JPS625656Y2 - - Google Patents

Info

Publication number
JPS625656Y2
JPS625656Y2 JP582680U JP582680U JPS625656Y2 JP S625656 Y2 JPS625656 Y2 JP S625656Y2 JP 582680 U JP582680 U JP 582680U JP 582680 U JP582680 U JP 582680U JP S625656 Y2 JPS625656 Y2 JP S625656Y2
Authority
JP
Japan
Prior art keywords
gas
drain pot
pipe
mist
process gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP582680U
Other languages
Japanese (ja)
Other versions
JPS56109052U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP582680U priority Critical patent/JPS625656Y2/ja
Publication of JPS56109052U publication Critical patent/JPS56109052U/ja
Application granted granted Critical
Publication of JPS625656Y2 publication Critical patent/JPS625656Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)

Description

【考案の詳細な説明】 本考案はガスサンプリング装置に係り、特にナ
フサ熱分解炉ガスなどのプロセスガスを連続サン
プリングするための炭化水素系ガスサンプリング
装置に関するものである。
[Detailed Description of the Invention] The present invention relates to a gas sampling device, and more particularly to a hydrocarbon gas sampling device for continuously sampling process gas such as naphtha pyrolysis furnace gas.

石油化学工業におけるナフサ熱分解プロセス
で、エチレン、プロピレンなどの収率の向上を図
るためには、熱分解炉より出たプロセスガス成分
を連続的に測定する必要がある。しかし熱分解ガ
スは分析するために温度を下げる過程でコーキン
グやタール分の固着が起り、このためプロセスガ
ス導入部の配管系の閉塞が短期的に生じメンテナ
ンスに多大の学力と時間がかかる等の問題があつ
た。
In order to improve the yield of ethylene, propylene, etc. in the naphtha pyrolysis process in the petrochemical industry, it is necessary to continuously measure the process gas components discharged from the pyrolysis furnace. However, during the process of lowering the temperature of pyrolysis gas for analysis, coking and tar particles stick to the gas, resulting in short-term blockage of the piping system at the process gas inlet, requiring a great deal of academic effort and time for maintenance. There was a problem.

またこの熱分解ガス中には徐々に変質してター
ル化するガスが含まれており、このため、プロセ
ス分析計例えばプロセスガスクロマトグラフで云
えば、カラムやバルブの内面がタールで汚染さ
れ、その寿命が短くなるばかりでなく、場合によ
つては配管系が詰ること等により測定不能とな
る。そのためメンテナンス費用も多くかかる等の
問題がある。
In addition, this pyrolysis gas contains gas that gradually changes in quality and turns into tar, and for this reason, in a process analyzer, such as a process gas chromatograph, the inner surfaces of columns and valves become contaminated with tar, which can shorten the service life of the gas. Not only will the length be shortened, but in some cases, the piping system may become clogged, making measurement impossible. Therefore, there are problems such as high maintenance costs.

本考案の目的は上記した従来技術の欠点をなく
し、プロセスガスの分析に際してメンテナンスの
軽減を考慮したガスサンプリング装置を提供する
にある。
An object of the present invention is to eliminate the above-mentioned drawbacks of the prior art and to provide a gas sampling device that takes into account reduced maintenance when analyzing process gases.

