JPS6256408B2 - - Google Patents

Info

Publication number
JPS6256408B2
JPS6256408B2 JP55160529A JP16052980A JPS6256408B2 JP S6256408 B2 JPS6256408 B2 JP S6256408B2 JP 55160529 A JP55160529 A JP 55160529A JP 16052980 A JP16052980 A JP 16052980A JP S6256408 B2 JPS6256408 B2 JP S6256408B2
Authority
JP
Japan
Prior art keywords
heat
heat storage
transfer layer
thermal conductivity
heat transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55160529A
Other languages
Japanese (ja)
Other versions
JPS5784991A (en
Inventor
Kozo Kanamori
Rikizo Tanaka
Masao Matsuoka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP55160529A priority Critical patent/JPS5784991A/en
Publication of JPS5784991A publication Critical patent/JPS5784991A/en
Publication of JPS6256408B2 publication Critical patent/JPS6256408B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Central Heating Systems (AREA)

Description

【発明の詳細な説明】 本発明は蓄熱材を主体とした蓄熱槽と放熱面を
もつ放熱器との間に熱伝達層を介在した蓄熱放熱
装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a heat storage and heat dissipation device in which a heat transfer layer is interposed between a heat storage tank mainly composed of a heat storage material and a radiator having a heat dissipation surface.

この種の装置は例えば床面暖房器とか壁面暖房
器等の用途をもつている。該装置に使用される蓄
熱材としては、固体―液体間の融解熱を利用する
潜熱蓄熱体或いは氷やレンガ等の如く比熱を利用
する顕熱蓄熱体が用いられるが、一般に単位容積
当りの蓄熱量が大きい点、及び蓄放熱時の蓄熱材
温度変化が蓄放熱量に比例しない点等から前者の
方が有利である。また、この蓄熱材を加熱する熱
源としては夜間蓄熱の場合には深夜電力が、昼間
蓄熱の場合には太陽熱等が利用される。
Devices of this type have applications, for example, as floor heaters and wall heaters. The heat storage material used in this device is a latent heat storage material that uses the heat of fusion between solid and liquid, or a sensible heat storage material that uses specific heat such as ice or bricks, but generally the heat storage material per unit volume is The former is more advantageous because the amount is larger and the change in temperature of the heat storage material during heat storage and release is not proportional to the amount of heat storage and release. Further, as a heat source for heating this heat storage material, late-night electricity is used in the case of nighttime heat storage, and solar heat or the like is used in the case of daytime heat storage.

ところで、この種蓄熱放熱装置を床又は壁面暖
房器としての用途に供しようとする場合、例えば
料金の安い深夜電力を利用して蓄熱し、あくる日
の夕方の大きな熱需要時期にタイミングを合せて
蓄熱熱量を放熱するという態様で使用できること
が要求される。しかるに蓄熱材からの放熱を自然
放熱に委ねるという簡易手法に頼るなら、蓄熱材
に蓄熱する時から放熱が開始し、時間の経過と共
に放熱器の放熱面の温度が低下するという傾向を
示すために、上記の如き要求を満たすことはでき
ない。
By the way, when this kind of heat storage and heat dissipation device is used as a floor or wall heater, for example, it is possible to store heat by using low-cost late-night electricity, and to store heat at a time when there is a large demand for heat in the evening of the next day. It is required that it can be used in a manner that radiates heat. However, if we rely on the simple method of leaving the heat dissipation from the heat storage material to natural heat dissipation, we can show that heat dissipation starts from the time heat is stored in the heat storage material, and the temperature of the heat dissipation surface of the radiator decreases over time. , cannot satisfy the above requirements.

