JPS6256443B2 - - Google Patents

Info

Publication number
JPS6256443B2
JPS6256443B2 JP17695581A JP17695581A JPS6256443B2 JP S6256443 B2 JPS6256443 B2 JP S6256443B2 JP 17695581 A JP17695581 A JP 17695581A JP 17695581 A JP17695581 A JP 17695581A JP S6256443 B2 JPS6256443 B2 JP S6256443B2
Authority
JP
Japan
Prior art keywords
light
light beam
processing surface
measuring
receiving section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP17695581A
Other languages
Japanese (ja)
Other versions
JPS5876711A (en
Inventor
Shinji Okamoto
Satoshi Furukawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP17695581A priority Critical patent/JPS5876711A/en
Publication of JPS5876711A publication Critical patent/JPS5876711A/en
Publication of JPS6256443B2 publication Critical patent/JPS6256443B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/30Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Description

【発明の詳細な説明】 この発明は、スピニング加工などの場合におい
て回転しながら加工される被加工材の表面粗さを
非接触かつインプロセスで測定するための回転体
の表面粗さ測定方法およびその装置に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a method for measuring the surface roughness of a rotating body for non-contact and in-process measurement of the surface roughness of a workpiece that is processed while rotating in a spinning process, etc. This is related to the device.

回転体の表面粗さを非接触かつインプロセスで
測定する方法として光切断法や光フアイバを使つ
た方式のものが従来より知られている。
Conventionally, optical cutting methods and methods using optical fibers have been known as methods for measuring the surface roughness of rotating bodies in a non-contact and in-process manner.

前者の光切断法は、第1図に示すように回転体
1の表面に斜め上方から投光部2より帯状光を照
射し、その反射角方向に配置したテレビカメラ3
で撮像して回転体1の表面の凹凸に対応した光切
断像を得、その光切断像を解析して表面粗さを測
定するものであるが、この方法の場合、分解能が
最大1μm程度までとあらく、また測定ヘツドを
回転体1に近接させなければならないなどの欠点
がある。
In the former light cutting method, as shown in FIG. 1, a band-shaped light is irradiated onto the surface of a rotating body 1 from a light projection unit 2 obliquely from above, and a television camera 3 is placed in the direction of the reflection angle.
This method obtains a light-cut image corresponding to the unevenness of the surface of the rotating body 1, and then analyzes the light-cut image to measure the surface roughness. In this method, the resolution is up to about 1 μm. However, there are also drawbacks such as the need to place the measuring head close to the rotating body 1.

後者の光フアイバを用いる方法は、第2図に示
すように光フアイバ束4を投光用フアイバ4aと
受光用フアイバ4bに分け、これら投光用フアイ
バ4aと受光用フアイバ4bとをランダムあるい
は同心円状に構成した測定ヘツド5を回転体1に
近接させ、光源6からの投光量と検出部7で検知
される受光量により光反射率を測定するものであ
るが、この方法の場合、測定面積が数mm2と大きく
詳細な分析ができない欠点がある。
The latter method of using optical fibers involves dividing the optical fiber bundle 4 into a light-emitting fiber 4a and a light-receiving fiber 4b, as shown in FIG. A measuring head 5 configured in the form of The disadvantage is that it is large, measuring only a few mm2 , and cannot be analyzed in detail.

一方、前記回転体の表面粗さについて、スピニ
ング加工の被加工材の荒加工後の表面状態につい
てこの発明の発明者が行つた実験・分析結果で
は、前記表面粗さは、第3図に拡大図で示すよう
に切削工具によるロール目8(へら工具を使用し
た場合にはへら目)、切削工具の滑りによる筋目
9およびクレータ状のくぼみ(以下クレータ10
と呼ぶ)の3つの要素からなることが確認され、
前記クレータ10の場合には、その長手方向が前
記ロール目8に対し直角に揃つて散在し、その平
均的寸法は長手方向が数100μm、幅方向が数10
μm程度であることが確かめられた。
On the other hand, regarding the surface roughness of the rotating body, the results of experiments and analyzes conducted by the inventor of the present invention on the surface condition of the spinning workpiece after rough machining show that the surface roughness is as shown in Fig. 3. As shown in the figure, there are roll marks 8 caused by the cutting tool (or spatula marks when a spatula tool is used), streaks 9 caused by the slippage of the cutting tool, and crater-shaped depressions (hereinafter craters 10).
It has been confirmed that it consists of three elements:
In the case of the craters 10, they are scattered with their longitudinal direction perpendicular to the roll mesh 8, and their average dimensions are several hundred micrometers in the longitudinal direction and several tens of micrometers in the width direction.
It was confirmed that the diameter was on the order of μm.

そして、前記スピニング加工の荒加工後の表面
粗さは、その後の仕上げ加工により前記の粗さの
3要素のそれぞれの程度を軽減し、ロール目8は
なくなり、筋目9は細いものだけになり、クレー
タ10の数は減り寸法は小さくなつて良品化され
ると考えられる。
Then, the surface roughness after the rough processing of the spinning process is reduced by the degree of each of the three roughness elements described above through the subsequent finishing process, and the roll lines 8 are eliminated and the lines 9 are only thin. It is considered that the number of craters 10 is reduced and the size is reduced, resulting in a quality product.