ナフサ熱分解炉で生成したタール分を含む炭化
水素系高温ガス(プロセスガス)の低沸点成分を
連続分析するには、前記ガスの一部を試料ガスと
して検出器まで輸送する必要がある。しかし、こ
の間に前記試料ガス中に含まれる反応性のとんだ
成分が重合を起し、タール化し、配管を詰らせ
る。この有害成分は40℃以下に前記試料ガスを冷
却すると凝縮液中に含まれる。ナフサ分解炉のエ
チレン、プロピレン収率の向上のための熱分解炉
の管理には水素及び炭素数4以下の成分の組成分
析で十分である。そこで、プロセスガスの一部を
サンプリング装置へ導入した試料ガスを40℃以下
に冷却し、水蒸気および炭素数5以上のガスを冷
却し、タール分を含んだ凝縮液としてドレンポツ
トに流入させる。このドレンポツトでは凝縮液が
オーバフロして出る出口がプロセスガス導入部配
管となるような構造とし、主として水、ベンゼ
ン、トルエン、キシレンなどを含む高沸点成分を
プロセスガスへ戻るようにする。このような構造
にすることにより、ガス導入部配管に付着するタ
ールをこの凝縮液で洗浄し、配管を詰らせないよ
うにできる。さらにドレンポツトの中にガス導入
部配管を設置することにより試料ガスの予備冷却
が可能になり、40℃以下への冷却が効果的にでき
る。また高沸点成分をプロセスガスに戻すことに
より、凝縮液の廃棄の必要がなくなり、サンプリ
ング装置の安価な設置が可能となる。
In order to continuously analyze the low-boiling point components of a hydrocarbon-based high-temperature gas (process gas) containing tar produced in a naphtha pyrolysis furnace, it is necessary to transport a portion of the gas to a detector as a sample gas. However, during this time, the highly reactive components contained in the sample gas polymerize, turn into tar, and clog the pipes. This harmful component is contained in the condensate when the sample gas is cooled to below 40°C. Compositional analysis of hydrogen and components having 4 or less carbon atoms is sufficient for managing a pyrolysis furnace to improve the yield of ethylene and propylene in a naphtha cracking furnace. Therefore, a part of the process gas is introduced into the sampling device and the sample gas is cooled to below 40°C, and the water vapor and the gas having carbon number of 5 or more are cooled down and flowed into the drain pot as a condensate containing tar. This drain pot is constructed such that the outlet from which the condensate overflows serves as the process gas inlet piping, so that high boiling point components mainly containing water, benzene, toluene, xylene, etc. are returned to the process gas. By adopting such a structure, tar adhering to the gas introduction pipe can be washed with the condensate, thereby preventing clogging of the pipe. Furthermore, by installing the gas inlet piping inside the drain pot, it is possible to pre-cool the sample gas, effectively cooling it to below 40°C. Furthermore, by returning the high-boiling components to the process gas, there is no need to dispose of the condensate, and the sampling device can be installed at low cost.

実施例 以下本発明を実施例により、更に詳細に説明す
る。第1図は本発明の炭化水素系ガスサンプリン
グ装置の一例である。
EXAMPLES The present invention will now be explained in more detail with reference to Examples. FIG. 1 is an example of a hydrocarbon gas sampling device of the present invention.

第1図においてプロセスガス1は、プロセスガ
ス配管2に設けられた試料ガス採取部3を通り、
バルブ4−1を通り、ドレンポツト5中の凝縮液
6(ベンゼン、トルエン、キシレン、水等を含む
液)で冷却されたプロセスガス導入配管7を通り
40〜70℃程度に予備冷却される。
In FIG. 1, a process gas 1 passes through a sample gas sampling section 3 provided in a process gas pipe 2,
It passes through the valve 4-1 and through the process gas introduction pipe 7 cooled by the condensate 6 (liquid containing benzene, toluene, xylene, water, etc.) in the drain pot 5.
It is pre-cooled to about 40-70℃.

次に予備冷却されたプロセスガスはドレンポツ
ト5の上方に設けられたガス導入部8から冷却水
9で一定温度に冷却された冷却部10を通り高沸
点成分が凝縮され、この凝縮された高沸点成分は
ガス導入部8からドレンポツト5の凝縮液6中に
還流し、高沸点成分の除去されたプロセスガスは
ノズル部11よりミスト・ダストセパレーター1
2に噴射され一定温度に冷却されて高沸点成分が
凝縮して生成したミストと共にダストがドレン出
口13−1,13−2を通つてドレンポツト5の
凝縮液6中に還流する。
Next, the precooled process gas passes from the gas introduction section 8 provided above the drain pot 5 to the cooling section 10, which is cooled to a constant temperature with cooling water 9, where high boiling point components are condensed. The components are refluxed from the gas introduction part 8 into the condensate 6 in the drain pot 5, and the process gas from which high boiling point components have been removed is passed from the nozzle part 11 to the mist/dust separator 1.
The dust is injected into the condensate 6 of the drain pot 5 through the drain outlets 13-1 and 13-2, and the dust is generated by condensing the high boiling point components and being cooled to a constant temperature.