現在このような要求を満たす手段として特公昭
53−24655号公報に示されている如く、熱運搬の
可能な作動油を封入した筒体を蓄熱材に出入れ自
在に挿入し、該筒体の蓄熱材への挿入量の調整に
よつて蓄熱材からの放熱量を人為的に制御できる
ようにした手段が提案されている。しかし乍ら、
該手段においては、蓄熱材としてレンガ等の顕熱
蓄熱体を使用した場合筒体を挿入することは不可
能であるし、固体―液体間の融解熱を利用した潜
熱蓄熱体を使用した場合も蓄熱材表面近くが個化
していることであり、筒体挿入が困難であるとい
う、現実に実施する上での致命的な欠点をもつて
いる。
Currently, as a means to meet these demands,
As shown in Publication No. 53-24655, a cylindrical body filled with hydraulic oil capable of transporting heat is inserted into and out of the heat storage material, and the amount of insertion of the cylindrical body into the heat storage material is adjusted. Means for artificially controlling the amount of heat released from heat storage materials has been proposed. However,
In this method, it is impossible to insert a cylinder when a sensible heat storage body such as a brick is used as the heat storage material, and even when a latent heat storage body that utilizes the heat of fusion between solid and liquid is used. This is because the heat storage material is individualized near the surface, making it difficult to insert the cylinder, which is a fatal drawback in actual implementation.

本発明はかかる点にあつて、蓄熱材を主体とし
た蓄熱層と放熱器との間に介在された熱伝達層の
構造を巧みに工夫することにより、蓄熱材からの
放熱を人為的に調整できると同時に上述手段の如
き実施面での困難性も解決し得る有用な一手段を
提供するものである。
In this respect, the present invention artificially adjusts the heat radiation from the heat storage material by skillfully devising the structure of the heat transfer layer interposed between the heat storage layer mainly composed of the heat storage material and the radiator. This provides a useful means that can simultaneously solve the difficulties in implementation such as those of the above-mentioned means.

即ち、本発明が提供せんとする蓄熱放熱装置
は、前記熱伝達層を熱伝導率の大きな材料と熱伝
導率の小さい材料とを対向接触させた構造に形成
すると共に該蓄伝達層の少なくとも一部を他の熱
伝達層部分に対してその幾何学的位置を相対変位
可能に構成し、もつて熱伝達層全体の熱伝導率を
可変できるようにしたことを要旨としている。
That is, in the heat storage and heat dissipation device provided by the present invention, the heat transfer layer is formed in a structure in which a material with high thermal conductivity and a material with low thermal conductivity are brought into opposing contact with each other, and at least one of the heat storage and transfer layers is The main feature is that the geometric position of the heat transfer layer can be changed relative to other heat transfer layer sections, thereby making it possible to vary the thermal conductivity of the entire heat transfer layer.

以下に本発明の実施例を図面に基づき説明す
る。第1図は本発明の蓄熱放熱装置を床面暖房器
用に構成した横断面図を示す。蓄熱材1は電気ヒ
ータ2と共に蓄熱材容器3に収容されて蓄熱層を
構成している。蓄熱材1としては例えば相変化温
度が57℃である酢酸ナトリウム(CH3COONa・
3H2O)を用いている。この蓄熱材を主体とする
前記蓄熱層の下部には下方への熱放散を防止する
ための断熱材4が添設されている。一方、該蓄熱
層の上方には熱伝達層5を介して熱伝導率の良い
部材からなる放熱器6が設けられている。放熱器
6上面の放熱面6aには床表装材7が敷設されて
いる。なお、放熱器6、熱伝達層5及び蓄熱層の
3者は熱的、構造的に良好な状態で接合されてい
る。
Embodiments of the present invention will be described below based on the drawings. FIG. 1 shows a cross-sectional view of a heat storage and heat dissipation device of the present invention configured for use in a floor heater. The heat storage material 1 is housed in a heat storage material container 3 together with an electric heater 2 to form a heat storage layer. As the heat storage material 1, for example, sodium acetate (CH 3 COONa・
3H 2 O) is used. A heat insulating material 4 is attached to the lower part of the heat storage layer mainly composed of this heat storage material to prevent heat dissipation downward. On the other hand, a heat radiator 6 made of a material with good thermal conductivity is provided above the heat storage layer with a heat transfer layer 5 interposed therebetween. A floor covering material 7 is laid on a heat radiation surface 6a on the upper surface of the radiator 6. Note that the heat radiator 6, the heat transfer layer 5, and the heat storage layer are bonded together in a thermally and structurally favorable state.

