JPS6256136B2 - - Google Patents

Info

Publication number
JPS6256136B2
JPS6256136B2 JP54142152A JP14215279A JPS6256136B2 JP S6256136 B2 JPS6256136 B2 JP S6256136B2 JP 54142152 A JP54142152 A JP 54142152A JP 14215279 A JP14215279 A JP 14215279A JP S6256136 B2 JPS6256136 B2 JP S6256136B2
Authority
JP
Japan
Prior art keywords
antitumor
antibody
tumor
substance
antibodies
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54142152A
Other languages
Japanese (ja)
Other versions
JPS5665828A (en
Inventor
Chikao Yoshikumi
Takami Fujii
Masahiko Fujii
Kenichi Matsunaga
Yoshiharu Oguchi
Koichi Niimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kureha Corp
Original Assignee
Kureha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kureha Corp filed Critical Kureha Corp
Priority to JP14215279A priority Critical patent/JPS5665828A/en
Priority to US06/103,474 priority patent/US4315851A/en
Priority to SE7910483A priority patent/SE7910483L/en
Priority to PH23447A priority patent/PH16902A/en
Priority to GB7944494A priority patent/GB2038836B/en
Priority to CH11501/79A priority patent/CH655010A5/en
Priority to FR797932054A priority patent/FR2445149B1/en
Priority to DE2952690A priority patent/DE2952690C2/en
Priority to IT28464/79A priority patent/IT1127324B/en
Publication of JPS5665828A publication Critical patent/JPS5665828A/en
Priority to US06/321,486 priority patent/US4401592A/en
Priority to SE8406510A priority patent/SE8406510L/en
Priority to SE8406511A priority patent/SE8406511L/en
Publication of JPS6256136B2 publication Critical patent/JPS6256136B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Description

【発明の詳細な説明】 本発明は、新規抗腫瘍剤に関し、更に詳しく
は、腫瘍抗原に対する抗体をアフイニテイクロマ
トグラフイーにより精製したものに抗腫瘍性アル
キル化剤又はアミノ基又はカルボキシル基を導入
した抗腫瘍性アルキル化剤をアミド結合させた物
質を有効成分として含有する抗腫瘍剤に関する。 本発明者はさきにマイトマイシンC、塩酸ドキ
ソルビシン、ブレオマイシン、ダウノルビシン、
アクチノマイシンおよびザルコマイシンのごとき
抗生物質の抗腫瘍剤を腫瘍抗体に結合してなる物
質を有効成分とする抗腫瘍剤を発明した(特願昭
53−161388参照)。 しかし、上記抗生物質系の抗腫瘍剤は主として
微生物により生産される物質であつて構造が複雑
であるため、これを腫瘍抗体と結合させて抗腫瘍
性物質を製造するうえで最適のものとは言えな
い。 本発明者は更に研究した結果、クロラムブチ
ル、メルフアラン、、ACNU、ウラムスチン、シ
クロホスフアミドのごときアルキル化剤系の物質
が腫瘍抗体と結合させて抗腫瘍性物質を製造する
のに適している事を見いだし本発明をなすに至つ
た。本発明は、細胞毒性の高い上掲の抗腫瘍性ア
ルキル化剤を、極めて穏和な条件下で腫瘍抗原に
対する抗体とアミド結合(−NHCO−)によつて
結合させた新規な物質を有効成分とする抗腫瘍剤
に係るものであつて、抗腫瘍効果にすぐれながら
細胞毒性は、出発物質の1つである上記抗腫瘍性
アルキル化剤にくらべて格段に低い抗腫瘍剤を提
供することを目的とする。 さらに、本発明は腫瘍抗原に対する抗体自身の
精製手段およびかかる精製抗体をアミノ基又はカ
ルボキシル基を有する上記の抗腫瘍性アルキル化
剤及びアミノ基又は、カルボキシル基を導入した
上記の抗腫瘍性アルキル化剤にアミド結合(−
NHCO−)によつて結合させることからなる上記
の物質を有効成分とする抗腫瘍剤を製造する方法
を提供することを目的とする。 近年、種々の抗腫瘍剤が広く使用されており、
或る程度の効果をあげている。これらの抗腫瘍剤
としてクロラムブチル、メルフアラン、ACNU、
ウラムスチン、シクロホスフアミドのごときアル
キル化剤も使用されているが、これらの物質はそ
れ自体何れも高い細胞毒性を有していて、投与し
た時に白血球減少、脱毛、胃腸障害等の副作用を
呈することが知られており、その為にこれら薬剤
の使用に限度のあるのが実情である。 また、従来からある種の腫瘍抗原に対する抗体
を製造または単離してこれをその腫瘍の治療に用
いる試みがなされているが、望ましい抗腫瘍効果
は得られていない。さらに、最近腫瘍抗体に抗腫
瘍剤を化学的に結合させて得られる新規な物質に
よる抗腫瘍効果を期待することが提案されている
が、上記物質を得るための化学反応の条件が過酷
すぎるために十分な成果は得られていない。また
これらの実験で用いられる抗体は、免疫グロブリ
ン画分までの精製しか行なわれていないので、一
般の免疫グロブリンを含有していて、真の意味で
は、腫瘍抗体とは認め難い。そして抗体が一般の
免疫グロブリンの為に、上記物質を投与された生
体に正常組織の障害や全身痙攣または、硬直など
のアナフイラキシーシヨツクの生ずる事が多い。
本発明は、動物に接種した腫瘍の抗原に対する抗
体を含む抗血清を採取し、この中の免疫グロブリ
ン画分を分取し、これを更に、特異な手段で精製
することによつて、より純粋な腫瘍抗体を先ず、
単離し、これを抗腫瘍性アルキル化剤と結合させ
ることにより、穏和な反応条件下で製造でき、か
つ上述のごときアナフイラキシーシヨツクを生じ
ない抗腫瘍剤を提供し得るものである。 以下本発明を詳しく説明する。 本発明の有効成分である物質は、抗体および抗
腫瘍性アルキル化剤の両者に元来存在しているア
ミノ基又はカルボキシル基を穏和な反応条件下に
反応せしめるが、或は上記アルキル化剤にさらに
アミノ基又はカルボキシル基を導入したものを抗
体と反応させることにより得られる。 本物質の製造に用いる抗腫瘍性アルキル化剤と
してはクロラムブチル、メルフアラン、ACNU、
ウラムスチンならびにシクロホスフアミドが好ま
しい。 なお、これらのアルキル化剤の名称は一般名で
あつて、構造式は次のとおりである。 クロラムブチル: メルフアラン: ACNU: ウラムスチン: シクロホスフアミド: また、本物質の出発物質の1つである抗体とし
ては治療を目的とする腫瘍の抗体が用いられる。
腫瘍としてはザルコーマ180、左藤肺癌、吉田肉
腫、エーリツヒ癌、L−1210白血病、急性リンパ
性白血病、骨髄癌、慢性リンパ性白血病、悪性リ
ンパ腫、卵巣癌、乳癌、肉腫、白血病、癌腫など
の各種の腫瘍があげられる。 本発明で用いる抗体の製造は日本免疫学会総会
記録第6巻198頁(1976年)記載の方法により、
又はDauphin、M.J.らの方法〔J.Immunol.113
948(1974)〕に準じて行なう。前者はフロイント
のコンブリートアジユバンド(Complete
Ajuvant)を用い先ず腫瘍細胞を動物に皮下注射
することによつて、これを免疫し、更に続けて腫
瘍細胞を静脈内に注射することにより追加免疫し
てこれから抗体を得る方法であり、後者は、腫瘍
抗原を動物の腹腔内に3〜4回反復投与して、動
物を免疫して、これから抗体を得る方法である。 なお、本発明で用いる抗体は同種抗体、異種抗
体のいずれでもよいが、同種抗体が好ましい。 このようにして得た抗体は、アフイニテイクロ
マトグラフイーにおけるカラムの充填剤に治療の
目的の腫瘍抗原を先ずブロムシアンを用いて結合
せしめておいて、これをカラムに充填し、カラム
に免疫グロブリン画分まで精製した抗体の溶液を
流入させる。かくてカラム中で、抗原と抗体とを
結合させた後に、特殊な溶剤をカラムに流入して
抗原・抗体結合を解かして、抗体のみを溶出さ
せ、更に、これを透析して精製抗体水溶液を得
る。即ち、かくて得られた抗体は、従来の免疫グ
ロブリン画分よりも、更に純度の高い抗腫瘍免疫
グロブリンである。 一般に抗体の精製には、硫安塩析とDEAEセル
ロースカラムによるイオン交換クロマトグラフイ
ーを使つて、抗血清から分画を得る方法がしばし
ば用いられる。本発明では、これに加えて、アフ
イニテイクロマトグラフイーを用いて腫瘍細胞に
対する特異的抗体のみを選択的に得る為の特異的
精製操作を行なつた。 アフイニテイクロマトグラフイーは、酵素と基
質、抗体と抗原などのような生体物質相互間に働
く特異的親和力を利用し、一方の生体物質を使つ
て他方を選択的に分離するという原理にもとづく
ものである。 本発明で用いられるアフイニテイクロマトグラ
フイーには、(1)腫瘍細胞から抽出した抗原をセフ
アロース(Shepharose)のごとき担体に(ブロ
ムシアンを用いて)共有結合させ、これをカラム
に充填し、抗体溶液を通して、抗体を抗原に結合
させ、更に十分量の溶媒を流して結合しなかつた
抗体を洗い去つた後、PHのより低い緩衝溶液を流
し入れて、抗体・抗原の結合を解いて、分離した
抗体を溶出させる方法、(2)カラムを用いず、抗原
を結合させた担体と抗体溶液を混合して抗体を抗
原に結合させ、担体粒子を洗浄して結合しなかつ
た抗体を除いた後、抗体を溶離させる方法、およ
び(3)上記で抗原を結合させた担体の代りに、腫瘍
細胞自身を用いる方法を含むが本発明の実施例で
は上記(1)と(3)の方法を採用した。 従つて、アフイニテイクロマトグラフイーによ
つて精製された抗体は従来の免疫グロブリン画分
よりも遥に純度の高い抗腫瘍免疫グロブリン即ち
抗腫瘍抗体である。 このようにして得られた抗体を抗腫瘍性アルキ
ル化剤に結合させるには、アミノ基又はカルボキ
シル基を有する抗腫瘍性アルキル化剤もしくはア
ミノ基又はアミノ基を導入した抗腫瘍性アルキル
化剤と抗体とを水溶性溶媒中に溶解せしめ、これ
にカルボジイミドを触媒として加えて0〜50℃好
ましくは10〜40℃で、10分〜8時間好ましくは30