この凝縮液6の量が増加すると、この凝縮液の
余分なものはプロセスガス導入配管7内壁をつた
わつてプロセスガス配管2に戻る。その際プロセ
スガス導入配管7内壁に付着しているタール等が
溶解、除去され配管閉塞が防止される。
When the amount of this condensed liquid 6 increases, the excess of this condensed liquid passes through the inner wall of the process gas introduction pipe 7 and returns to the process gas pipe 2. At this time, tar and the like adhering to the inner wall of the process gas introduction pipe 7 are dissolved and removed, thereby preventing pipe clogging.

一方分析される低沸点成分は、分析ガス導入配
管21、バルブ4−4を通つて分析計(図示せ
ず)に導入され、分析される。
On the other hand, the low boiling point components to be analyzed are introduced into an analyzer (not shown) through the analysis gas introduction pipe 21 and valve 4-4, and analyzed.

なお前記冷却部の冷却は、冷却水9(主に水道
水)を冷却、水配管14、バルブ4−2を通つて
高沸点トラツプ部15に導びき、冷却水9の水温
を温度検出器16で検出する。冷却水9の温度調
節は、蒸気を蒸気入口17から温度調節弁18を
通つて冷却水9中の蒸気出口19へ流すことによ
つて25〜40℃に調節している。
In order to cool the cooling section, the cooling water 9 (mainly tap water) is cooled and guided to the high boiling point trap section 15 through the water pipe 14 and the valve 4-2, and the temperature of the cooling water 9 is measured by a temperature detector 16. Detect with. The temperature of the cooling water 9 is adjusted to 25 to 40°C by flowing steam from a steam inlet 17 through a temperature control valve 18 to a steam outlet 19 in the cooling water 9.

このように第1図の装置で冷却水の温度調節を
行なうのは、第1図の装置でのガス冷却温度とガ
ス損失率の関係は第2図に示すデータA,B,C
の如くなり、B(C4成分)では25℃以下から特
にガス損失率が大きくなるからである。また、こ
の冷却水9は冷却配管20によりドレンポツト1
5内の凝縮液6の冷却にも使用され、排出され
る。
The reason why the temperature of the cooling water is adjusted in the device shown in FIG. 1 is that the relationship between the gas cooling temperature and the gas loss rate in the device shown in FIG.
This is because B ( C4 component) has a particularly large gas loss rate below 25°C. In addition, this cooling water 9 is supplied to the drain pot 1 through a cooling pipe 20.
It is also used to cool the condensate 6 in 5 and is discharged.

また、ドレンポツト15内には、バルブ4−3
から冷却水9を導入して満しておきサンプリング
を開始する。
Also, inside the drain pot 15 is a valve 4-3.
Cooling water 9 is introduced from the tank to fill it up and sampling is started.