前記熱伝達層5は、熱伝導率の大きな材料8と
熱伝導率の小さな材料9とを上下に対向接触した
2層構造に形成されていると共に、この熱伝達層
5の一部には複数の円筒状中空部が切欠形成され
ている。各中空部には、前記伝達層5を構成する
材料8,9と同一の材料10,11を同様に対向
接触させた構造の円柱状回転体12が挿入されて
いる。図中10が熱伝導率の大きい材料であり、
11,11が熱伝導率の小さい材料である。前記
中空部と円柱状回転体12はともに真円に形成さ
れ、且つそれらの径も高精度に等しく形成されて
いて、円柱状回転体12は中空部内に熱接触性良
く回転のみ自在に挿入されている。これら各円柱
状回転体12…の一端面には、各回転体12…を
中空部内で回転することによつて残りの熱伝達層
5部分との幾何学的位置を変位させるための操作
機構が設けられている。第2図A,Bは該操作機
構を示し、図中13…は各円柱状回転体12…の
回転軸芯Pから偏芯した位置に突設されたピン、
14は各ピン13…を連結する腕杆、15は一つ
の回転体12の回転軸芯Pに支点をもち、前記腕
杆14が連結された操作レバーである。該レバー
15は床面の側端から一部突出させてある。また
該レバー15は図Bに実線と破線で示すように約
90゜回動操作することができる。従つて、今操作
レバー15が実線位置にあるとき、各円柱状回転
体12…が第3図Aに示す状態にあるとすれば、
操作レバー15を破線位置まで回動操作すると、
円柱状回転体12…は第3図Bに示す如き状態に
変化する。図Aに示す状態においては、円柱状回
転体12内の熱伝導率の大きい材料10が熱伝達
層5の熱伝導率の大きい材料8及び放熱器6と接
触しているため、蓄熱材1に蓄熱量を前記材料8
から回転体内材料10を通じ放熱器6に伝達し、
その放熱面6aから室内に放熱する。即ち、この
場合は熱伝達層5全体の熱伝導率が大きい。一
方、図Bに示す状態においては回転体12内の熱
伝導率の大きい材料10は熱伝達層5内の熱伝導
率の小さい材料9とのみ接触しているだけである
から、図Aの状態におけるような良好な熱伝達は
なし得ない。従つてこの場合は熱伝達層5全体の
熱伝導率が小さい。
The heat transfer layer 5 has a two-layer structure in which a material 8 with high thermal conductivity and a material 9 with low thermal conductivity are vertically opposed and in contact with each other. A cylindrical hollow part is cut out. A cylindrical rotating body 12 having a structure in which materials 10 and 11, which are the same as the materials 8 and 9 constituting the transmission layer 5, are brought into opposing contact with each other is inserted into each hollow portion. 10 in the figure is a material with high thermal conductivity,
11 and 11 are materials with low thermal conductivity. Both the hollow part and the cylindrical rotating body 12 are formed into a perfect circle, and their diameters are also formed to be the same with high precision, so that the cylindrical rotating body 12 is inserted into the hollow part with good thermal contact and can only rotate freely. ing. An operating mechanism is provided on one end surface of each of these cylindrical rotating bodies 12 for rotating each rotating body 12 within the hollow space to displace the geometric position relative to the remaining heat transfer layer 5 portion. It is provided. 2A and 2B show the operating mechanism, and in the figures, 13... is a pin protruding from a position eccentric from the rotation axis P of each cylindrical rotating body 12;
Reference numeral 14 designates an arm rod that connects each pin 13, and 15 designates an operating lever that has a fulcrum at the rotational axis P of one rotating body 12 and to which the arm rod 14 is connected. The lever 15 is partially protruded from the side edge of the floor surface. In addition, the lever 15 is approximately
Can be rotated 90°. Therefore, if the operating lever 15 is now in the solid line position and each cylindrical rotating body 12 is in the state shown in FIG. 3A, then
When the operating lever 15 is rotated to the broken line position,
The cylindrical rotating bodies 12 change to the state shown in FIG. 3B. In the state shown in FIG. A, the material 10 with high thermal conductivity in the cylindrical rotating body 12 is in contact with the material 8 with high thermal conductivity of the heat transfer layer 5 and the radiator 6, so that the heat storage material 1 The amount of heat storage is determined by the material 8.
from the rotating body material 10 to the radiator 6,
Heat is radiated indoors from the heat radiating surface 6a. That is, in this case, the thermal conductivity of the entire heat transfer layer 5 is high. On the other hand, in the state shown in FIG. B, the material 10 with high thermal conductivity in the rotating body 12 is only in contact with the material 9 with low thermal conductivity in the heat transfer layer 5, so the state shown in FIG. Good heat transfer is not possible. Therefore, in this case, the thermal conductivity of the entire heat transfer layer 5 is low.