したがつて、この発明の目的は、スピニング加
工など回転加工による被加工材の表面粗さが前記
3要素からなることに着目して、回転加工される
被加工材の表面粗さを非接触かつインプロセスの
もとに精度よく測定することのできる回転体の表
面粗さ測定方法およびその装置を提供することで
ある。
Therefore, an object of the present invention is to measure the surface roughness of a workpiece subjected to rotational processing in a non-contact manner by focusing on the fact that the surface roughness of a workpiece subjected to rotational processing such as spinning consists of the above three elements. It is an object of the present invention to provide a method and apparatus for measuring the surface roughness of a rotating body, which can measure the surface roughness of a rotating body with high precision in-process.

この発明の回転体の表面粗さ測定方法の一実施
例を第4図および第5図に示す。すなわち、この
回転体の表面粗さ測定方法は、回転加工における
被加工材の表面粗さを構成する前記のロール目、
筋目およびクレータの3要素のそれぞれについて
光学的に測定するものであり、クレータ10の程
度(数や大きさなど)についての測定を第4図に
示す工程により行い、ロール目8および筋目9の
程度(数や目の高さなど)についての測定を第5
図に示す工程で行うものである。
An embodiment of the method for measuring the surface roughness of a rotating body according to the present invention is shown in FIGS. 4 and 5. In other words, this method for measuring the surface roughness of a rotating body is based on the above-mentioned roll mesh, which constitutes the surface roughness of a workpiece in rotational processing.
Each of the three elements of streaks and craters is optically measured, and the degree of craters 10 (number, size, etc.) is measured by the process shown in FIG. (number, eye height, etc.)
This is done in the steps shown in the figure.

クレータ10の測定では、第4図に示すよう
に、回転加工される被加工材1の回転軸11に対
し垂直な面内に光ビーム投光部12と拡散光受光
部13とを配置して、ロール目8と直角な方向
(したがつて回転軸11と平行)に長手方向が向
くクレータ10に対し、その幅方向より投光受光
して被加工材1の加工表面1aでの拡散光光量を
測定するものである。
In the measurement of the crater 10, as shown in FIG. 4, a light beam projector 12 and a diffused light receiver 13 are arranged in a plane perpendicular to the rotation axis 11 of the workpiece 1 to be rotated. , light is emitted and received from the width direction of the crater 10 whose longitudinal direction is perpendicular to the roll eye 8 (therefore parallel to the rotation axis 11), and the amount of diffused light on the processing surface 1a of the workpiece 1 is calculated. It is used to measure

一方、ロール目8および筋目9の測定について
は、第5図に示すように被加工材1の加工表面1
aの上方の、回転軸11が含まれる平面(したが
つて被加工材1の直径方向に延びる平面)内に光
ビーム投光部12′と光反射位置センサ14とを
配置して、光ビーム投光部12′から被加工材1
の加工表面1aに向けて斜め上方より光ビームを
照射し、前記ロール目8による正反射光の振れ変
位の大きさを前記光反射位置センサ14で検出
し、その検出値から前記ロール目8の程度(高
さ)を測定し、前記光ビーム投光部12′と前記
光反射位置センサ14の中間位置に配置した拡散
光受光部13′によつて、前記被加工材1の加工
表面1aからの拡散光を受光し、前記光ビーム投
光部12′から照射された光ビームが前記被加工
材1の加工表面1aの筋目9に起因して拡散する
拡散度合を、前記拡散光の受光量により測定し、
それによつて筋目9の程度を測定するものであ
る。
On the other hand, regarding the measurement of roll marks 8 and creases 9, as shown in FIG.
The light beam projector 12' and the light reflection position sensor 14 are disposed above a in a plane that includes the rotation axis 11 (therefore, a plane that extends in the diametrical direction of the workpiece 1), and the light beam Workpiece 1 from light projecting section 12'
A light beam is irradiated obliquely from above toward the processed surface 1a, the magnitude of the deflection displacement of the specularly reflected light by the roll eye 8 is detected by the light reflection position sensor 14, and the detection value of the roll eye 8 is detected by the light reflection position sensor 14. from the processing surface 1a of the workpiece 1 by the diffused light receiving section 13' disposed at an intermediate position between the light beam projecting section 12' and the light reflection position sensor 14. The degree of diffusion of the light beam irradiated from the light beam projector 12' due to the lines 9 on the processing surface 1a of the workpiece 1 is defined as the amount of received diffused light. Measured by
The degree of the streaks 9 is thereby measured.

第6図および第7図は、前記ロール目の測定原
理を示す説明図であり、光ビームが光ビーム投光
部12′から被加工材1の半径方向に対して入射
角αで入射すると、加工表面1aが平坦であれば
反射角αで反射され、光反射位置センサ14の中
央部に入射する。一方、これに反して加工表面1
aが平坦でなく、回転軸方向に対して微小角度θ
だけ傾いているとすると、反射光線は角度2θだ
け変位する。光反射位置センサ14はこの変位量
を検出するものであり、光反射位置センサ14上
における輝点の変位量をx、光反射位置センサ1
4と加工表面1aにおける光反射点との距離をl
とすると、角度θが充分に微小である限り、光反
射位置センサ14の出力xは次式により与えられ
る。
FIGS. 6 and 7 are explanatory diagrams showing the principle of measuring the roll marks. When a light beam enters from the light beam projector 12' at an incident angle α with respect to the radial direction of the workpiece 1, If the processing surface 1a is flat, the light is reflected at a reflection angle α and enters the center of the light reflection position sensor 14. On the other hand, on the other hand, the machined surface 1
a is not flat and has a small angle θ with respect to the rotation axis direction
, the reflected ray is displaced by an angle 2θ. The light reflection position sensor 14 detects this displacement amount, and the displacement amount of the bright spot on the light reflection position sensor 14 is x, and the light reflection position sensor 1
4 and the light reflection point on the processed surface 1a is l
Then, as long as the angle θ is sufficiently small, the output x of the light reflection position sensor 14 is given by the following equation.

