JPS6256381A - Method of joining metal member to ceramic member - Google Patents

Method of joining metal member to ceramic member

Info

Publication number
JPS6256381A
JPS6256381A JP19655785A JP19655785A JPS6256381A JP S6256381 A JPS6256381 A JP S6256381A JP 19655785 A JP19655785 A JP 19655785A JP 19655785 A JP19655785 A JP 19655785A JP S6256381 A JPS6256381 A JP S6256381A
Authority
JP
Japan
Prior art keywords
thermal stress
metal member
ceramic member
ceramic
joining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP19655785A
Other languages
Japanese (ja)
Inventor
民夫 篠沢
正宏 小川
典明 西野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP19655785A priority Critical patent/JPS6256381A/en
Publication of JPS6256381A publication Critical patent/JPS6256381A/en
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Standing Axle, Rod, Or Tube Structures Coupled By Welding, Adhesion, Or Deposition (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はセラミック部材に熱応力緩衝材を介して金属部
材を接合する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for joining a metal member to a ceramic member via a thermal stress buffer.

この接合方法は、例えば自動車のカムシャフトにバンド
を接合したり、ガスタービンのシャフトを他のシャフト
に接合する際等に適用することができる。
This joining method can be applied, for example, to joining a band to an automobile camshaft or joining a gas turbine shaft to another shaft.

〔従来の技術〕[Conventional technology]

セラミックスの有する耐熱性、断熱性等の特性を活かし
つつ、セラミックスの欠点とされる靭性等を補うため、
あるいはセラミックスと金属の双方の長所を活かすため
に、セラミックスに金属部材を接合する技術が種々検討
されている。
In order to take advantage of the properties of ceramics such as heat resistance and heat insulation, and to compensate for the weaknesses of ceramics such as toughness,
Alternatively, in order to take advantage of the advantages of both ceramics and metals, various techniques for joining metal members to ceramics have been studied.

しかしながら、セラミックスと金属では、その熱膨張係
数が大きく異なるため(通常1オ一ダー程度)、セラミ
ック部材と金属部材を接合すると接合部に大きな熱応力
が発生し、セラミック部材にクラック(亀裂)を生じる
ことがある。そこで、セラミック部材と金属部材を接合
する際には、この熱応力を緩和するため、熱応力緩衝材
(バッファ)としてセラミック部材と金属部材の間に軟
質金属部材を介在させる方法が採られている。
However, since the thermal expansion coefficients of ceramics and metals are significantly different (usually about 1 order of magnitude), joining ceramic and metal components generates large thermal stress at the joint, which can cause cracks in the ceramic component. This may occur. Therefore, when joining a ceramic member and a metal member, in order to alleviate this thermal stress, a method is adopted in which a soft metal member is interposed between the ceramic member and the metal member as a thermal stress buffer. .

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記の如く、セラミック部材と金属部材の間に熱応力緩
衝材を介在させることにより、熱応力に起因するクラン
クは大幅に改善される。
As described above, by interposing the thermal stress buffer material between the ceramic member and the metal member, cranking caused by thermal stress can be significantly improved.

しかしながら、接合後、接合部材に剪断力が掛かると、
熱応力緩衝材として軟質金属を用いた場合、容易に変形
し、接合部に曲げ応力が作用し易くなる。このため、接
合部端面に曲げ引張力が作用し、比較的低い荷重でセラ
ミック部材にクラックが発生し破損に到ることがある。
However, if shearing force is applied to the joined members after joining,
When a soft metal is used as a thermal stress buffer, it easily deforms and bending stress tends to act on the joint. Therefore, a bending tensile force acts on the end face of the joint, and even with a relatively low load, cracks may occur in the ceramic member, leading to damage.

そこで、熱応力緩衝材を使用する利点を活かしつつ、剪
断力が作用しても容易にセラミック部材が破損しないよ
うにする工夫が望まれていた。
Therefore, there has been a need for a device that takes advantage of the advantages of using a thermal stress buffer while preventing the ceramic member from being easily damaged even when shearing force is applied.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題は、次に述べる本発明のセラミック部材への金
属部材の接合方法によって解決される。
The above problem is solved by the following method of joining a metal member to a ceramic member of the present invention.

即ち、本発明は、セラミック部材に熱応力緩衝材を介し
て金属部材を接合する方法であって、前記セラミック部
材と熱応力緩衝材との接合面積を熱応力緩衝材と金属部
材との接合面積より大きくすると共に、セラミック部材
と熱応力緩衝材との接合面に対する熱応力緩衝材の端面
の角度を90度以上としたことを特徴としている。
That is, the present invention is a method for joining a metal member to a ceramic member via a thermal stress buffer, in which the bonding area between the ceramic member and the thermal stress buffer is defined as the bonding area between the thermal stress buffer and the metal member. It is characterized in that it is made larger and the angle of the end face of the thermal stress buffering material with respect to the joint surface of the ceramic member and the thermal stress buffering material is 90 degrees or more.