このように上記構成によれば、操作レバー15
を回動操作することにより、熱伝達層5全体の熱
伝導率を可変して蓄熱材1からの放熱量を人為的
に調整することができるため、冒頭に述べた如く
夜間電力を利用して蓄熱材1に蓄熱し、あくる日
の夕方の熱需要時期にその蓄熱熱量を集中的に放
熱するという如き使用が可能となるのである。
尚、第4図に放熱器の放熱面6aの温度特性を示
す。図中、イは蓄熱過程、ロは放熱過程、ハは蓄
熱材1の相変化温度、ニは熱伝達層5全体の熱伝
導率を大きくした場合の放熱面6aの温度の経時
的変化特性曲線、ホは熱伝達層5全体の熱伝導率
を小さくした場合の放熱面6aの温度の経時的変
化特性曲線である。
According to the above configuration, the operation lever 15
By rotating the , the thermal conductivity of the entire heat transfer layer 5 can be varied and the amount of heat released from the heat storage material 1 can be artificially adjusted. It becomes possible to store heat in the heat storage material 1 and radiate the stored heat intensively during the heat demand period in the evening of the next day.
Incidentally, FIG. 4 shows the temperature characteristics of the heat radiating surface 6a of the radiator. In the figure, A is the heat storage process, B is the heat radiation process, C is the phase change temperature of the heat storage material 1, and D is the temporal change characteristic curve of the temperature of the heat radiation surface 6a when the thermal conductivity of the entire heat transfer layer 5 is increased. , E are characteristic curves of the temperature of the heat dissipation surface 6a over time when the thermal conductivity of the entire heat transfer layer 5 is reduced.

次に第5図は本発明の他の一実施例を示してい
る。この実施例では、熱伝導率の大きい材料8と
熱伝導率の小さい材料9とを水平方向に交互に対
向接触した状態で並べて熱伝達層5を構成すると
共に、この熱伝達層5を2つの平行した水平面で
切断して3分割5a,5b,5cし、中央の分割
部分5bを他の部分5a,5cに対して横方向に
スライド移動できるように構成したものである。
この構成によつても中央の分割部分5bのスライ
ドによりその中の熱伝導率の大きな材料8、及び
小さな材料9と、他の部分5a,5cの熱伝導率
の大きい材料8及び小さい材料9との幾何学的位
置関係を変位することができ、これによつて熱伝
達層5全体の熱伝導率を可変することができる。
Next, FIG. 5 shows another embodiment of the present invention. In this embodiment, the heat transfer layer 5 is constructed by arranging a material 8 having a high thermal conductivity and a material 9 having a low thermal conductivity in alternating contact with each other in the horizontal direction. It is structured such that it is cut into three parts 5a, 5b, and 5c by cutting along parallel horizontal planes, and the central divided part 5b can be slid laterally relative to the other parts 5a, 5c.
With this configuration, by sliding the central divided portion 5b, the material 8 with high thermal conductivity and the material 9 with low thermal conductivity therein are separated from the material 8 with high thermal conductivity and the material 9 with low thermal conductivity in the other portions 5a and 5c. The geometrical positional relationship of the heat transfer layer 5 can be changed, thereby making it possible to vary the thermal conductivity of the entire heat transfer layer 5.