x=l・tan2θ≒2lθ ところで加工表面1aの半径方向の凹凸形状を
第7図に示すようにy座標で表わすと、 y=∫dy=∫θ・ds となる。ここで工具を回転軸方向に移動させる軸
方向移動手段の移動速度をvとすると、ds=
v・dtと表わせるから、 y=∫θ・ds=∫x/2l・vdt=v/2l∫x・dt となる。したがつて加工表面1aの半径方向の位
置を表わす変数yは、光反射位置センサ14と光
反射点との距離lが一定であるとすれば、光反射
位置センサ14の出力xを積分して、軸方向移動
手段の移動速度vを乗算すれば容易に得ることが
できる。
x=l·tan2θ≒2lθ By the way, when the uneven shape of the processed surface 1a in the radial direction is represented by the y coordinate as shown in FIG. 7, it becomes y=∫dy=∫θ·ds. Here, if the moving speed of the axial moving means that moves the tool in the direction of the rotation axis is v, then ds=
Since it can be expressed as v・dt, y=∫θ・ds=∫x/2l・vdt=v/2l∫x・dt. Therefore, if the distance l between the light reflection position sensor 14 and the light reflection point is constant, the variable y representing the radial position of the processing surface 1a is calculated by integrating the output x of the light reflection position sensor 14. , can be easily obtained by multiplying by the moving speed v of the axial moving means.

前記光ビームとしては、レーザ光線、白色光の
いずれを用いてもよいが、ビーム径を絞り、測定
精度を上げるためにはレーザ光線の方が望まし
い。
As the light beam, either a laser beam or white light may be used, but a laser beam is preferable in order to narrow down the beam diameter and improve measurement accuracy.

このように、回転加工される被加工材1の表面
粗さを、ロール目8、筋目9、クレータ10の3
要素に分け、各要素ごとに独立して測定するよう
にしたため、表面粗さを定量的に分析することが
でき、精度の高い表面粗さ測定を行うことができ
る。
In this way, the surface roughness of the workpiece 1 to be rotationally machined is determined by three points: the roll stitches 8, the creases 9, and the craters 10.
Since it is divided into elements and each element is measured independently, the surface roughness can be quantitatively analyzed and highly accurate surface roughness measurement can be performed.

筋目9、クレータ10の測定については、投受
光部の配置について条件を付するのみで、従来の
測定系と同様の光量測定により行うことができ、
一般のスポツトセンサを使用することが可能で、
簡単かつ安価にその測定系を構成できる。
Measurement of streaks 9 and craters 10 can be carried out by measuring the amount of light in the same way as in conventional measurement systems, by simply adding conditions regarding the arrangement of the light emitting and receiving parts.
It is possible to use a general spot sensor,
The measurement system can be constructed easily and inexpensively.

とくに、クレータ10の測定では、被加工材1
の回転軸11に対して直角方向すなわち、クレー
タ10の長手方向に対して直角方向に向けて投受
光を行い、その拡散光強度からクレータ10の程
度を測定するようにしているため、より大きな検
出出力を得ることができ、しかも回転軸11の方
向に投受光を行う前記筋目9の測定の場合と光ビ
ームの投受光方向が互に直交するため、筋目測定
のための拡散光がクレータ測定用の拡散光受光部
13に入射するのを効果的に回避することがで
き、一層精度の高い測定を行うことができる。
In particular, when measuring the crater 10, the workpiece 1
The light is emitted and received in a direction perpendicular to the rotation axis 11 of the crater 10, that is, in a direction perpendicular to the longitudinal direction of the crater 10, and the extent of the crater 10 is measured from the intensity of the diffused light, which allows for greater detection. In addition, in the case of measuring the streaks 9, in which light is emitted and received in the direction of the rotation axis 11, and the directions of the light beam projection and reception are orthogonal to each other, the diffused light for the streak measurement is used for crater measurement. It is possible to effectively prevent the diffused light from entering the diffused light receiving section 13, and it is possible to perform measurements with even higher accuracy.

また、クレータ10、筋目9の測定のための投
光部12,12′、受光部13,13′およびロー
ル目測定のための光反射位置センサ14は、いず
れも被加工材1の加工表面1aより100mm程度離
して配置することができ、削り屑、油などが測定
系に飛散したり引掛るなどの不都合がなく、安全
かつ正確な測定を行うことができる。
Further, the light emitting parts 12, 12', the light receiving parts 13, 13' for measuring the crater 10, the streaks 9, and the light reflection position sensor 14 for measuring the roll marks are all provided on the processing surface 1a of the workpiece 1. They can be placed approximately 100mm apart, allowing safe and accurate measurements without the inconvenience of shavings, oil, etc. scattering or getting caught in the measurement system.