分〜5時間反応させて酢酸−酢酸ナトリウム緩衝
液などの添加で反応を停止させる。次にこの反応
液中の過剰な抗腫瘍性アルキル化剤、触媒および
上記反応停止液の成分ならびに塩類を除く為に透
析ゲル過ならびに限外過の何れかの操作を行
なうか又はこれらの操作を組み合せた操作を行な
う。 上記反応で触媒として用いるカルボジイミド
は、1−エチル−3−(3−ジメチルアミノプロ
ピル)カルボジイミド、1−シクロヘキシル−3
−(2−モルホリノエチル)カルボジイミド又
は、ジシクロヘキシルカルボジイミドを含む。 抗腫瘍性アルキル化剤に必要によりアミノ基又
はカルボキシル基を導入するには、抗腫瘍剤をそ
のままあるいはNa、K、Agのごとき塩の形体に
して一般式X(CH2)nCOOH(式中XはCl又は
Brを示しnは1、2、又は3の整数を示す)も
しくは一般式HOl・NH2(CH2)nCOX(式中X
はCl又はBrを示し、nは1乃至3の整数を示
す)を有する化合物を水性溶媒、例えばメタノー
ル、水、エタノール、ジメチルスルホキシド、ジ
オキサン中で0〜50℃好ましくは10〜40℃で10分
〜72時間反応させるとよい。ついで得られた反応
生成物から水、アルコール、クロロホルム、ジオ
キサン、等の溶媒を用い再結晶によりアルキル基
又はカルボキシル基が導入された抗腫瘍性アルキ
ル化剤誘導体が得られる。 なお、上記化合物としてはモノクロル酢酸が好
ましい。 本物質は抗体1分子に対して抗腫瘍性アルキル
化剤の1〜10分子が結合したものである。 本物質の哺乳動物に対する急性毒性はマウスを
用い100mg/Kgの静脈投与で調べたが1週間の観
察で死亡が認められなかつた。 したがつて、物質は毒性も低く各種の人癌に対
して有効である。例えば慢性リンパ性白血病、悪
性リンパ腫、骨髄癌、卵巣癌、乳癌、肉腫、白血
病、癌腫等に有効である。 本物質を抗腫瘍剤として用いる場合の製剤化方
法および投与の方法としては抗腫瘍剤に関する公
知の方法を適用し得る。投与方法としては経口、
注射または直腸投与があげられ投与形態としては
粉末、顆粒、錠剤または注射剤、座薬等のいずれ
であつてもよい。 特に注射による投与が好ましい。 注射薬の製剤には生理的食塩水、滅菌水リンゲ
ル液等の水溶性溶剤、非水性溶剤、等張化剤、無
痛化剤、溶解補助剤、安定剤、防腐剤、懸濁化
剤、緩衝剤、乳化剤等を任意に用い得る。 その一例を示すと、物質10mgとマンニトール50
mgを蒸留水に溶解して10mlとして常法で除菌した
後2ml宛を注射用小瓶に分注し、又はそのまま凍
結乾燥して注射剤とする。そして本剤は使用に際
し、生理的食塩水で稀釈して注射液とする。 本物質は製剤化中一般に0.01〜90%好ましくは
0.1〜60%含有することができる。 本物質の投与量は主として症状に左右されるが
成人1人1日当り0.01〜3000mg好ましくは0.1〜
500mgである。 なお、本発明によると、抗体の向腫瘍性と抗腫
瘍性ならびに抗腫瘍剤の抗腫瘍性は失われること
なく上記物質にそのまま保たれているので、本物
質は投与されると効率よく目的とする腫瘍部位に
到達し、抗腫瘍効果を発揮する。従つて本物質が
その成分として含有する抗腫瘍剤の重量を基準と
して考えるならば、同一の抗腫瘍剤そのものの投
与量の1/10〜1/20に相当する重量の抗腫瘍剤を成
分として含有する本物質の投与によつて同程度の
腫瘍増殖抑制が得られ、かつ成分として含有する
抗腫瘍剤による副作用は、同一の抗腫瘍剤そのも
のの投与の場合の1/10〜2/10にすぎないと期待さ
れる。これは本物質の成分それぞれの好ましい性
質の複合効果と云うことができる。 以下本発明を実施例によつて更に詳細に説明す
る。 実施例 1 1−1:アフイニテイクロマトグラフイ(3)を利用
した抗体の調製と精製 DONRYUラツトを用いて継代培養した吉田
肉腫細胞を生理的食塩水に懸濁させて、これに
マイトマイシンC(50μg/ml)を加えて30分
間37℃で処理した後、遠心分離によつて上清を
除き、細胞を0.85%の生理食塩水で3回洗滌し
た。かくして増殖能を失つた吉田肉腫細胞にフ
ロイント(Freund)のコンプリートアジユバ
ント(Complete Ajuvant)(FCAと略す)を
混合し、体重2.9Kgのウサギ足蹠の皮下に1匹
当り細胞108個の割合で注射し、2週間に同様
な方法で注射してウサギを免疫し、更に2週間
後同上の細胞108個をこのウサギの静脈に注射
した。1週間経過後に頚動脈にカニユーレを挿
入して全血を採取し、これより抗血清を分離し
て下記の精製を行つた。即ち、100mlの抗血清
に硫酸アンモニウムを飽和量の20〜30%添加し
て生ずる塩析画分を採取して、これを20mlの水
に再溶解し、この溶液をPH7.0の1mM燐酸塩
緩衝食塩水溶液(PBSと略す)に対して4℃、
72時間透析して脱塩した(この間、24時間毎に
透析外液の交換を行つた)。透析内液に食塩水
で3回洗浄した正常なDONRYUラツトの血球
を等量混合し、4℃で30分放置して吸収を行わ
しめた後、遠心分離して上清を得た。この吸収
操作を更に4回行つて、全部で5回の吸収操作
を加えた。かくて得られた抗体を精製前抗体と
云う(通称IgG)。次いで下記の方法で更に精
製を行つた。即ち上記吸収の済んだ上清に、吉
田肉腫細胞を等量混合し、4℃に30分放置して
吉田肉腫に対する抗体を吉田肉腫腫瘍細胞に結
合させた後、遠心離して上清を除き、沈澱にPH
3.0グリシン−塩酸緩衝液を加えて、抗体を遊
離せしめ、この混合物を遠心分離して、抗体を
含む上清を採取した。上清のPHを0.1M苛性ソ
ーダ水溶液で中性近くに調整した後、PBSに対
して4℃で24時間透析を行つた(8時間毎に透
析外液を交換した)。かくて行われたものがウ
サギの抗吉田田肉腫腫瘍免疫抗体の水溶液であ
る。 1−2:腫瘍細胞および正常細胞に対する障害性
試験(その1) 上記で得たウサギの抗吉田肉腫腫瘍免疫抗体
について補体(モルモツトの血清)存在下の細
胞障害試験を行つた。即ち上記抗体水溶液又は
これを10、100、および1000倍に稀釈したもの
と、吉田肉腫腫瘍細胞浮遊液或いは正常
DONRYUラツト脾細胞浮遊液(何れもイーグ
ル(Eagle)のMinimum Essential Medium
(以下MEMと略す)を溶媒として用い、細胞濃
度は5×106個×mlとした)とを100μ宛混合
し、室温で15分放置して抗体をそれぞれの細胞
に結合せしめた。その後モルモツトの血清をイ
ーグルのMEMで2倍に稀釈し(これを補体と
いう)この100μを、上記の混合液に加え、
37℃で30分培養し、遠心分離して、沈澱をイー
グルのMEMで一1回洗滌し、これにトリパン
ブルー液を加えて、顕微鏡下で上記それぞれの
細胞の死滅の程度を観察した。 その結果は下記の第1表に示すごとく、細胞
の死滅程度(細胞障害活性)を+、++、+++
の3段階に分けて表示する(死滅なしは一で示
す)と抗血清を上記の方法で精製した後に抗体
を取り出したものは、抗血清を精製することな
く抗体を取り出したものにくらべて吉田肉腫細
胞に対する毒性はあまり大きく異らないが、正
常のDONRYUラツト脾細胞に対する毒性は極
めて低く、これを殺すことはなかつた。即ち抗
血清の精製は目的にかなつていることがよく示
される。 【表】 なお、ここで正常細胞の代表として用いた
DONRYUラツトの脾細胞は、脾を摘出した
後、ピンセツトを用いてイーグルのMEM中で
これを細く砕き、200meshのステンレス網を通
過させ、1回MEMで洗滌し、トリス−(ヒドロ
キシルメチル)アミノメタン緩衝0.75%塩化ア
ンモニウム水溶液(PH7.4)3mlを加えて試料
中の赤血球を破壊し更にイーグルのMEMで3
回洗つて得たものである。 1−3:アフイニテイクロマトグラフイー(1)によ
る抗体の精製 腫瘍抗原を結合させたカラムを使用するアフ
イニテイクロマトグラフイを用いて下記に示す
ごとき精製を行つた。先ず抗原自身を下記によ
り精製した。即ちDONRYUラツトを用いて継
代培養した吉田肉腫腫瘍細胞を凍結乾燥し、こ
のもの30gに5mM燐酸カリウム緩衝液で緩衝
した3MKCl溶液(PH7.4)を加えて、抗原の抽
出を20時間行い、抽出液を65000Gで10分間遠
心分離して上清を採取し、更にこの上清を
180000Gで30分間遠心分離して上清を採取し、
蒸溜水に対して4℃で70時間透析した(この間
24時間毎に外液を交換)。透析後更に65000Gで
透析液を遠心分離して沈澱を除き、上清に硫酸
アンモニウムを加えて2Mの濃度にしてから、
65000Gで10分間遠心分離して沈澱を採取し
た。この沈澱を蒸溜水に溶解し、この溶液を蒸
溜水に対して72時間透析した(この間、24時間
毎に外液を交換した)。 かくして得た吉田肉腫腫瘍抗原を用いて、ア
フイニテイクロマトグラフイー用カラムを下記
のごとく作製した。 先ず、アガロースゲル(Seharose4B;
Pharmacia Japan Co Ltdの製品)を水で膨潤
させて20mlとし、これに、1g/mlのブロムシ
アン水溶液20mlを加えて、PHを11.0に保ちつつ
両者を8分間反応させてから反応物をガラス
斗で過し、沈澱を斗上で氷冷した蒸溜水、
次に氷冷した0.5M炭酸水素ナトリウム水溶液
で洗滌した後、直ちに0.1M炭酸水素ナトリウ
ム水溶液に懸濁させ、これに上述した精製抗原
水溶液を添加し、室温で1夜撹拌しながら反応
せしめた。生成物をガラス斗で過し、先づ
0.1M炭酸水素ナトリウム水溶液、次いで蒸溜
水、最後に燦酸塩緩衝食塩水溶液(0.85%、PH
7.0)で洗滌した。 この洗滌した反応生成物を内径13mm高さ15cm
のガラス管に充填してアフイニテイクロマトグ
ラフイ用カラムとした。このカラムに前記1−
1の操作(ただし吉田肉腫腫瘍細胞との結合に
よる操作は省略)で作成した抗体溶液(IgG)
3mlを流入し、次いで5mM燦酸塩緩衝食塩水
溶液(0.85%、PH7.0)を、カラムの溶出液に
蛋白が検出されなくなる迄流し、次いで、50m
Mのグリシン−塩酸緩衝水溶液(PH4.0)を添
加した0.5M食塩水溶液をカラムに流して、溶
出する画分を採取し、これを直ちに炭酸水素ナ
トリウムで中性にして、燐酸緩衝食塩水溶液
(0.85%、PH7.0)に対して72時間透析した(24
時間毎に透析外液を交換した)。かくしてカラ
ムによるアフイニテイクロマトグラフイを用い
て精製した吉田肉腫腫瘍に対する精製抗体水溶
液を得た。 1−4:腫瘍細胞および正常細胞に対す障害性試
験(その2) 上記1−3で得た抗吉田肉腫腫瘍免疫抗体に
ついて1−2と同様な方法で細胞障害性試験を
行つた。結果は下記第2表に示す。 【表】 この結果は、アフイニテイクロマトグラフイ
ーによる抗体の精製によつて抗体の吉田肉腫細
胞への活性が格段に高まり、脾細胞に対する毒
性が低下したことを示すもので、アフイニテイ
クロマトグラフイーによる精製の優秀さを示し
ている。 1−5:抗吉田肉腫抗体と抗腫瘍性アルキル化剤
との結合 前記1−1および1−3で調製し各々の方法
で精製したウサギ抗吉田肉腫抗体とクロラムブ
チル、メルフアラン(フエニル アラニンマス
タード)、ACNU、ウラムスチン、シクロホス
フアミドの各々とを反応せしめて、アミド結合
によるそれぞれの化合物を合成した。 以下その合成例を述べる。 合成例(その1) 抗体とクロラムブチルとの結合反応 1−1で得た精製ウサギ抗吉田肉腫抗体を1ml
の水中に10.0mg含有する水溶液10ml中に40mgのク
ロラムブチルを加えて撹拌下に塩酸で液のPHを