本発明においては、熱応力緩衝材として通常使用されて
いる軟質金属、例えば銅、ニッケル等を用いることがで
きる。このセラミック部材と熱応力緩衝材と金属部材は
、それぞれろう材等で接合される。
In the present invention, soft metals commonly used as thermal stress buffering materials, such as copper and nickel, can be used. The ceramic member, the thermal stress buffer material, and the metal member are each joined using a brazing material or the like.

〔作用〕[Effect]

本発明によれば、セラミック部材と熱応力緩衝材との接
合面積を熱応力緩衝材と金属部材との接合面積より大き
くしたため、セラミック部材の単位面積当りに作用する
荷重が従来より低減される。
According to the present invention, since the bonding area between the ceramic member and the thermal stress buffering material is made larger than the bonding area between the thermal stress buffering material and the metal member, the load acting per unit area of the ceramic member is reduced compared to the conventional method.

また、セラミック部材と熱応力緩衝材との接合面に対す
る熱応力緩衝材の端面の角度を90度以上としたことに
より、剪断力等に起因して接合部の端面に働く引張力が
発生しにくくなる。
In addition, by setting the angle of the end face of the thermal stress buffering material to the joint surface of the ceramic member and the thermal stress buffering material to be 90 degrees or more, it is difficult to generate tensile force acting on the end face of the joint due to shearing force etc. Become.

この結果、セラミック部材と金属部材の接合強度が大幅
に向上する。
As a result, the bonding strength between the ceramic member and the metal member is significantly improved.

〔実施例〕〔Example〕

次に、本発明の実施例を図面を参考にして説明する。 Next, embodiments of the present invention will be described with reference to the drawings.

(第1実施例) 第1実施例を第1図を参考にして説明する。(First example) A first embodiment will be described with reference to FIG.

ここで、第1図は本発明の第1実施例に係るセラミック
部材と金属部材の接合方法の概要を示す概略構成図であ
る。
Here, FIG. 1 is a schematic configuration diagram showing an outline of a method for joining a ceramic member and a metal member according to a first embodiment of the present invention.

窒化珪素(St、lN4)からなる直方体形状(4Qm
x 16mX 10鶴)のセラミック部材1と、銅から
なる直方体形状(16mX 10w1X 2111)の
熱応力緩衝材2と、炭素w4(S20)からなる直方体
形状(25flX 16鶴XIQwm)の金属部材3を
準備した。そして、第1図に示すように、このセラミッ
ク部材1と熱応力緩衝材2と金属部材3を重ね合わせ、
これらの間にCuTiろう材4を介在させる。このとき
、CuTiろう材4は、セラミック部材1と熱応力緩衝
材2の間には16wXIQmの範囲が濡れるように設置
し、熱応力緩衝材2と金属部材3の間は3 鰭X 5 
mmが濡れるように設置した。また、セラミック部材l
と熱応力緩衝材2の接合面に対する熱応力緩衝材2の端
面の角度は90度である。これら全体を真空炉内に入れ
、真空中で930℃で1時間加熱した後、徐冷した。
A rectangular parallelepiped (4Qm) made of silicon nitride (St, lN4)
Prepare a ceramic member 1 of x 16 m x 10 cranes), a rectangular parallelepiped thermal stress buffer material 2 made of copper (16 m x 10 w 1 x 2111), and a rectangular parallelepiped metal member 3 of carbon w4 (S20) (25 fl x 16 cranes XIQwm). did. Then, as shown in FIG. 1, this ceramic member 1, thermal stress buffer material 2, and metal member 3 are stacked,
A CuTi brazing material 4 is interposed between these. At this time, the CuTi brazing material 4 is installed so that it wets an area of 16wXIQm between the ceramic member 1 and the thermal stress buffer material 2, and the area between the thermal stress buffer material 2 and the metal member 3 is 3 fins x 5.
It was installed so that 1.2 mm of water was wet. In addition, ceramic members
The angle of the end face of the thermal stress buffering material 2 with respect to the joint surface of the thermal stress buffering material 2 is 90 degrees. The whole was placed in a vacuum furnace, heated in vacuum at 930° C. for 1 hour, and then slowly cooled.