つぎに、前記の回転体の表面粗さ測定方法を能
率よく行うことのできる構成の簡単な回転体の表
面粗さ測定装置の一実施例を第8図および第9図
に示す。すなわち、この回転体の表面粗さ測定装
置は、回転加工される被加工材1′の回転軸1
1′に平行な方向(X軸)、前記回転軸11′と直
交する方向(被加工材1′に向かつて進退する方
向、Y軸)、X軸とY軸がつくる平面に平行な面
内で被加工材を中心にして回動する回動方向θ′
の3つの自由度を有し前記被加工材1′の加工表
面1′aの近傍に配置した測定ヘツド取付テーブ
ル15と、この測定ヘツド取付テーブル15に設
けられ前記回転軸11′の方向に向けて前記加工
表面1′aに光ビームを照射する光ビーム投光部
12″と、前記回転軸11′と前記光ビーム投光部
12″とを含む平面内に位置するように前記加工
表面1′aに向けて前記測定ヘツド取付テーブル
15上に設けられ、前記光ビーム投光部12″か
ら照射された光ビームの前記加工表面1′aでの
正反射光を受光しその正反射光の振れ変位から前
記加工表面1′aのロール目の高さ程度を測定す
る第1の受光部13″aと、前記光ビーム投光部
12″と前記受光部13″aとの中間部に位置する
ように前記加工表面1′aに向けて前記測定ヘツ
ド取付テーブル15上に設けられ、前記光ビーム
投光部12″から照射された光ビームの前記加工
表面1′aでの筋目による拡散光を受光しその受
光量から前記筋目の程度(例えば筋目の数)を測
定する第2の受光部13″bと、前記光ビーム投
光部12″と前記第2の受光部13″bとを含む平
面とほぼ直交する平面内に位置するように前記加
工表面1′aに向けて前記測定ヘツド取付テーブ
ル15上に設けられ、前記光ビーム投光部12″
から照射された光ビームの前記加工表面1′aで
のクレータによる拡散光を受光しその受光量から
前記クレータの程度(例えばクレータの数)を測
定する第3の受光部13″cとを備えたものであ
り、前記光ビーム投光部12″は光フアイバ16
を介してレーザ発生装置17に接続して、前記光
ビーム投光部12″から照射される光ビームとし
てレーザ光線を用いるようにしている。
Next, FIGS. 8 and 9 show an embodiment of a device for measuring the surface roughness of a rotating body, which has a simple structure and can efficiently carry out the method for measuring the surface roughness of a rotating body. In other words, this surface roughness measuring device for a rotating body measures the rotational axis 1 of the workpiece 1' to be rotatably machined.
1' (X-axis), a direction perpendicular to the rotation axis 11' (direction of advancing and retreating toward the workpiece 1', Y-axis), and a plane parallel to the plane formed by the X-axis and Y-axis. The rotation direction θ′ of rotation around the workpiece is
A measuring head mounting table 15 having three degrees of freedom and arranged near the machining surface 1'a of the workpiece 1', and a measuring head mounting table 15 provided on the measuring head mounting table 15 and oriented in the direction of the rotation axis 11'. a light beam projecting section 12'' that irradiates the processing surface 1'a with a light beam; It is installed on the measuring head mounting table 15 facing toward the direction ``a'', and receives the specularly reflected light from the processed surface 1'a of the light beam irradiated from the light beam projector 12'', and processes the specularly reflected light. A first light-receiving section 13''a that measures the height of the roll pattern on the processing surface 1'a from the deflection displacement, and a position located at an intermediate portion between the light beam projecting section 12'' and the light-receiving section 13''a. The light beam is provided on the measuring head mounting table 15 facing the processing surface 1'a, and is emitted from the light beam projecting section 12'', and the light beam is diffused by the streaks on the processing surface 1'a. a second light receiving section 13''b that receives light and measures the degree of the streaks (for example, the number of streaks) from the amount of received light; the light beam projecting section 12'' and the second light receiving section 13''b; The light beam projecting section 12'' is provided on the measurement head mounting table 15 facing the processing surface 1'a so as to be located in a plane substantially perpendicular to the plane containing the light beam.
a third light-receiving section 13''c that receives diffused light due to craters on the processed surface 1'a of the light beam irradiated from the processing surface 1'a and measures the extent of the craters (for example, the number of craters) from the amount of received light; The light beam projecting section 12'' includes an optical fiber 16.
The laser beam is connected to the laser generator 17 via the light beam projector 12'', and a laser beam is used as the light beam emitted from the light beam projector 12''.

各受光部13″a,13″b,13″cの検出出
力は、第9図に示す処理回路により、次に示すよ
うに処理するようにしている。
The detection outputs of the light receiving sections 13''a, 13''b, and 13''c are processed as follows by the processing circuit shown in FIG.

加工表面1′aからの正反射光を受光する受光
部13″aでは、光電変換により前記正反射光強
度に比例した検出出力aを得、この検出出力aを
次段の積分回路18で、前記の回転体の表面粗さ
測定方向におけるロール目の測定の場合と同様の
積分処理をしてロール目の高さが検出される。
In the light receiving section 13''a which receives the specularly reflected light from the processing surface 1'a, a detection output a proportional to the intensity of the specularly reflected light is obtained by photoelectric conversion, and this detection output a is sent to the next stage integrating circuit 18. The height of the roll grain is detected by performing the same integration process as in the case of measuring the roll grain in the direction of measuring the surface roughness of the rotating body.

加工表面1′aの筋目に起因する拡散光を受光
する受光部13″bでは、前記拡散光強度に相当
する検出出力bを得、この検出出力bを次段の割
算回路19において前記受光部13″aの検出出
力aで割算して、前記加工表面1′aの筋目の量
が検出される。
The light receiving section 13''b that receives the diffused light caused by the streaks on the processed surface 1'a obtains a detection output b corresponding to the intensity of the diffused light, and this detection output b is used in the next stage division circuit 19 to calculate the received light. By dividing by the detection output a of the section 13''a, the amount of streaks on the processed surface 1'a is detected.