4.75に調節しつつ、1−エチル−3−(3−ジメ
チルアミノプロピル)−カルボジイミド塩酸塩
25.2mgを加えて40分反応を行なつた。次に酢酸−
酢酸ナトリウム緩衝液(PH4.75)20mlの添加で反
応を停止させた。 次いで反応液4℃で72時間、5の蒸溜水に対
して透析(この間、外液を3回交換した)した。
透析内液を濃縮した後にデキストリン誘導体
(Sephadex G−200フアルマシア ジヤパン社
製)を充填した直径3cm高さ65cmのカラムを通し
て反応液中の高分子量物質及び低分子量物質を完
全に分離した。 溶出液を超遠心分機にて40000g×60分遠心分
離した。 上清を−20℃で凍結乾燥して目的物質を得た。
この物質中のタンパク含量は、アルブミンを標準
とした−銅−フオリン法により、アルキル化活性
は、Epsteinの方法(Epstein J.Aval−Chem27
1423(1955)でそれぞれ測定した。 この結果抗体1mgに対してクロラムブチル10μ
g結合していることがわかつた。 合成例(その2) 抗体とメルフアランとの結合反応 1−1で得た精製ウサギ抗吉田肉腫抗体を1ml
の水中に10.0mg含有する水溶液10ml中に41.0mgの
メルフアランを加えて撹拌下に塩酸で液のPHを
4.75に調節しつつ、25.2mgの1−エチル−3−
(3−ジメチルアミノプロピル)−カルボジイミド
塩酸塩を加えて60分間反応させた後、これに酢酸
−酢酸ナトリウム緩衝液(PH4.75)20mlを添加し
て反応を停止させた。次いで反応液を4℃で72時
間5のPBSに対して透析(この間、外液を3回
交換した)した。透析内液を濃縮した後にデキス
トリン誘導体(Sephadex G−200、フアルマシ
ア ジヤパン社製)を充填した直径3cm高さ65cm
のカラムを通して反応液中の高分子量物質及び低
分子物質を完に分離した。 溶出液を超遠心分離機にて40000g×60分遠心
分離した上清を−20℃で凍結乾燥して目的物質を
得た。この物質では抗体1mgにメルフアランが10
μg結合していた。 合成例(その3) 抗体とウラムスチンとの結合反応 1−1で得た精製ウサギ抗吉田肉腫抗体を1ml
の水中に10mg含有する水溶液10ml中に40mgのウラ
ムスチンを加えて撹拌下に塩酸で液のPHを4.75に
調節しつつ1−エチル−3−(3ジメチルアミノ
プロピル)−カルボジイミド塩酸塩25.2mgを加え
て65分反応を行なつた。次に反応生成物に酢酸−
酢酸ナトリウム緩衝液(PH4.75)20mlを添加して
反応を停止させた。 次いで反応液を4℃で72時間、5の蒸溜水に
対して透析(この間、外液を3回交換した)し
た。透析内液を濃縮した後にデキストリン誘導体
(Sephadex G−200フアルマシア ジヤパン社
製)を充填した直径3.0cm高さ65cmのカラムを通
して反応液中の高分子量物質及び低分子量物質を
完全に分離した。 溶出液を超遠心分離機にて40000g×60分遠心
分離した。上清を−20℃で凍結乾燥した。 このようにして得られた物質では抗体1.0mgに
対しウラムスチンはほとんど結合していなかつ
た。そこでウラムスチンにモノクロル酢酸を反応
させてその結合性を高めた。次にその例を述べ
る。 500mgのウラムスチンと139mgのカリウムメトキ
サイドを10mlのメチルアルコールに溶解し、それ
に188mgのモノクロル酢酸を加えて60分室温で撹
拌した。反応終了後、減圧濃縮を行ない残渣とメ
チルアルコール、クロロホルムより再結晶を行な
い、215mg(収率35%)の結晶を得た。この結晶
の分析から、下記の構造を有するウラムススチン
誘導体であることを確認した。 【式】融点200゜付近で分 解 元素分析結果 C% H% N% 計算値 38.70 4.19 13.54 実験値 38.50 4.00 13.30 次に、上述のごとくして得られたウラムスチン
誘導体を本合成例でさきに述べた方法とまつたく
同じ手順で1−1で得た精製ウサギ抗吉田肉腫抗
体を反応させて目的物質を得た。 この物質は抗体1mgに対してウラムスチン誘導
体を10μg含有していた。 合成例(その4) 1−1による抗体とメルフアラン誘導体との反
応 メルフアラン−銀塩200mgを10mlのジメチルス
ルフオキシド(DMSO)に溶解分散させた。 次にモノクロル酢酸100mgを加え64時間光を遮
断して室温で撹拌した。沈澱を除き、80℃の湯上
でDMSO、モノクロール酢酸を減圧除去した。水
を加え低温に冷却することにより白色結晶が析出
した。次に析出物を減圧乾燥した。収率は40%で
あつた。 該メルフアラン誘導体を用い、合成例(その
2)に記載とまつたく同じ手順で1−1による抗
体との結合物質を得た。得られた物質中の抗体1
mgに対しメルフアラン誘導体の結合量は16μgで
あつた。 合成例(その5) 次に1−3で得た精製ウサギ抗吉田肉腫抗体を
用い、前述したと同様な手順で該抗体をクロラム
ブチル、メルフアラン、その誘導体(合成例(そ
の4)参照)ならびにウラムスチン誘導体(合成
例(その3)参照)とそれぞれ反応させた。 得られる各物質は前記合成例により得られた物
質と殆んど同様な結合物質であつた。 実施例 2 2−1:腫瘍細胞に対する抗体の調製と精製 DONRYUラツトを用いて継代培養し、マイ
トマイシンCにて増殖能をなくした腹水型吉田
肉腫細胞107個を1週間毎に4回一匹の
DONRYUラツトの腹腔内に接種し、4回目の
接種後、7日目にラツトを麻酔して開腹し腹部
大静脈から採血し、この血液から抗体を含む抗
血清を調製した。かくて100匹のラツトから70
mlの抗血清を得た。抗血清から抗体の採取およ
び抗体の精製は1−1に準じて行ない、ラツト
の血球による吸収までで停めた。 2−2:アフイニテイクロマトグラフイーによる
抗体の精製 DONRYUラツトを用いて継代培養した吉田
肉腫腫瘍細胞を凍結乾燥し、このもの30gに5
mM燐酸カリウム緩衝液で緩衝した3MKCl溶
液(PH7.4)を加えて抗原の抽出を20時間行な
つた。この抽出液を65000Gで10分間遠心分離
して上清を採取し、更にこの上清を180000Gで
30分遠心分離して上清を採取して、これを蒸溜
水に対し4℃で72時間透析した。(この間、24
時間毎に透析外液を交換した。)かくして得ら
れた吉田肉腫腫瘍抗原によるアフイニテイクロ
マトグラフイーは次のごとく行なつた。 先ず、アガロースゲル(Sepharose4B;
Pharmacia Japan Co、Ltd.の製品)を水で膨
潤させて20mlとし、これに1g/mlのプロムシ
アン水溶液20mlを加えて、PHを11.0に保ちつつ
両者を8分間反応させてから、反応物をガラス
斗で過し、沈澱を斗上で氷冷した蒸溜
水、次に氷冷した0.5M炭酸水素ナトリウム水
溶液で洗滌した後直ちに0.1M炭酸水素ナトリ
ウムに懸濁させ、これに上述した精製抗原水溶
液を添加し、室温で1夜撹拌しながら反応せし
めた。生成物をガラス斗で過し、先づ
0.1M炭酸水素ナトリウム水溶液、次いで蒸留
水、最後に燦酸塩緩衝食塩水(0.85%PH7.0)
で洗滌した。この洗滌した反応生成物を内径13
mm高さ15cmのガラス管に充填してアフイニテイ
クロマトグラフイー用カラムとした。前記2−
1の操作で作つた抗血清(抗体を含む)溶液3
mlの上記のアフイニテイクロマトグラフイ用カ
ラムに流入し、次いで5mM燐酸塩、緩衝食塩
水溶液(0.85%PH7.0)を、カラムの溶出液に
蛋白が検出されなくなるまで流した。次に50m
Mグリシン−塩酸緩衝水溶液(PH4.0)を添加
した0.5M食塩水溶液をカラムに流して溶出す
る画分を採取した。これを直ちに炭酸水素ナト
リウムで中性にして燐酸塩緩衝食塩水溶液
(0.85%PH7.0)に対して72時間透析した。24時
間毎に透析外液を交換した。)かくしてアフイ
ニテイクロマトグラフイーを用いて精製した吉
田肉腫腫瘍細胞に対する抗体水溶液を得た。 2−3:腫瘍細胞および正常細胞に対する障害性
試験 上記2−2で得たラツトの抗吉田肉腫腫瘍免
疫抗体について実施例1と同様な方法で細胞障
害性試験を行なつた。結果は下記第3表に示
す。 【表】 第3表でもわかるように前述と同様アフイニ
テイクロマトグラフイーによつて吉田肉腫細胞
への活性は格段に増大している。 2−4:ラツト抗吉田肉腫抗体と抗腫瘍剤との結
合 2−1および2−2で得たラツト抗吉田肉腫
抗体とクロラムブチルとを前記1−5で述べた
方法とまつたく同様の方法で結合せしめて両者
をアミド基で結合した化合物を得た。同様の方
法を用いてメルフアラン、メルフアラン誘導
体、ウラムスチン誘導体のそれぞれと抗体とを
アミド結合によつて結合した物質を得た。 これらの物質は何れも前記1−5で得た対応
化合物と殆ど同一の物理的・化学的性質を示し
た。 実施例 3 吉田肉腫に対する抗腫瘍効果 DONRYUラツトを用いて継代培養した腹水型
吉田肉腫細胞を、10匹からなる各群の各
DONRYUラツトの腹腔内に1×106個/匹移殖
し、移殖の24時間後から、各種抗体と各種市販抗
腫瘍剤それぞれ単独およびウサギ抗吉田肉腫抗体
と各種市販抗腫瘍剤との結合物およびラツト抗吉
田肉腫抗体と各種市販抗腫瘍剤との結合物のそれ
ぞれの水溶液を1日置に5回、合計で5回、各々
のラツトの腹腔内に注射し、試料投与群の平均生
存日数(T)および対照群の平均生存日数(C)を求
め、延命率(T/C×100)を算出した。 結果を第4表乃至第8表に示す。 【表】 【表】 【表】 【表】 わす。
【表】 【表】 た抗体を表わす。
上記第4〜7表で判るごとく、本化合物の吉田
肉腫に対するラツトの延命率は、有姿では、市販
の抗腫瘍剤の5〜10倍の投与量で、ほぼ市販抗腫
瘍剤の抑制率と等しい。このことは第8表からも
判るごとく、この程度の投与量では抗体自身の腫
瘍抑制力がほとんど現れないことを示すものであ
つて、当然のことである。本化合物の特徴は、本
化合物の成分である市販抗腫瘍剤の投与量と、本
化合物投与による市販抗腫瘍剤成分の投与量を比
較すると当然とするのであつて、後者は前者の1/
10〜1/20に過ぎないのに、殆んど前者と同程度の
腫瘍増殖抑制率を示している。この事は本化合物
の成分の1つである抗体が、他の成分である小量
市販抗腫瘍剤を如何に良く腫瘍部位に到達せしめ
ているかを示すものに外ならず、本発明の着想を
みごとに具体化している。 本物質はこの作用によつて、元来副作用の極度
に高い市販抗腫瘍剤の使用を従来の1/10〜1/20に
低下しながら、かつ従来と同程度の腫瘍増殖抑制
力を発揮するのである。 尚、特記すべきは、腫瘍増殖抑制率の点では抗
体の由来は関係ないが、ウサギを用いて調製、精
製した抗体と市販抗腫瘍剤と結合した物質をラツ
トに投与した場合に、10匹のラツトの内3匹程度
は全身痙攀および硬直などのアナフラキシーシヨ
ツクを呈した。これに対し、ウサギを用いて調製
し、本発明によりアフイニテイクロマトグラフイ
ーで精製した抗体を用いて合成した本物質を投与
した場合には、このようなアナフラキシーシヨツ
クの発生は大いに軽減された。 ラツトを用いて作成・精製した抗体を用いて合
成した物質の場合には、アナフラキシーシヨツク
の発生は極めて稀であつたが、更にこの抗体の精
製をアフイニテイクロマトグラフイーによつて行
つた場合の本物質ではアナフラキシーシヨツクの
発生は全く見られなかつた。 実施例 4 4−1:腫瘍細胞に対する抗体の調製と精製 直腸癌患者(50才男性)から血液50mlを採血
し、この血液から抗体を含む抗血清22mlを得
た。 4−2:アフイニテイクロマトグラフイーによる