この結果得られた金属部材付セラミック部材の接合強度
を調べた。即ち、金属部材3に熱応力緩衝材2の接合面
と平行に荷重を掛け、剪断強度を調べた。この結果、剪
断強度は21ksr/m”であった。このとき、接合面
には異常はなく、熱応力緩衝材2が接合しているセラミ
ック部材1の一部が破損した。
The bonding strength of the ceramic member with metal member obtained as a result was investigated. That is, a load was applied to the metal member 3 parallel to the joint surface of the thermal stress buffer material 2, and the shear strength was examined. As a result, the shear strength was 21 ksr/m''. At this time, there was no abnormality on the bonded surface, but a part of the ceramic member 1 to which the thermal stress buffer material 2 was bonded was damaged.

(第2実施例) 第2実施例を第1図を参考にして説明する。(Second example) A second embodiment will be described with reference to FIG.

ここで、第1図は本発明の第2実施例に係るセラミック
部材と金属部材の接合方法の概要を示す概略構成図であ
る。
Here, FIG. 1 is a schematic configuration diagram showing an outline of a method for joining a ceramic member and a metal member according to a second embodiment of the present invention.

第2実施例において、第1実施例と異なる点は、第2図
に示すように、熱応力緩衝材2を第1実施例より大きく
すると共に、セラミック部材1と熱応力緩衝材2の接合
面積は第1実施例と同じとしたことにより、セラミック
部材1と熱応力緩衝材2の接合面に対する熱応力緩衝材
2の端面の角度を180度としたこと、および熱応力緩
衝材2と金属部材3との接合面積を15mX10++n
として第1実施例より大きくしたことにあり、他は実質
的に第1実施例と同様にしてセラミック部材1に熱応力
緩衝材2を介して金属部材3を接合した。
The second embodiment differs from the first embodiment in that, as shown in FIG. is the same as in the first embodiment, the angle of the end face of the thermal stress buffering material 2 with respect to the joint surface of the ceramic member 1 and the thermal stress buffering material 2 is set to 180 degrees, and the angle of the end surface of the thermal stress buffering material 2 and the metal member The joint area with 3 is 15m x 10++n
The metal member 3 was joined to the ceramic member 1 via the thermal stress buffering material 2 in substantially the same manner as in the first example except that the structure was made larger than that of the first embodiment.

この結果得られた金属部材付セラミック部材の剪断強度
を調べたところ、’13kg/m”であった。
The shear strength of the resulting ceramic member with metal member was examined and found to be 13 kg/m.

(第3実施例) 第3実施例を第3図を参考にして説明する。(Third example) A third embodiment will be described with reference to FIG.

ここで、第3図は本発明の第3実施例に係るセラミック
部材と金属部材の接合方法の概要を示す概略構成図であ
る。
Here, FIG. 3 is a schematic configuration diagram showing an outline of a method for joining a ceramic member and a metal member according to a third embodiment of the present invention.

第3実施例において、第1実施例と異なる点は、第3図
に示すように、熱応力緩衝材2を第1実施例より大きく
して両端面を下方に延在させてセラミック部材1を挟持
すると共に、セラミック部材1と熱応力緩衝材2の接合
面積は第1実施例と同じとしたことにより、セラミック
部材1と熱応力緩衝材2の接合面に対する熱応力緩衝材
2の端面の角度を270度としたこと、および熱応力緩
衝材2と金属部材3との接合面積を15wX10flと
して第1実施例より大きくしたことにあり、他は実質的
に第1実施例と同様にしてセラミック部材1に熱応力緩
衝材2を介して金属部材3を接合した。
The third embodiment differs from the first embodiment in that, as shown in FIG. By sandwiching the ceramic member 1 and the thermal stress buffering material 2 and making the bonding area the same as in the first embodiment, the angle of the end surface of the thermal stress buffering material 2 with respect to the bonding surface of the ceramic member 1 and the thermal stress buffering material 2 can be adjusted. was set to 270 degrees, and the bonding area between the thermal stress buffer material 2 and the metal member 3 was 15w x 10fl, which was larger than that of the first embodiment. A metal member 3 was joined to 1 with a thermal stress buffer material 2 interposed therebetween.

この結果得られた金属部材付セラミック部材の剪断強度
を調べたところ、20kg/1m”であった。
The shear strength of the resulting ceramic member with metal member was examined and found to be 20 kg/1 m''.

(第1比較例)− 第1比較例を第4図を参考にして説明する。(First comparative example) - A first comparative example will be explained with reference to FIG.

ここで、第4図は本発明の第1比較例に係るセラミック
部材と金属部材の接合方法の概要を示す概略構成図であ
る。
Here, FIG. 4 is a schematic configuration diagram showing an outline of a method for joining a ceramic member and a metal member according to a first comparative example of the present invention.