試料ガス採取部3でのプロセスガス23の温度
は約400℃であり、ガス採取量は1〜2/min
が適当で、ガス導入管7内でのガス滞留時間は
0.5〜2分間程度が好適である。
The temperature of the process gas 23 in the sample gas sampling section 3 is approximately 400°C, and the gas sampling rate is 1 to 2/min.
is appropriate, and the gas residence time in the gas introduction pipe 7 is
Approximately 0.5 to 2 minutes is suitable.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案のガスサンプリング装置の一例
を示す図、第2図は実験データである。 1……プロセスガス、2……プロセス配管、3
……試料ガス採取部、5……ドレンポツト、10
……冷却部、11……ノズル部、12……ミス
ト・ダストセパレーター。
FIG. 1 shows an example of the gas sampling device of the present invention, and FIG. 2 shows experimental data. 1...Process gas, 2...Process piping, 3
... Sample gas sampling section, 5 ... Drain pot, 10
... Cooling section, 11 ... Nozzle section, 12 ... Mist/dust separator.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 炭化水素系ガスを主成分とする高温ガスの流れ
るプロセスガス配管とドレンポツトとを接続し、
かつこのドレンポツト中に突出して配管されたプ
ロセスガス導入配管、前記ドレンポツト上方に接
続して設けられた前記炭化水素系ガスを主成分と
する高温ガス中の高沸点成分を凝縮させる冷却
部、この冷却部に接続して設けられたミスト・ダ
ストセパレーターと、このミスト・ダストセパレ
ーターで分離されたミスト・ダストを前記ドレー
ンポツトへ還流させる配管と、前記ミスト・ダス
トセパレーターで分離された試料ガスを分析装置
に導びく配管よりなることを特徴とするガスサン
プリング装置。
Connect the process gas pipe through which high-temperature gas containing hydrocarbon gas as the main component flows and the drain pot.
and a process gas introduction pipe protruding into the drain pot, a cooling section connected above the drain pot for condensing high-boiling components in the high-temperature gas containing hydrocarbon gas as a main component, and cooling the drain pot. A mist/dust separator connected to the section, piping for refluxing the mist/dust separated by the mist/dust separator to the drain pot, and a pipe for returning the sample gas separated by the mist/dust separator to the analyzer. A gas sampling device characterized by comprising a leading pipe.
JP582680U 1980-01-23 1980-01-23 Expired JPS625656Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP582680U JPS625656Y2 (en) 1980-01-23 1980-01-23

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP582680U JPS625656Y2 (en) 1980-01-23 1980-01-23

Publications (2)

Publication Number Publication Date
JPS56109052U JPS56109052U (en) 1981-08-24
JPS625656Y2 true JPS625656Y2 (en) 1987-02-09

Family

ID=29602494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP582680U Expired JPS625656Y2 (en) 1980-01-23 1980-01-23

Country Status (1)

Country Link
JP (1) JPS625656Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102375041B (en) * 2011-09-16 2015-03-04 武汉市天虹仪表有限责任公司 Online volatile organic matter analyzer and using method thereof

Also Published As

Publication number Publication date
JPS56109052U (en) 1981-08-24

Similar Documents

Publication Publication Date Title
US9134160B2 (en) Online multi-phase flow meter system
Simell et al. Provisional protocol for the sampling and anlaysis of tar and particulates in the gas from large-scale biomass gasifiers. Version 1998
US9890907B1 (en) FCC catalyst cyclone sampling method and apparatus
CN201440118U (en) Gas sampling and handling device of novel coke oven
FI88620B (en) FOERFARANDE FOER BEHANDLING AV ETT VISKOST RAOMATERIAL MEDELST KRACKNING
JPS625656Y2 (en)
US4367645A (en) Hot gas sampling
SU1065719A1 (en) Method and plant for continuous sampling of non-purified gas
Taha et al. Field demonstration of a microwave black powder detection device in gas transmission pipelines
KR20010054551A (en) Apparatus for removing tar from the coal gas
BRPI0308822B1 (en) DELAYED COOKING PROCESS
US3944824A (en) Method and device for sampling gases
EA004619B1 (en) Delayed coker and method for measuring flow rate of cooling quench liquid therein
US5126274A (en) Method and apparatus for measuring diamondoid compound concentration in hydrocarbonaceous gas streams
US5078758A (en) Method and an apparatus for removing fine-grained particles from a gaseous stream
US3999963A (en) Fluid sample preparation
US4822475A (en) Method for determining the fouling tendency of crude petroleum oils
US3675489A (en) Apparatus for the drawing of samples of gaseous mixtures to be analyzed
US4265857A (en) In-line distillation system
US2335855A (en) Recovery of valuable hydrocarbons
US20170227516A1 (en) Methods of determining properties of oil
US3076301A (en) Gas separation system
US2880615A (en) Vapor sampler
CA2249699C (en) Monitoring for coke formation during hydrocarbon feed processing
EP1684890B1 (en) Method and apparatus for measuring elemental sulfur in gas lines