抗体の精製 手術時に摘出した患者腫瘍細胞を凍結乾燥
し、これに50mlの5mMリン酸カルシウム緩衝
液で緩衝した3MKCl溶液(PH7.4)を加えて、
抗原の抽出を20時間行なつた。この抽出液を
65000Gで10分間遠心分離して、上清を採取し
て、これを蒸留水に対し4℃で72時間透析した
(この間、24時間毎に透析外液を交換した。)。
かくして得られた患者腫瘍抗原によるアフイニ
テイークロマトグラフイーは次のごとく行なつ
た。 先ず、アガロースゲル(Sepharose4B;
Pharmacia JaPan Co、Ltd.の製品)を水で膨
潤させて20mlとし、これに1g/mlのブロムシ
アン水溶液20mlを加えてPHを11.0に保ちつつ両
者を8分間反応させてから、反応物をガラス
斗で過し、沈澱を斗上で氷冷した蒸留水で
洗滌し、ついで氷冷した0.5M炭酸水素ナトリ
ウム水溶液で洗滌した後、これを直ちに0.1M
炭酸水素ナトリウムに懸濁させ、これに上述し
た精製抗原水溶液を添加し、室温で1夜撹拌し
ながら反応せしめた。得られる反応生成物をガ
ラス斗で過し、先ず0.1M炭酸水素ナトリ
ウム水溶液で、次いて蒸溜水で、最後に燐酸塩
緩衝食塩水(0.85%PH7.0)でそれぞれ洗滌し
た。この洗滌した反応生成物を内径13mm高さ15
cmのガラス管に充填して、アフイニテイクロマ
トグラフイー用カラムとした。次に、上記4−
1で得た抗血清(抗体を含む)溶液3mlを上記
のアフイニテイクロマトグラフイ用カラムに流
入し、次いで5mM燐酸塩緩衝食塩水溶液
(0.85%PH7.0)を、カラムの溶出液に蛋白が検
出されなくなるまで流した。次に50mMグリシ
ン−塩酸緩衝水溶液(PH4.0)を添加した0.5M
食塩水溶液をカラムに流して溶出する画分を採
取した。これを直ちに炭酸水素ナトリウムで中
性にして燐酸塩緩衝食塩水溶液(0.85%PH
7.0)に対して72時間透析した。(24時間毎に透
析外液を交換した。)かくしてアフイニテイク
ロマトグラフイーを用いて精製した患者腫瘍に
対する抗体水溶液を得た。 このようにして得た抗体は、水に可溶でメタ
ノール、エタノール、アセトン、ベンゼンのご
とき有機溶媒には不溶であつた。この精製抗体
は添附図の第1図ならびに第2図に示すような
赤外線吸収スペクトルと、紫外線吸収スペクト
ルを示し、その分子量は、約15万で、disc電気
泳動ではRf0〜0.1の間に存在する物質であつ
た。
Detailed Description of the Invention The present invention relates to a novel antitumor agent, and more specifically, the present invention relates to a novel antitumor agent, and more specifically, an antitumor alkylating agent or an amino group or a carboxyl group introduced into an antibody against a tumor antigen purified by affinity chromatography. The present invention relates to an antitumor agent containing as an active ingredient a substance obtained by bonding an antitumor alkylating agent with an amide bond. The present inventor previously described mitomycin C, doxorubicin hydrochloride, bleomycin, daunorubicin,
He invented an anti-tumor agent whose active ingredient is a substance made by binding antibiotic anti-tumor agents such as actinomycin and sarcomycin to tumor antibodies.
53-161388). However, the above antibiotic-based anti-tumor agents are mainly produced by microorganisms and have complex structures, so what is the best way to combine them with tumor antibodies to produce anti-tumor substances? I can not say. As a result of further research, the present inventor has found that alkylating agent-based substances such as chlorambutyl, melphalan, ACNU, uramustine, and cyclophosphamide are suitable for producing antitumor substances by combining with tumor antibodies. This discovery led to the present invention. The present invention uses as an active ingredient a novel substance in which the above-mentioned highly cytotoxic antitumor alkylating agent is bound to an antibody against a tumor antigen through an amide bond (-NHCO-) under extremely mild conditions. The purpose of the present invention is to provide an antitumor agent that has an excellent antitumor effect but has significantly lower cytotoxicity than the antitumor alkylating agent mentioned above, which is one of the starting materials. shall be. Furthermore, the present invention provides means for purifying the antibody itself against a tumor antigen, and the above-mentioned anti-tumor alkylating agent having an amino group or carboxyl group, and the above-mentioned anti-tumor alkylating agent having an amino group or carboxyl group introduced therein. An amide bond (-
The object of the present invention is to provide a method for producing an antitumor agent containing the above-mentioned substance as an active ingredient, which comprises bonding through NHCO-). In recent years, various antitumor agents have been widely used.
It is having some effect. These antitumor agents include chlorambutyl, melphalan, ACNU,
Alkylating agents such as uramustine and cyclophosphamide are also used, but these substances themselves have high cytotoxicity and can cause side effects such as leukopenia, hair loss, and gastrointestinal disorders when administered. It is known that there are limits to the use of these drugs. Furthermore, attempts have been made to produce or isolate antibodies against certain tumor antigens and use them for the treatment of tumors, but the desired antitumor effects have not been achieved. Furthermore, it has recently been proposed to expect antitumor effects from new substances obtained by chemically bonding antitumor agents to tumor antibodies, but the chemical reaction conditions to obtain the above substances are too harsh. sufficient results have not been obtained. Furthermore, since the antibodies used in these experiments have only been purified to the immunoglobulin fraction, they contain general immunoglobulin and are difficult to recognize as tumor antibodies in the true sense of the word. Since the antibody is a common immunoglobulin, anaphylactic shocks such as damage to normal tissues, generalized convulsions, or stiffness often occur in living organisms to which the above-mentioned substances are administered.
The present invention collects antiserum containing antibodies against tumor antigens inoculated into animals, separates the immunoglobulin fraction therein, and further purifies it by specific means. First, tumor antibodies are