第1比較例において、第1実施例と異なる点は、第4図
に示すように、熱応力緩衝材2と金属部材3の接合面積
を16WX101111として、セラミック部材1と熱
応力緩衝材2の接合面積と同じとしたことにあり、他は
実質的に第1実施例と同様にしてセラミック部材1に熱
応力緩衝材2を介して金属部材3を接合した。
In the first comparative example, the difference from the first example is that, as shown in FIG. The metal member 3 was joined to the ceramic member 1 via the thermal stress buffering material 2 in substantially the same manner as in the first embodiment except that the area was the same.

この結果得られた金属部材付セラミック部材の剪断強度
を調べたところ、5kg/m”〜16kg/鶴2であつ
た。
When the shear strength of the resulting ceramic member with metal member was examined, it was 5 kg/m'' to 16 kg/Tsuru2.

(第2比較例) 第2比較例を第5図を参考にして説明する。(Second comparative example) A second comparative example will be explained with reference to FIG.

ここで、第5図は本発明の第2比較例に係るセラミック
部材と金属部材の接合方法の概要を示す概略構成図であ
る。
Here, FIG. 5 is a schematic configuration diagram showing an outline of a method for joining a ceramic member and a metal member according to a second comparative example of the present invention.

第2比較例において、第1実施例と異なる点は、第5図
に示すように、熱応力緩衝材2と金属部材3の接合面積
を10m+*X10mmとしたこと、およびセラミック
部材1と熱応力緩衝材2の接合面に対する熱応力緩衝材
2の端面の角度を40度としたことにあり、他は実質的
に第1実施例と同様にしてセラミック部材1に熱応力緩
衝材2を介して金属部材3を接合した。
The second comparative example differs from the first example in that, as shown in FIG. The angle of the end face of the thermal stress buffer material 2 with respect to the bonding surface of the buffer material 2 is set to 40 degrees, and the other parts are substantially the same as in the first embodiment. The metal member 3 was joined.

この結果得られた金属部材付セラミック部材の剪断強度
を調べたところ、6.7kg/w”であった。
The shear strength of the resulting ceramic member with metal member was examined and found to be 6.7 kg/w''.

以上の実施例と比較例から明らかなように、セラミック
部材と熱応力緩衝材との接合面積を熱応力緩衝材と金属
部材との接合面積より大きくすると共に、セラミック部
材と熱応力緩衝材との接合面に対する熱応力緩衝材の端
面の角度を90度以上とすることにより、セラミック部
材と金属部材の接合強度が大幅に向上していることが判
る。
As is clear from the above examples and comparative examples, the bonding area between the ceramic member and the thermal stress buffering material is made larger than the bonding area between the thermal stress buffering material and the metal member, and the bonding area between the ceramic member and the thermal stress buffering material is It can be seen that by setting the angle of the end face of the thermal stress buffer material to the joint surface to be 90 degrees or more, the joint strength between the ceramic member and the metal member is significantly improved.

以上、本発明の特定の実施例について説明したが、本発
明は上記実施例に限定されるものではな(、特許請求の
範囲内において種々の実施態様を包含するものである。
Although specific embodiments of the present invention have been described above, the present invention is not limited to the above embodiments (and includes various embodiments within the scope of the claims).

〔発明の効果〕〔Effect of the invention〕

以上より、本発明のセラミック部材への金属部材の接合
方法によれば、以下の効果を奏する。
As described above, according to the method of joining a metal member to a ceramic member of the present invention, the following effects are achieved.

(イ)セラミック部材と金属部材の接合強度が大幅に向
上する。
(b) The bonding strength between the ceramic member and the metal member is significantly improved.