尚、上記各実施例において、操作レバー15の
回動を、床面温度を検知し、その温度と設定温度
の差に基づいて自動的に行なうようにすることも
容易である。また蓄熱材1として水あるいは相変
化温度が10℃前後の潜熱蓄熱体を用い、かつ電気
ヒータ2の代りに冷熱源供給媒体を用いて蓄冷房
装置構成とすることも可能である。
In each of the embodiments described above, it is also easy to detect the floor surface temperature and automatically rotate the operating lever 15 based on the difference between the detected temperature and the set temperature. It is also possible to construct a cold storage air conditioner by using water or a latent heat storage body with a phase change temperature of about 10° C. as the heat storage material 1, and using a cold source supply medium instead of the electric heater 2.

本発明に係る蓄熱放熱装置は上述の如く構成し
たため次のような効果がある。
Since the heat storage and heat dissipation device according to the present invention is configured as described above, it has the following effects.

蓄熱材からの放熱を人為的に調整できる。従
つて、例えば夜間電力を利用して蓄熱し、あく
る日の夕方の熱需要期にその蓄熱熱量を供給す
るという極めて合理的な使用方法が可能とな
る。
The heat radiation from the heat storage material can be artificially adjusted. Therefore, an extremely rational method of use is possible, for example, by storing heat using nighttime electricity and supplying the stored heat amount during the heat demand period in the evening of the next day.

前記放熱の人為的な調整を、熱伝達層の構造
を工夫することにより、熱伝達層全体の熱伝導
率を可変することによつて行なつているため、
蓄熱材の種類、構造、状態変化等と無関係にそ
の放熱をコントロールすることができる。従つ
て、蓄熱材としていずれの蓄熱体等を用いよう
とも装置化が容易であり、冒頭に述べた現行手
段の如き実施に際しての困難性がない。
The artificial adjustment of the heat dissipation is performed by changing the thermal conductivity of the entire heat transfer layer by devising the structure of the heat transfer layer.
Heat radiation can be controlled regardless of the type, structure, state change, etc. of the heat storage material. Therefore, no matter which heat storage body is used as the heat storage material, it is easy to implement the system, and there is no difficulty in implementation as with the current means mentioned at the beginning.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す全体正面断面
図、第2図Aは第1図の上面図、同図Bは正面
図、第3図A,Bは第1図の装置の作動状態を説
明する図、第4図は第1図の装置の放熱面の温度
特性を示す図、第5図は本発明の他の一実施例を
示す要部正面断面図である。 1…蓄熱材、5…熱伝達層、6…放熱器、6a
…放熱面、8,10…熱伝導率の大きい材料、
9,11…熱伝導率の小さい材料。
FIG. 1 is an overall front sectional view showing one embodiment of the present invention, FIG. 2A is a top view of FIG. 1, FIG. 3B is a front view, and FIGS. FIG. 4 is a diagram illustrating the temperature characteristics of the heat dissipation surface of the apparatus shown in FIG. 1, and FIG. 5 is a front sectional view of a main part showing another embodiment of the present invention. 1... Heat storage material, 5... Heat transfer layer, 6... Heat radiator, 6a
...heat dissipation surface, 8,10...material with high thermal conductivity,
9,11...Material with low thermal conductivity.