By isolating it and combining it with an antitumor alkylating agent, it is possible to provide an antitumor agent that can be produced under mild reaction conditions and does not cause the above-mentioned anaphylactic shock. The present invention will be explained in detail below. The substance that is the active ingredient of the present invention reacts with the amino group or carboxyl group originally present in both the antibody and the antitumor alkylating agent under mild reaction conditions, or it reacts with the above alkylating agent. Furthermore, it can be obtained by reacting an antibody into which an amino group or a carboxyl group has been introduced. Antitumor alkylating agents used in the production of this substance include chlorambutyl, melphalan, ACNU,
Preferred are uramustine and cyclophosphamide. The names of these alkylating agents are common names, and the structural formulas are as follows. Chlorambutyl: Melhuaran: ACNU: Ulamustine: Cyclophosphamide: Furthermore, as the antibody which is one of the starting materials for this substance, an antibody of a tumor for the purpose of treatment is used.
Tumors include Sarcoma 180, Sato lung cancer, Yoshida sarcoma, Ehritzch cancer, L-1210 leukemia, acute lymphocytic leukemia, bone marrow cancer, chronic lymphocytic leukemia, malignant lymphoma, ovarian cancer, breast cancer, sarcoma, leukemia, and carcinoma. These tumors include: The antibodies used in the present invention are produced by the method described in Japanese Society of Immunology General Meeting Records, Vol. 6, p. 198 (1976).
or the method of Dauphin, MJ et al. [J.Immunol. 113
948 (1974)]. The former is Freund's complete
In this method, antibodies are obtained by first injecting tumor cells subcutaneously into an animal to immunize the animal, and then boosting by injecting tumor cells intravenously. This is a method in which a tumor antigen is repeatedly administered intraperitoneally to an animal 3 to 4 times to immunize the animal, and antibodies are obtained from this. Note that the antibody used in the present invention may be either a homologous antibody or a heterologous antibody, but a homologous antibody is preferable. The antibody obtained in this way is first bound to the tumor antigen for treatment using bromcyan to the packing material of a column in Affinity chromatography, and then this is packed into the column, and the immunoglobulin image is packed in the column. Infuse a solution of antibody purified to minutes. After binding the antigen and antibody in the column, a special solvent is flowed into the column to break the antigen-antibody bond and elute only the antibody, which is then dialyzed to obtain a purified antibody aqueous solution. obtain. That is, the antibody thus obtained is an anti-tumor immunoglobulin with higher purity than conventional immunoglobulin fractions. Generally, to purify antibodies, a method is often used to obtain fractions from antiserum using ammonium sulfate salt precipitation and ion exchange chromatography using a DEAE cellulose column. In addition to this, in the present invention, a specific purification procedure was performed using affinity chromatography to selectively obtain only antibodies specific to tumor cells. Affinity chromatography is based on the principle of utilizing the specific affinity between biological substances such as enzymes and substrates, antibodies and antigens, and selectively separating one biological substance from the other. It is. The affinity chromatography used in the present invention involves (1) covalently bonding the antigen extracted from tumor cells to a carrier such as Shepharose (using bromcyanide), filling this in a column, and adding an antibody solution. After that, a sufficient amount of solvent is poured to wash away the unbound antibodies, and then a buffer solution with a lower pH is poured in to break up the antibody-antigen bond and release the separated antibodies. (2) Without using a column, mix the antigen-bound carrier with an antibody solution to bind the antibody to the antigen, wash the carrier particles to remove unbound antibodies, and then elute the antibody. and (3) a method of using tumor cells themselves instead of the carrier to which the antigen is bound. In the Examples of the present invention, methods (1) and (3) above were adopted. Therefore, antibodies purified by affinity chromatography are anti-tumor immunoglobulins, ie, anti-tumor antibodies, with much higher purity than conventional immunoglobulin fractions. In order to bind the antibody thus obtained to an anti-tumor alkylating agent, an anti-tumor alkylating agent having an amino group or a carboxyl group or an anti-tumor alkylating agent into which an amino group or an amino group has been introduced is used. The antibody is dissolved in a water-soluble solvent, carbodiimide is added thereto as a catalyst, and the mixture is heated at 0 to 50°C, preferably 10 to 40°C, for 10 minutes to 8 hours, preferably 30°C.