加工表面1′aのクレータに起因する拡散光を
受光する受光部13″cでは、前記拡散光強度に
相当する検出出力cを得、この検出出力cを次段
の割算回路20で前記と同様に受光部13″aの
検出出力aで割算して、前記加工表面1′aのク
レータの量が検出される。
The light receiving section 13''c that receives the diffused light caused by the crater on the processed surface 1'a obtains a detection output c corresponding to the intensity of the diffused light, and this detection output c is divided by the dividing circuit 20 in the next stage as described above. Similarly, by dividing by the detection output a of the light receiving section 13''a, the amount of craters on the processed surface 1'a is detected.

前記のように、受光部13″b,13″cの検出
出力b,cを受光部13″aの正反射光強度に相
当する検出出力aで割算処理するのは、各受光部
13″a,13″b,13″cの検出値を無次元化
して、光源光量変化や加工表面の反射率の影響が
検出結果に及ぶのを回避するためである。
As described above, the detection outputs b and c of the light receiving sections 13''b and 13''c are divided by the detection output a corresponding to the specularly reflected light intensity of the light receiving section 13''a. This is to make the detected values of a, 13''b, and 13''c dimensionless to avoid influences of changes in the amount of light from the light source and the reflectance of the processed surface from affecting the detection results.

また、前記受光部13″aの検出出力aは、別
にLPフイルタ回路21で受けて、前記受光部1
3″aが正しく正反射光を受光する角度に前記測
定ヘツド取付テーブル15が位置しているかどう
かを確認するようにしており、この確認信号dに
基づき、前記測定ヘツド取付テーブル15の前記
加工表面1′aに対する角度を自動補正できるよ
うに構成している。
Further, the detection output a of the light receiving section 13''a is separately received by an LP filter circuit 21, and is sent to the light receiving section 13''.
It is checked whether the measuring head mounting table 15 is positioned at an angle at which the specularly reflected light is correctly received by the measuring head mounting table 15, and based on this confirmation signal d, the processing surface of the measuring head mounting table 15 is The configuration is such that the angle relative to 1'a can be automatically corrected.

一方、前記受光部13″bでは、前記光ビーム
投光部12″の光ビームが前記加工表面1′aに映
す光スポツト像を検出して、前記測定ヘツド取付
テーブル15と加工表面1′aとの間の距離を測
定する機能も付与され、前記光スポツト像に相当
する検出出力b′を別の演算回路22で演算処理し
て、前記距離を検出するようにしており、この検
出値eに基づき、前記測定ヘツド取付テーブル1
5が、前記加工表面1′aとの間の距離を所定の
値に自動補正しうるように構成している。
On the other hand, the light receiving section 13''b detects a light spot image projected on the processing surface 1'a by the light beam of the light beam projecting section 12'', and detects the light spot image projected on the processing surface 1'a and the measuring head mounting table 15 and the processing surface 1'a. The detection output b' corresponding to the light spot image is processed in another arithmetic circuit 22 to detect the distance, and this detection value e Based on the measurement head mounting table 1
5 is configured to automatically correct the distance to the processing surface 1'a to a predetermined value.

前記測定ヘツド取付テーブル15は、被加工材
1′が回転している状態で、被加工材1′の一端か
ら他端に向けてX,Y,θ′の3軸NC駆動により
移動して、前記ロール目、筋目、クレータの測定
が行われる。
The measurement head mounting table 15 moves from one end of the workpiece 1' to the other end by three-axis NC drive of X, Y, and θ' while the workpiece 1' is rotating. The roll marks, streaks, and craters are measured.

なお、前記測定ヘツド取付テーブル15のNC
駆動軌跡は、測定ヘツドの距離、角度測定機能を
利用して、テイーチングにより決定させることも
可能であり、また、基本軌跡に対する距離、角度
のずれ量を測定してこれをフイードバツクするこ
とにより、被加工材のサンプルごとに距離、角度
を調節することも可能である。
Note that the NC of the measuring head mounting table 15 is
The driving trajectory can also be determined by teaching using the distance and angle measurement functions of the measurement head, and the distance and angle deviations from the basic trajectory can also be measured and fed back. It is also possible to adjust the distance and angle for each sample of processed material.

このように構成したため、次のような効果が得
られる。
With this configuration, the following effects can be obtained.

(1) 表面粗さの3要素を1つの光ビーム投光部1
2″を兼用して行うことができ、構成を簡略化
できるとともに、同時に3つの測定を互に干渉
し合うことなく正確に行うことができ、測定能
率が大幅に向上する。
(1) Three elements of surface roughness are combined into one light beam projector 1
2'' can be used in combination, the configuration can be simplified, and three measurements can be performed simultaneously and accurately without mutual interference, greatly improving measurement efficiency.

(2) 光スポツト径を0.1〜0.5mmφと小さく絞るこ
とができ、精密な表面粗さ測定を行うことがで
きる。
(2) The diameter of the light spot can be narrowed down to 0.1 to 0.5 mmφ, making it possible to perform precise surface roughness measurements.