Claims (1)

【特許請求の範囲】[Claims] 1 蓄熱材を主体とした蓄熱層と放熱面をもつ放
熱器との間に熱伝達層を介在した蓄熱放熱装置に
おいて、前記熱伝達層を熱伝導率の大きな材料と
熱伝導率の小さい材料とを対向接触させた構造に
形成すると共に、該熱伝達層の少なくとも一部を
他の熱伝達層部分に対してその幾何学的位置を相
対変位可能に構成し、もつて熱伝達層全体の熱伝
導率を可変できるようにしたことを特徴とする蓄
熱放熱装置。
1. In a heat storage and heat dissipation device in which a heat transfer layer is interposed between a heat storage layer mainly made of a heat storage material and a radiator having a heat dissipation surface, the heat transfer layer is made of a material with high thermal conductivity and a material with low thermal conductivity. are formed in a structure in which they are in opposing contact with each other, and at least a part of the heat transfer layer is configured so that its geometric position can be displaced relative to other heat transfer layer parts, so that the heat of the entire heat transfer layer is A heat storage and heat dissipation device characterized by variable conductivity.
JP55160529A 1980-11-13 1980-11-13 Heat accumulating and radiating device Granted JPS5784991A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55160529A JPS5784991A (en) 1980-11-13 1980-11-13 Heat accumulating and radiating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55160529A JPS5784991A (en) 1980-11-13 1980-11-13 Heat accumulating and radiating device

Publications (2)

Publication Number Publication Date
JPS5784991A JPS5784991A (en) 1982-05-27
JPS6256408B2 true JPS6256408B2 (en) 1987-11-25

Family

ID=15716930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55160529A Granted JPS5784991A (en) 1980-11-13 1980-11-13 Heat accumulating and radiating device

Country Status (1)

Country Link
JP (1) JPS5784991A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6463753A (en) * 1987-09-04 1989-03-09 Hokkaido Prefecture Radiation and heat storage type space heater
JP5550116B2 (en) * 2010-09-29 2014-07-16 Necアクセステクニカ株式会社 Electronic device, device heat dissipation system, and device heat dissipation method used therefor
GB2506354A (en) * 2012-09-26 2014-04-02 Tbs Building Supplies Ltd Thermal store with conductive thermal switch
CN107246640B (en) * 2017-07-18 2022-12-02 苏州灵均暖通科技有限公司 Flexible and variable heat transfer long-life dry floor heating module and manufacturing method thereof

Also Published As

Publication number Publication date
JPS5784991A (en) 1982-05-27

Similar Documents

Publication Publication Date Title
US3356828A (en) Electrically heated heat storage apparatus
CA2356728C (en) Heat storage type heater and method of controlling input and output of heat of the same
US10487496B2 (en) Reflective temperature modulating blanket and architecture
US10179995B2 (en) Reflective temperature modulating blanket
JPS6256408B2 (en)
US20050281547A1 (en) Surface heating system
JPH0633633B2 (en) Heat storage building materials
CN210601843U (en) Heat storage type electric heater
JPS5824716B2 (en) Hot water boiler
JP2566445B2 (en) Thermal storage with built-in trigger
JPS6314253B2 (en)
JP2004232897A (en) Complex heat storage device
JPH03113212A (en) Heat storage type floor heater
JPH0643619Y2 (en) Midnight electric power regenerative heating system
JPH09101042A (en) Floor heating structure
CN216814318U (en) Blackboard capable of storing heat and supplying heat
JP3055218B2 (en) Heat storage floor heating system
JPH04187A (en) Heat supply and storage method to latent heat storage material
JPS61282731A (en) Interior heating method
JPH01203827A (en) Space heating device
JPS6313672Y2 (en)
JPH028632A (en) Thermal accumulation type floor heating device
JP2002276963A (en) Floor-heating apparatus and its operation method
JP3617274B2 (en) Floor heating panel
JPH03227800A (en) Temperature control device of lunar vehicle