The reaction is allowed to proceed for 5 minutes to 5 hours, and the reaction is stopped by adding an acetic acid-sodium acetate buffer. Next, in order to remove excess antitumor alkylating agent, catalyst, components of the reaction termination solution, and salts from this reaction solution, either dialysis gel filtration or ultrafiltration is performed, or these operations are performed. Perform combined operations. The carbodiimides used as catalysts in the above reaction are 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide, 1-cyclohexyl-3
-(2-morpholinoethyl)carbodiimide or dicyclohexylcarbodiimide. In order to introduce an amino group or a carboxyl group into an antitumor alkylating agent if necessary, the antitumor agent may be used as it is or in the form of a salt such as Na, K, or Ag to form a compound with the general formula is Cl or
Br and n is an integer of 1, 2, or 3) or the general formula HOl・NH 2 (CH 2 )nCOX (in the formula
represents Cl or Br, and n represents an integer from 1 to 3) in an aqueous solvent such as methanol, water, ethanol, dimethyl sulfoxide, dioxane at 0 to 50°C, preferably at 10 to 40°C for 10 minutes. It is recommended to react for ~72 hours. The resulting reaction product is then recrystallized using a solvent such as water, alcohol, chloroform, dioxane, etc. to obtain an antitumor alkylating agent derivative into which an alkyl group or a carboxyl group has been introduced. Note that monochloroacetic acid is preferable as the above compound. This substance has 1 to 10 molecules of an antitumor alkylating agent bound to one molecule of antibody. The acute toxicity of this substance to mammals was investigated using mice by intravenous administration of 100 mg/Kg, but no mortality was observed after one week of observation. Therefore, the substance has low toxicity and is effective against various human cancers. For example, it is effective against chronic lymphocytic leukemia, malignant lymphoma, bone marrow cancer, ovarian cancer, breast cancer, sarcoma, leukemia, carcinoma, and the like. When this substance is used as an anti-tumor agent, known methods relating to anti-tumor agents can be applied as methods for formulation and administration. The administration method is oral;
Injection or rectal administration may be mentioned, and the dosage form may be powder, granules, tablets, injections, suppositories, or the like. Administration by injection is particularly preferred. Injectable drug formulations include physiological saline, water-soluble solvents such as sterile water Ringer's solution, non-aqueous solvents, isotonic agents, soothing agents, solubilizing agents, stabilizers, preservatives, suspending agents, and buffering agents. , emulsifiers, etc. may optionally be used. To give an example, 10 mg of the substance and 50 mg of mannitol
Dissolve mg in distilled water, make 10 ml, sterilize it using the usual method, and then dispense 2 ml into small injection bottles or freeze-dry it as it is to make an injection. Before use, this drug is diluted with physiological saline to form an injection solution. This substance is generally 0.01 to 90% preferably during formulation.
It can be contained from 0.1 to 60%. The dosage of this substance mainly depends on the symptoms, but it is 0.01 to 3000 mg per adult, preferably 0.1 to 3000 mg per day.
It is 500mg. According to the present invention, the tumor-promoting and anti-tumor properties of the antibody and the anti-tumor properties of the anti-tumor agent are maintained in the above-mentioned substance without loss, so that the substance efficiently achieves its intended purpose when administered. It reaches the tumor site and exerts an antitumor effect. Therefore, if we consider the weight of the antitumor agent that this substance contains as a component as a standard, the amount of antitumor agent as an ingredient is equivalent to 1/10 to 1/20 of the dose of the same antitumor agent itself. The same degree of tumor growth inhibition can be obtained by administering this substance, and the side effects caused by the antitumor agent contained as an ingredient are 1/10 to 2/10 that of administration of the same antitumor agent itself. It is hoped that it will not be too much. This can be said to be the combined effect of the favorable properties of each of the components of this substance. The present invention will be explained in more detail below with reference to Examples. Example 1 1-1: Preparation and purification of antibodies using affinity chromatography (3) Yoshida sarcoma cells subcultured using DONRYU rats were suspended in physiological saline, and mitomycin C was added to the suspension. (50 μg/ml) and treated at 37° C. for 30 minutes, the supernatant was removed by centrifugation, and the cells were washed three times with 0.85% physiological saline. The Yoshida sarcoma cells, which had thus lost their proliferation ability, were mixed with Freund's Complete Ajuvant (abbreviated as FCA), and 108 cells per rabbit were placed subcutaneously into the footpads of rabbits weighing 2.9 kg. A rabbit was immunized by injecting in the same manner two weeks later, and after another two weeks, 10 8 cells of the above were injected into the vein of the rabbit. After one week, a cannula was inserted into the carotid artery to collect whole blood, from which antiserum was separated and purified as described below. That is, ammonium sulfate is added to 100 ml of antiserum at 20 to 30% of the saturation amount, the resulting salting-out fraction is collected, this is redissolved in 20 ml of water, and this solution is added to 1 mM phosphate buffer at pH 7.0. 4℃ for saline solution (abbreviated as PBS),
Desalination was performed by dialysis for 72 hours (during which time, the external dialysis fluid was replaced every 24 hours). Equal amounts of normal DONRYU rat blood cells, which had been washed three times with saline, were mixed with the dialysis fluid, and the mixture was left at 4°C for 30 minutes to allow absorption, and then centrifuged to obtain a supernatant. This absorption operation was repeated four more times for a total of five absorption operations. The antibody thus obtained is called a pre-purified antibody (commonly known as IgG). Further purification was then carried out using the method described below. That is, equal amounts of Yoshida sarcoma cells are mixed with the above-absorbed supernatant, left at 4°C for 30 minutes to allow antibodies against Yoshida sarcoma to bind to Yoshida sarcoma tumor cells, and then centrifuged to remove the supernatant. PH to precipitation
3.0 glycine-HCl buffer was added to liberate the antibody, and the mixture was centrifuged to collect the supernatant containing the antibody. After adjusting the pH of the supernatant to near neutrality with a 0.1 M aqueous sodium hydroxide solution, dialysis was performed against PBS at 4° C. for 24 hours (external dialysis solution was replaced every 8 hours). The result was an aqueous solution of rabbit anti-Yoshidada sarcoma tumor immune antibody. 1-2: Test for cytotoxicity against tumor cells and normal cells (Part 1) The rabbit anti-Yoshida sarcoma tumor immune antibody obtained above was subjected to a cytotoxicity test in the presence of complement (guinea pig serum). That is, the above antibody aqueous solution or diluted 10, 100, and 1000 times, and Yoshida sarcoma tumor cell suspension or normal
DONRYU rat splenocyte suspension (Eagle Minimum Essential Medium)
(hereinafter abbreviated as MEM) was used as a solvent, and the cell concentration was 5 x 10 6 cells x ml) were mixed to 100 µm and left at room temperature for 15 minutes to allow the antibodies to bind to each cell. Then, dilute the guinea pig serum to 2 times with Eagle's MEM (this is called complement) and add 100μ of this to the above mixture.
After culturing at 37°C for 30 minutes and centrifugation, the precipitate was washed 11 times with Eagle's MEM, to which trypan blue solution was added, and the degree of death of each of the cells was observed under a microscope. As shown in Table 1 below, the results show that the degree of cell death (cytotoxic activity) is +, +++, +++.
Yoshida's results are shown in three stages (non-killing is indicated by 1). The toxicity to sarcoma cells was not very different, but the toxicity to normal DONRYU rat splenocytes was extremely low and did not kill them. Thus, the purification of antisera is well shown to be fit for purpose. [Table] The cells used here are representative of normal cells.
After removing the spleen, DONRYU rat splenocytes were crushed into fine pieces in Eagle's MEM using tweezers, passed through a 200 mesh stainless steel mesh, washed once with MEM, and washed with tris-(hydroxylmethyl)aminomethane. Add 3 ml of buffered 0.75% ammonium chloride aqueous solution (PH7.4) to destroy the red blood cells in the sample, and then add 3 ml of buffered 0.75% ammonium chloride aqueous solution (PH7.4) to destroy the red blood cells in the sample.