(3) 測定ヘツドの加工表面に対する距離、角度の
測定を本来の用途とは別に各受光部を利用する
ことにより測定することができ、これら距離、
角度の測定のために別のセンサを付加する必要
がなく、簡単な構成により測定距離、角度のず
れなどを監視でき、テイーチング機能も容易に
付加することができる。
(3) It is possible to measure the distance and angle of the measuring head to the machined surface by using each light receiving part separately from the original purpose.
There is no need to add a separate sensor for angle measurement, the measurement distance, angle deviation, etc. can be monitored with a simple configuration, and a teaching function can be easily added.

以上のように、この発明の回転体の表面粗さ測
定方法は、回転加工される被加工材の回転軸を含
む平面内に光ビーム投光部および光反射位置セン
サを前記被加工材の加工表面に向け配置し、前記
光ビーム投光部から照射された光ビームの前記加
工表面での正反射光を前記光反射位置センサで受
光し前記加工表面のロール目による前記光正反射
光の振れ変位を前記光反射位置センサで検出して
前記ロール目の高さ程度を測定するロール目測定
工程と、前記回転軸を含む平面内に光ビーム投光
部および拡散光受光部を前記加工表面に向け配置
し、前記光ビーム投光部から照射された光ビーム
の前記加工表面での筋目による拡散光を前記拡散
光受光部で受光してその受光量により前記筋目の
程度を測定する筋目測定工程と、前記回転軸に対
し垂直な面内に光ビーム投光部および拡散光受光
部を前記加工表面に向け配置し、前記光ビーム投
光部から照射された光ビームの前記加工表面での
クレータによる拡散光を前記拡散光受光部で受光
してその受光量により前記クレータの程度を測定
するクレータ測定工程とを含むものであるため、
回転加工される被加工材の表面粗さを、非接触か
つインプロセスのもとに精度よく測定することが
でき、また、この発明の回転体の表面粗さ測定装
置は、回転加工される被加工材の回転軸の方向に
向けて前記被加工材の加工表面に光ビームを照射
する光ビーム投光部と、前記加工表面に向けて前
記回転軸と前記光ビーム投光部とを含む平面内に
配置され前記光ビーム投光部からの光ビームの前
記加工表面での正反射光を受光しその正反射光の
振れ変位から前記加工表面のロール目の高さ程度
を測定する第1受光部と、前記加工表面に向けて
前記光ビーム投光部と前記第1受光部の配設位置
の中間部に配置され前記光ビーム投光部からの光
ビームの前記加工表面での筋目による拡散光を受
光してその受光量から前記加工表面の筋目の程度
を測定する第2受光部と、前記加工表面に向けて
前記光ビーム投光部と前記第2受光部とを含む平
面とほぼ直交する平面内に配置され前記光ビーム
投光部からの光ビームの前記加工表面でのクレー
タによる拡散光を受光してその受光量から前記加
工表面のクレータの程度を測定する第3受光部
と、前記光ビーム投光部、第1、第2、第3受光
部を含む測定ヘツドを固定して前記被加工材の加
工表面に近い位置に位置調整自在に配設した測定
ヘツド位置調整テーブルとを備えたものであるた
め、簡単かつコンパクトな構成により前記測定方
法による被加工材の表面粗さ測定を能率よく行う
ことができるという効果を有する。
As described above, the method for measuring the surface roughness of a rotating body according to the present invention is such that the light beam projector and the light reflection position sensor are placed within a plane including the rotation axis of the workpiece to be rotatably processed. The light reflection position sensor receives the specularly reflected light of the light beam irradiated from the light beam projection unit toward the surface, and detects the deflection displacement of the specularly reflected light due to the roll of the processed surface. a roll eye measurement step of detecting the height of the roll eye with the light reflection position sensor, and directing a light beam projector and a diffused light receiver toward the processing surface within a plane including the rotation axis. a streak measuring step in which the diffused light from the streaks on the processed surface of the light beam irradiated from the light beam projector is received by the diffused light receiver and the degree of the streaks is measured based on the amount of received light; , a light beam projector and a diffused light receiver are disposed in a plane perpendicular to the rotation axis to face the processing surface, and the light beam irradiated from the light beam projector is caused by a crater on the processing surface. and a crater measuring step of receiving diffused light with the diffused light receiving section and measuring the extent of the crater based on the amount of received light,
The surface roughness of a workpiece to be rotatably machined can be measured with high accuracy in a non-contact and in-process manner. a light beam projecting section that irradiates a light beam onto the processing surface of the workpiece in the direction of the rotation axis of the workpiece; and a plane including the rotation axis and the light beam projecting section toward the processing surface. a first light receiving device disposed within the light beam projecting unit, which receives specularly reflected light from the light beam projecting section on the processing surface, and measures the height of the roll pattern on the processing surface from the deflection displacement of the specularly reflected light; and disposed toward the processing surface at an intermediate position between the light beam projecting section and the first light receiving section, and diffusing the light beam from the light beam projecting section by streaks on the processing surface. a second light receiving section that receives light and measures the degree of streaks on the processed surface from the amount of light received; and a plane that is substantially orthogonal to the plane that includes the light beam projecting section and the second light receiving section toward the processed surface. a third light receiving unit disposed in a plane where the light beam from the light beam projecting unit receives diffused light due to craters on the processed surface, and measures the degree of cratering on the processed surface from the amount of received light; a measurement head position adjustment table in which the measurement head including the light beam projector, first, second, and third light receivers is fixed and the position is freely adjustable at a position close to the processing surface of the workpiece; Therefore, it has the effect that the surface roughness of a workpiece can be efficiently measured by the above measurement method with a simple and compact configuration.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図はそれぞれ従来例を示す斜
視図、第3図は回転加工された被加工材の加工表
面を示す部分拡大斜視図、第4図および第5図は
それぞれこの発明の測定方法の一実施例を示す斜
視図、第6図および第7図はそれぞれその原理説
明図、第8図および第9図はそれぞれこの発明の
測定装置の一実施例を示す斜視図および処理回路
ブロツク図である。 1,1′……被加工材、1a,1′a……加工表
面、8……ロール目、9……筋目、10……クレ
ータ、11,11′……回転軸、12,12′,1
2″……光ビーム投光部、13,13′……拡散光
受光部、13″a……受光部(光反射位置セン
サ)、13″b,13″c……受光部、14……光
反射位置センサ、15……測定ヘツド取付テーブ
ル、16……光フアイバ、17……レーザ発生装
置、19,20……割算回路、21……LPフイ
ルタ回路、22……演算回路。
Figures 1 and 2 are perspective views showing a conventional example, Figure 3 is a partially enlarged perspective view showing the machined surface of a rotary machined workpiece, and Figures 4 and 5 are measurements of the present invention, respectively. FIGS. 6 and 7 are diagrams explaining the principle of the method, and FIGS. 8 and 9 are perspective views and processing circuit blocks showing an embodiment of the measuring device of the present invention, respectively. It is a diagram. 1, 1'... Work material, 1a, 1'a... Machining surface, 8... Roll stitch, 9... Line, 10... Crater, 11, 11'... Rotating shaft, 12, 12', 1
2''...Light beam projector, 13, 13'...Diffused light receiver, 13''a...Light receiver (light reflection position sensor), 13''b, 13''c...Light receiver, 14... Light reflection position sensor, 15... Measuring head mounting table, 16... Optical fiber, 17... Laser generator, 19, 20... Dividing circuit, 21... LP filter circuit, 22... Arithmetic circuit.

