasztenny et al. Application of current differential protection to tapped transmission lines
US2296109A (en) Protection of alternating-current electric power systems
JPH05122835A (en) Reverse power flow preventer for power system
JPH07236226A (en) Ground protector
JPS5857055B2 (en) Earth fault protection device
Börjesson Benefits with inverse time relay protection in regional transmission grids
Love Ground fault protection for electric utility generating station 480-volt auxiliary power systems
JPS6026491Y2 (en) Busbar protection relay device
JPH0210654B2 (en)
JPH07143666A (en) Ground-fault protective circuit
JPS6084918A (en) Display wire relaying device
JPS61293116A (en) Ground fault protector
JPH06284556A (en) Grounding current detection method for three-phase four-wire circuit
JPH0515606U (en) Single-phase three-wire type distribution board neutral line open phase protection mechanism
Castenschiold Ground control for alternate power
JPS58108923A (en) Protecting relay device
JPH02183928A (en) Transformer station protecting system and circuit breaker