It was obtained by washing twice. 1-3: Purification of antibodies by affinity chromatography (1) Purification was carried out as shown below using affinity chromatography using a column bound to a tumor antigen. First, the antigen itself was purified as follows. That is, Yoshida sarcoma tumor cells subcultured using DONRYU rats were freeze-dried, and 3M KCl solution (PH7.4) buffered with 5mM potassium phosphate buffer was added to 30g of this, and the antigen was extracted for 20 hours. Centrifuge the extract at 65,000G for 10 minutes to collect the supernatant, and then add this supernatant to
Centrifuge at 180,000G for 30 minutes and collect the supernatant.
Dialysis was performed at 4°C for 70 hours against distilled water (during this period
(Replace the external solution every 24 hours). After dialysis, the dialysate was further centrifuged at 65,000G to remove the precipitate, and ammonium sulfate was added to the supernatant to give a concentration of 2M.
The precipitate was collected by centrifugation at 65000G for 10 minutes. This precipitate was dissolved in distilled water, and this solution was dialyzed against distilled water for 72 hours (during which time, the external solution was exchanged every 24 hours). Using the thus obtained Yoshida sarcoma tumor antigen, a column for affinity chromatography was prepared as follows. First, agarose gel (Seharose4B;
Pharmacia Japan Co Ltd product) was swollen with water to 20 ml, 20 ml of 1 g/ml bromcyan aqueous solution was added to this, the two were allowed to react for 8 minutes while keeping the pH at 11.0, and then the reaction product was poured into a glass funnel. Distilled water, which was filtered and the precipitate cooled on ice,
Next, after washing with an ice-cooled 0.5M aqueous sodium bicarbonate solution, the suspension was immediately suspended in a 0.1M aqueous sodium bicarbonate solution, to which the purified antigen aqueous solution described above was added and allowed to react with stirring at room temperature overnight. Pass the product through a glass funnel and
0.1M sodium bicarbonate aqueous solution, then distilled water, and finally phosphate buffered saline solution (0.85%, PH
7.0). This washed reaction product was washed with an inner diameter of 13 mm and a height of 15 cm.
This was packed into a glass tube to make a column for Affinity chromatography. In this column, the above 1-
Antibody solution (IgG) prepared by step 1 (however, the operation for binding with Yoshida sarcoma tumor cells is omitted)
3 ml, then 5 mM phosphate buffered saline solution (0.85%, PH 7.0) until no protein is detected in the eluate of the column, and then 50 m
A 0.5M saline solution to which M glycine-hydrochloric acid buffer aqueous solution (PH4.0) has been added is applied to the column, the eluted fraction is collected, this is immediately neutralized with sodium bicarbonate, and phosphate buffered saline aqueous solution (PH4.0) is added. 0.85%, PH7.0) for 72 hours (24
The dialysis fluid was changed every hour). In this way, an aqueous solution of a purified antibody against Yoshida sarcoma tumor was obtained using column-based affinity chromatography. 1-4: Cytotoxicity test on tumor cells and normal cells (Part 2) The anti-Yoshida sarcoma tumor immune antibody obtained in 1-3 above was subjected to a cytotoxicity test in the same manner as in 1-2. The results are shown in Table 2 below. [Table] These results indicate that purification of the antibody by Affinity chromatography significantly increased the activity of the antibody against Yoshida sarcoma cells and reduced the toxicity to splenocytes. It shows the excellence of refining. 1-5: Binding of anti-Yoshida sarcoma antibody and anti-tumor alkylating agent The rabbit anti-Yoshida sarcoma antibody prepared in 1-1 and 1-3 and purified by each method, chlorambutyl, melphalan (phenyl alanine mustard), ACNU, uramustine, and cyclophosphamide were reacted to synthesize each compound through an amide bond. An example of its synthesis will be described below. Synthesis example (Part 1) Binding reaction between antibody and chlorambutyl 1 ml of the purified rabbit anti-Yoshida sarcoma antibody obtained in 1-1
Add 40 mg of chlorambutyl to 10 ml of an aqueous solution containing 10.0 mg in water, and adjust the pH of the liquid with hydrochloric acid while stirring.
4.75, 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide hydrochloride.
25.2 mg was added and the reaction was carried out for 40 minutes. Next, acetic acid-
The reaction was stopped by adding 20 ml of sodium acetate buffer (PH4.75). The reaction solution was then dialyzed against the distilled water from Step 5 at 4° C. for 72 hours (during which time, the external solution was exchanged three times).
After concentrating the dialyzed solution, it was passed through a column with a diameter of 3 cm and a height of 65 cm filled with a dextrin derivative (Sephadex G-200 manufactured by Pharmacia Japan) to completely separate high molecular weight substances and low molecular weight substances in the reaction liquid. The eluate was centrifuged at 40,000 g for 60 minutes using an ultracentrifuge. The supernatant was freeze-dried at -20°C to obtain the target substance.
The protein content in this substance was determined by the copper-phorin method using albumin as a standard, and the alkylation activity was determined by the Epstein method (Epstein J.Aval-Chem 27
1423 (1955), respectively. As a result, 10μ of chlorambutyl was used for 1mg of antibody.
It was found that it is g-bonded. Synthesis example (part 2) Binding reaction between antibody and melphalan 1 ml of the purified rabbit anti-Yoshida sarcoma antibody obtained in 1-1
Add 41.0 mg of melphalan to 10 ml of an aqueous solution containing 10.0 mg in water, and adjust the pH of the liquid with hydrochloric acid while stirring.
25.2 mg of 1-ethyl-3-
After adding (3-dimethylaminopropyl)-carbodiimide hydrochloride and reacting for 60 minutes, 20 ml of acetic acid-sodium acetate buffer (PH4.75) was added to stop the reaction. The reaction solution was then dialyzed against PBS at 4° C. for 72 hours (during which time the external solution was exchanged three times). Diameter: 3 cm, height: 65 cm, filled with dextrin derivative (Sephadex G-200, manufactured by Pharmacia Japan Co., Ltd.) after concentrating the dialysis fluid
High molecular weight substances and low molecular weight substances in the reaction solution were completely separated through the column. The eluate was centrifuged at 40,000 g for 60 minutes using an ultracentrifuge, and the supernatant was freeze-dried at -20°C to obtain the target substance. In this substance, 1 mg of antibody contains 10 melphalan.
μg was bound. Synthesis example (part 3) Binding reaction between antibody and uramustine 1 ml of the purified rabbit anti-Yoshida sarcoma antibody obtained in 1-1
Add 40 mg of uramustine to 10 ml of an aqueous solution containing 10 mg in water, and while stirring, adjust the pH of the liquid to 4.75 with hydrochloric acid and add 25.2 mg of 1-ethyl-3-(3dimethylaminopropyl)-carbodiimide hydrochloride. The reaction was carried out for 65 minutes. Next, the reaction product is acetic acid-
The reaction was stopped by adding 20 ml of sodium acetate buffer (PH4.75). The reaction solution was then dialyzed against the distilled water from Step 5 at 4° C. for 72 hours (during which time, the external solution was exchanged three times). After concentrating the dialysate, it was passed through a column with a diameter of 3.0 cm and a height of 65 cm filled with a dextrin derivative (Sephadex G-200 manufactured by Pharmacia Japan) to completely separate high molecular weight substances and low molecular weight substances in the reaction liquid. The eluate was centrifuged at 40,000 g for 60 minutes using an ultracentrifuge. The supernatant was lyophilized at -20°C. In the material thus obtained, almost no uramustine was bound to 1.0 mg of antibody. Therefore, we reacted uramustine with monochloroacetic acid to increase its binding properties. Next, an example will be described. 500 mg of uramustine and 139 mg of potassium methoxide were dissolved in 10 ml of methyl alcohol, and 188 mg of monochloroacetic acid was added thereto, followed by stirring at room temperature for 60 minutes. After the reaction was completed, the mixture was concentrated under reduced pressure, and the residue was recrystallized from methyl alcohol and chloroform to obtain 215 mg (yield: 35%) of crystals. Analysis of this crystal confirmed that it was a uramustin derivative having the following structure. [Formula] Results of decomposition elemental analysis near melting point 200° C% H% N% Calculated value 38.70 4.19 13.54 Experimental value 38.50 4.00 13.30 Next, the uramustine derivative obtained as described above was used as described earlier in this synthesis example. The target substance was obtained by reacting with the purified rabbit anti-Yoshida sarcoma antibody obtained in 1-1 using the same procedure as the method. This material contained 10 μg of uramustine derivative per 1 mg of antibody. Synthesis Example (Part 4) Reaction between the antibody and melphalan derivative according to 1-1 200 mg of melphalan-silver salt was dissolved and dispersed in 10 ml of dimethyl sulfoxide (DMSO). Next, 100 mg of monochloroacetic acid was added, and the mixture was stirred at room temperature while shielding from light for 64 hours. The precipitate was removed, and DMSO and monochloroacetic acid were removed under reduced pressure over hot water at 80°C. White crystals were precipitated by adding water and cooling to a low temperature. Next, the precipitate was dried under reduced pressure. The yield was 40%. Using the melphalan derivative, a substance binding to the antibody according to 1-1 was obtained by the same procedure as described in Synthesis Example (Part 2). Antibody 1 in the obtained substance
The amount of melphalan derivative bound was 16 μg per mg. Synthesis Example (Part 5) Next, using the purified rabbit anti-Yoshida sarcoma antibody obtained in 1-3, the antibody was mixed with chlorambutyl, melphalan, its derivatives (see Synthesis Example (Part 4)) and uramustin in the same manner as described above. Each was reacted with a derivative (see Synthesis Example (Part 3)). Each substance obtained was a binding substance almost similar to the substance obtained in the synthesis example described above. Example 2 2-1: Preparation and purification of antibodies against tumor cells 107 ascites-type Yoshida sarcoma cells, which had been subcultured using DONRYU rats and had lost their proliferation ability with mitomycin C, were incubated four times every week. of animals
DONRYU rats were inoculated intraperitoneally, and on the 7th day after the fourth inoculation, the rats were anesthetized and opened, and blood was collected from the abdominal vena cava. Antiserum containing antibodies was prepared from this blood. Thus 70 out of 100 rats
ml of antiserum was obtained. Collection of antibody from antiserum and purification of antibody were performed according to 1-1, and the antibody was stopped until absorption by rat blood cells. 2-2: Purification of antibodies by affinity chromatography Yoshida sarcoma tumor cells subcultured using DONRYU rats were freeze-dried, and 30 g of
Antigen extraction was performed for 20 hours by adding a 3M KCl solution (PH7.4) buffered with mM potassium phosphate buffer. This extract was centrifuged at 65,000G for 10 minutes to collect the supernatant, and this supernatant was further centrifuged at 180,000G.