Claims (1)

【特許請求の範囲】 1 回転加工される被加工材の回転軸を含む平面
内に光ビーム投光部および光反射位置センサを前
記被加工材の加工表面に向け配置し、前記光ビー
ム投光部から照射された光ビームの前記加工表面
での正反射光を前記光反射位置センサで受光し前
記加工表面のロール目による前記光正反射光の振
れ変位を前記光反射位置センサで検出して前記ロ
ール目の高さ程度を測定するロール目測定工程
と、前記回転軸を含む平面内に光ビーム投光部お
よび拡散光受光部を前記加工表面に向け配置し、
前記光ビーム投光部から照射された光ビームの前
記加工表面での筋目による拡散光を前記拡散光受
光部で受光してその受光量により前記筋目の程度
を測定する筋目測定工程と、前記回転軸に対し垂
直な面内に光ビーム投光部および拡散光受光部を
前記加工表面に向け配置し、前記光ビーム投光部
から照射された光ビームの前記加工表面でのクレ
ータによる拡散光を前記拡散光受光部で受光して
その受光量により前記クレータの程度を測定する
クレータ測定工程とを含む回転体の表面粗さ測定
方法。 2 回転加工される被加工材の回転軸の方向に向
けて前記被加工材の加工表面に光ビームを照射す
る光ビーム投光部と、前記加工表面に向けて前記
回転軸と前記光ビーム投光部とを含む平面内に配
置され前記光ビーム投光部からの光ビームの前記
加工表面での正反射光を受光しその正反射光の振
れ変位から前記加工表面のロール目の高さ程度を
測定する第1受光部と、前記加工表面に向けて前
記光ビーム投光部と前記第1受光部の配設位置の
中間部に配置され前記光ビーム投光部からの光ビ
ームの前記加工表面での筋目による拡散光を受光
してその受光量から前記加工表面の筋目の程度を
測定する第2受光部と、前記加工表面に向けて前
記光ビーム投光部と前記第2受光部とを含む平面
とほぼ直交する平面内に配置され前記光ビーム投
光部からの光ビームの前記加工表面でのクレータ
による拡散光を受光してその受光量から前記加工
表面のクレータの程度を測定する第3受光部と、
前記光ビーム投光部、第1、第2、第3受光部を
含む測定ヘツドを固定して前記被加工材の加工表
面に近い位置に位置調整自在に配設した測定ヘツ
ド位置調整テーブルとを備えた回転体の表面粗さ
測定装置。 3 前記測定ヘツド位置調整テーブルは、前記第
1受光部が正反射光を受光した位置を、前記光ビ
ーム投光部と前記第1受光部の間に正反射が行わ
れる角度位置として検出し位置補正制御し、前記
光ビーム投光部からの光ビームによる前記加工表
面に映される光スポツト像を前記第2受光部が受
光する位置を、前記加工表面と測定ヘツドとの間
の距離が正しい位置として検出し位置補正制御す
るようにしたものである特許請求の範囲第2項記
載の回転体の表面粗さ測定装置。
[Scope of Claims] 1. A light beam projector and a light reflection position sensor are disposed in a plane including a rotation axis of a workpiece to be rotatably processed, and the light beam projector and a light reflection position sensor are arranged to face the processing surface of the workpiece, and The light reflection position sensor receives the specularly reflected light of the light beam irradiated from the processing surface on the processing surface, and the light reflection position sensor detects the deflection displacement of the specularly reflected light due to the roll of the processing surface. a roll grain measurement step of measuring the height of the roll grain, and arranging a light beam projector and a diffused light receiver facing the processing surface in a plane including the rotation axis;
a streak measuring step of receiving diffused light due to streaks on the processed surface of the light beam irradiated from the light beam projecting unit in the diffused light receiving unit and measuring the degree of the streaks based on the amount of received light; and the rotation. A light beam projecting section and a diffused light receiving section are arranged in a plane perpendicular to the axis to face the processing surface, and diffused light due to a crater on the processing surface of the light beam irradiated from the light beam projecting section is disposed. A method for measuring surface roughness of a rotating body, comprising a crater measuring step of receiving light at the diffused light receiving section and measuring the extent of the crater based on the amount of the received light. 2. A light beam projection unit that irradiates a light beam onto the processing surface of the workpiece in the direction of the rotation axis of the workpiece to be rotationally processed; The light beam is arranged in a plane including the light section, and receives the specularly reflected light of the light beam from the light beam projecting section on the processing surface, and from the deflection displacement of the specularly reflected light, the height of the roll eye of the processing surface is determined. a first light receiving section for measuring the processing surface; a second light receiving section that receives diffused light due to the streaks on the surface and measures the extent of the streaks on the processed surface from the amount of received light; the light beam projecting section and the second light receiving section that project the light beam toward the processed surface; is arranged in a plane substantially orthogonal to a plane containing the light beam, and receives diffused light from the light beam from the light beam projection unit due to craters on the processed surface, and measures the degree of cratering on the processed surface from the amount of received light. a third light receiving section;
a measurement head position adjustment table in which the measurement head including the light beam projector, first, second, and third light receivers is fixed and the position is freely adjustable at a position close to the processing surface of the workpiece; A surface roughness measurement device for rotating bodies. 3. The measurement head position adjustment table detects the position where the first light receiving section receives the specularly reflected light as an angular position where specular reflection occurs between the light beam projecting section and the first light receiving section, and determines the position. Correction control is performed to determine the position where the second light receiving section receives the light spot image projected on the processing surface by the light beam from the light beam projecting section, so that the distance between the processing surface and the measurement head is correct. The surface roughness measuring device for a rotating body according to claim 2, wherein the surface roughness measuring device for a rotating body is configured to detect the position and perform position correction control.
JP17695581A 1981-10-31 1981-10-31 Method and device for measuring surface roughness of rotary body Granted JPS5876711A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17695581A JPS5876711A (en) 1981-10-31 1981-10-31 Method and device for measuring surface roughness of rotary body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17695581A JPS5876711A (en) 1981-10-31 1981-10-31 Method and device for measuring surface roughness of rotary body