(ロ)従来から使用している熱応力緩衝材をそのまま流
用できるため、適用が比較的容易である。
(b) It is relatively easy to apply because the thermal stress buffering material used in the past can be used as is.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1実施例に係るセラミック部材と金
属部材の接合方法の概要を示す概略構成図、 第2図は本発明の第2実施例に係るセラミ7り部材と金
属部材の接合方法の概要を示す概略構成図、 第3図は本発明の第3実施例に係るセラミック部材と金
属部材の接合方法の概要を示す概略構成図、 第4図は第1比較例に係るセラミック部材と金属部材の
接合方法の概要を示す概略構成図、第5図は第2比較例
に係るセラミック部材と金属部材の接合方法の概要を示
す概略構成図である。 1・・・・−・セラミック部材 2−−−−−−一熱応力緩衝材 3・−−−−−一−・金属部材 4−−−一−・・CuTiろう材 出願人  トヨタ自勧車株式会社 第1図 第2図 第3図
FIG. 1 is a schematic configuration diagram showing an outline of a method for joining a ceramic member and a metal member according to a first embodiment of the present invention, and FIG. FIG. 3 is a schematic diagram showing the outline of the method for joining a ceramic member and metal member according to the third embodiment of the present invention; FIG. 4 is a diagram showing the outline of the method for joining the ceramic member and metal member according to the third embodiment of the present invention; FIG. 5 is a schematic configuration diagram showing an outline of a method for joining a ceramic member and a metal member according to a second comparative example. 1...Ceramic member 2-----1 Thermal stress buffer material 3-----1--Metal member 4---1--CuTi brazing material Applicant: Toyota Motor Corporation Co., Ltd. Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] (1)セラミック部材に熱応力緩衝材を介して金属部材
を接合する方法であって、 前記セラミック部材と熱応力緩衝材との接合面積を熱応
力緩衝材と金属部材との接合面積より大きくすると共に
、セラミック部材と熱応力緩衝材との接合面に対する熱
応力緩衝材の端面の角度を90度以上としたことを特徴
とするセラミック部材への金属部材の接合方法。
(1) A method of joining a metal member to a ceramic member via a thermal stress buffer, the bonding area of the ceramic member and the thermal stress buffer being larger than the bonding area of the thermal stress buffer and the metal member. Also, a method for joining a metal member to a ceramic member, characterized in that the angle of the end face of the thermal stress buffer with respect to the joining surface of the ceramic member and the thermal stress buffer is 90 degrees or more.
JP19655785A 1985-09-05 1985-09-05 Method of joining metal member to ceramic member Expired - Lifetime JPS6256381A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19655785A JPS6256381A (en) 1985-09-05 1985-09-05 Method of joining metal member to ceramic member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19655785A JPS6256381A (en) 1985-09-05 1985-09-05 Method of joining metal member to ceramic member

Publications (1)

Publication Number Publication Date
JPS6256381A true JPS6256381A (en) 1987-03-12

Family

ID=16359712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19655785A Expired - Lifetime JPS6256381A (en) 1985-09-05 1985-09-05 Method of joining metal member to ceramic member

Country Status (1)

Country Link
JP (1) JPS6256381A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01290569A (en) * 1988-05-16 1989-11-22 Seiko Instr Inc Bonding method
WO2001032584A1 (en) * 1999-11-01 2001-05-10 Mitsubishi Denki Kabushiki Kaisha Joining method for ceramics and metal and joined body of ceramics and metal joined by the method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01290569A (en) * 1988-05-16 1989-11-22 Seiko Instr Inc Bonding method
WO2001032584A1 (en) * 1999-11-01 2001-05-10 Mitsubishi Denki Kabushiki Kaisha Joining method for ceramics and metal and joined body of ceramics and metal joined by the method

Similar Documents

Publication Publication Date Title
US5654586A (en) Power semiconductor component having a buffer layer
JP2528718B2 (en) How to join ceramics and metal
JPH0788262B2 (en) Method for joining silicon nitride and metal
JPS6256381A (en) Method of joining metal member to ceramic member
JPH0777989B2 (en) Method for manufacturing ceramic-metal bonded body
JPS61127674A (en) Structure of bonding ceramic and metal
JPS6287469A (en) Method of bonding ceramic member to metal member
JPS62204936A (en) Composite material consisting of graphite and metal
JPH0328391B2 (en)
JPS60246276A (en) Composite body of ceramic and metal
JPS61136969A (en) Method of bonding sialon and metal
JPS62143881A (en) Method of joining ceramics
JPS59197393A (en) Adhesion of ceramic parts
JPS62202732A (en) Composite material consisting of graphite and copper or copper alloy
JPS61127675A (en) Structure of bonding ceramic and metal
JPS62252376A (en) Method of joining alumina ceramic and copper plate
JPS5913678A (en) Joint mechanism of ceramic shaft and metal shaft
JPS61275173A (en) Method of joining silicon nitride base sintered body to low thermal expansion coefficient heat-resistant alloy steel
JPS632865A (en) Method of joining ceramic to metal
JPS6158869A (en) Method of bonding ceramics
JPS61117169A (en) Structure of bonding ceramic and metal
JPS61155268A (en) Diffusion bonding method
JPS61247666A (en) Method of joining non-oxide ceramic and metal
JPH07211831A (en) Multi chip module
JPS63139077A (en) Method of joining different kind materials of different thermal expansion coefficient

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term