Publications (2)

Publication Number Publication Date
JPS5876711A JPS5876711A (en) 1983-05-09
JPS6256443B2 true JPS6256443B2 (en) 1987-11-26

Family

ID=16022637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17695581A Granted JPS5876711A (en) 1981-10-31 1981-10-31 Method and device for measuring surface roughness of rotary body

Country Status (1)

Country Link
JP (1) JPS5876711A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61288108A (en) * 1985-06-15 1986-12-18 Ishizuka Glass Ltd Inspecting method for body concavity of glass bottle
JPH07122570B2 (en) * 1987-03-13 1995-12-25 キヤノン株式会社 Surface shape measuring device
DE3831401A1 (en) * 1988-09-15 1990-03-29 Kolb Gmbh & Co Hans METHOD AND DEVICE FOR THE AUTOMATED CONTACT-FREE SURFACE CONTROL OF CYLINDRICAL PARTS
JP5036644B2 (en) * 2008-07-03 2012-09-26 住友重機械工業株式会社 Surface inspection method and chatter mark inspection device

Also Published As

Publication number Publication date
JPS5876711A (en) 1983-05-09

Similar Documents

Publication Publication Date Title
JP6689812B2 (en) Coordinate measuring device with optical sensor and corresponding method
US4564765A (en) Optoelectronic method and apparatus for measuring the bending angle of materials
US4974165A (en) Real time machining control system including in-process part measuring and inspection
JPH0812057B2 (en) Light beam device
JPH10253336A (en) Method for measuring surface roughens
JPH0599617A (en) Method and device for detecting edge section and hole by optical scanning head
JP2000186913A (en) Method and device for optical detection of contrast line
CN111065947A (en) Device for determining the orientation of an optical device of a coherence tomography camera, coherence tomography camera and laser processing system
US7121922B2 (en) Method and apparatus for polishing a workpiece surface
JP6288280B2 (en) Surface shape measuring device
JPS6256443B2 (en)
JP7164058B1 (en) End face measuring device and end face measuring method
JPS628017B2 (en)
JP2000337825A (en) Measuring apparatus for shape of tooth profile on brake roll
CN209541665U (en) The caliberating device of optics paraboloid of revolution standard array center distance
JPS5834309A (en) Noncontacting type surface nature measuring method
JP2000314707A (en) Device and method for inspecting surface
JPS622113A (en) Surface roughness meter using reflected light
JPS62147306A (en) Apparatus for measuring shape of round shaft shaped member
JP4159809B2 (en) Non-contact measuring method and measuring apparatus
JPS59137805A (en) Optical distance meter for profiling work
JP7282362B2 (en) Automatic geometry measuring device and machine tool equipped with the same
JP2570813B2 (en) Arc surface deformation inspection method
JPH0337125B2 (en)
JPH06297175A (en) Gap sensor for laser beam machine