After centrifugation for 30 minutes, the supernatant was collected and dialyzed against distilled water at 4°C for 72 hours. (During this time, 24
The dialysis fluid was replaced every hour. ) Affinity chromatography using the thus obtained Yoshida sarcoma tumor antigen was performed as follows. First, agarose gel (Sepharose4B;
Pharmacia Japan Co, Ltd.) was swollen with water to 20 ml, 20 ml of 1 g/ml Promcyan aqueous solution was added thereto, and the two were allowed to react for 8 minutes while maintaining the pH at 11.0. The precipitate was washed with ice-cooled distilled water on a funnel, then with an ice-cold 0.5M aqueous sodium hydrogen carbonate solution, and immediately suspended in 0.1M sodium hydrogen carbonate, and the purified antigen aqueous solution described above was added to this. The mixture was added and allowed to react at room temperature overnight with stirring. Pass the product through a glass funnel and
0.1M sodium bicarbonate aqueous solution, then distilled water, and finally phosphate buffered saline (0.85% PH7.0)
I washed it with This washed reaction product was
It was packed into a glass tube with a height of 15 cm to form a column for affinitake chromatography. Said 2-
Antiserum (containing antibodies) solution prepared in step 1 3
ml of the above Affinity chromatography column, and then 5mM phosphate, buffered saline solution (0.85% PH7.0) was passed through the column until no protein was detected in the column eluate. Next 50m
A 0.5M saline solution to which M glycine-hydrochloric acid buffer aqueous solution (PH4.0) was added was applied to the column, and the eluted fraction was collected. This was immediately neutralized with sodium bicarbonate and dialyzed against a phosphate buffered saline solution (0.85% PH7.0) for 72 hours. The dialysis fluid was replaced every 24 hours. ) Thus, an aqueous solution of antibodies against Yoshida sarcoma tumor cells purified using Affinity chromatography was obtained. 2-3: Cytotoxicity test on tumor cells and normal cells The rat anti-Yoshida sarcoma tumor immune antibody obtained in 2-2 above was tested for cytotoxicity in the same manner as in Example 1. The results are shown in Table 3 below. [Table] As can be seen in Table 3, the activity against Yoshida sarcoma cells was significantly increased by affinity chromatography as described above. 2-4: Binding of rat anti-Yoshida sarcoma antibody and antitumor agent The rat anti-Yoshida sarcoma antibody obtained in 2-1 and 2-2 and chlorambutyl were combined in the same manner as described in 1-5 above. A compound in which both were bonded through an amide group was obtained. A similar method was used to obtain a substance in which each of melphalan, melphalan derivatives, and uramustine derivatives was bound to an antibody through an amide bond. All of these substances exhibited almost the same physical and chemical properties as the corresponding compounds obtained in 1-5 above. Example 3 Antitumor effect on Yoshida sarcoma Ascites-type Yoshida sarcoma cells subcultured using DONRYU rats were administered to each group of 10 rats.
1 x 106 cells/animal were transplanted into the peritoneal cavity of DONRYU rats, and 24 hours after transplantation, various antibodies and various commercially available antitumor agents were used alone, and rabbit anti-Yoshida sarcoma antibodies and various commercially available antitumor agents were combined. Aqueous solutions of conjugates of rat anti-Yoshida sarcoma antibody and various commercially available antitumor drugs were intraperitoneally injected into each rat five times every other day, for a total of five times. (T) and the average survival days (C) of the control group were determined, and the survival rate (T/C×100) was calculated. The results are shown in Tables 4 to 8. [Table] [Table] [Table] [Table] Was.
[Table] [Table] Represents antibodies.
As can be seen from Tables 4 to 7 above, the survival rate of this compound for Yoshida sarcoma in rats was approximately 5 to 10 times higher than that of commercially available antitumor agents, and the suppression rate was almost the same as that of commercially available antitumor agents. equal. As can be seen from Table 8, this is not surprising since it shows that the antibody itself exhibits almost no tumor-suppressing power at doses of this level. The characteristics of the present compound are obvious when comparing the dose of the commercially available anti-tumor agent, which is a component of the present compound, and the dose of the commercially available anti-tumor drug component administered by administering the present compound, and the latter is 1/1/2 of the former.
Although it is only 10 to 1/20 times smaller, it shows almost the same tumor growth inhibition rate as the former. This fact shows how well the antibody, which is one of the components of this compound, allows the other component, a small amount of a commercially available anti-tumor agent, to reach the tumor site, and it is the idea behind the present invention. It is beautifully embodied. Through this action, this substance reduces the use of commercially available anti-tumor drugs, which originally have extremely high side effects, to 1/10 to 1/20 of conventional drugs, while still exhibiting the same level of tumor growth suppressive power as conventional drugs. It is. It should be noted that although the origin of the antibody does not matter in terms of tumor growth inhibition rate, when a substance prepared and purified using rabbits combined with a commercially available anti-tumor drug was administered to rats, 10 Approximately three of the rats exhibited anaphylactic shock, including generalized convulsions and rigidity. On the other hand, when the present substance, which was prepared using rabbits and synthesized using antibodies purified by affinity chromatography according to the present invention, was administered, the occurrence of such anaphylactic shock was greatly reduced. In the case of substances synthesized using antibodies created and purified using rats, the occurrence of anaphylactic shock was extremely rare; however, when the antibodies were purified by affinity chromatography, No occurrence of anaphylaxis was observed with this substance. Example 4 4-1: Preparation and purification of antibodies against tumor cells 50 ml of blood was collected from a rectal cancer patient (50 years old male), and 22 ml of antiserum containing antibodies was obtained from this blood. 4-2: Purification of antibodies by affinity chromatography The patient's tumor cells removed during surgery were freeze-dried, and 50 ml of 3M KCl solution (PH7.4) buffered with 5mM calcium phosphate buffer was added thereto.
Antigen extraction was performed for 20 hours. This extract
After centrifugation at 65,000 G for 10 minutes, the supernatant was collected and dialyzed against distilled water at 4° C. for 72 hours (during which time, the extra dialysis solution was replaced every 24 hours).
Affinity chromatography using the patient tumor antigen thus obtained was performed as follows. First, agarose gel (Sepharose4B;
Pharmacia JaPan Co, Ltd.) was swollen with water to 20 ml, 20 ml of 1 g/ml bromcyan aqueous solution was added thereto, the two were allowed to react for 8 minutes while keeping the pH at 11.0, and then the reaction product was poured into a glass tube. The precipitate was washed with ice-cold distilled water on a funnel, and then with an ice-cold 0.5M aqueous sodium bicarbonate solution, and then immediately diluted with 0.1M sodium bicarbonate.
The suspension was suspended in sodium hydrogen carbonate, the purified antigen aqueous solution mentioned above was added thereto, and the mixture was allowed to react at room temperature overnight with stirring. The resulting reaction product was filtered through a glass funnel and washed first with 0.1 M aqueous sodium bicarbonate solution, then with distilled water, and finally with phosphate buffered saline (0.85% PH 7.0). This washed reaction product was washed with an inner diameter of 13 mm and a height of 15 mm.
It was packed into a cm glass tube and used as a column for Affinity chromatography. Next, the above 4-
3 ml of the antiserum (containing antibody) solution obtained in step 1 was poured into the above-mentioned affinity chromatography column, and then 5 mM phosphate buffered saline solution (0.85% PH7.0) was added to the eluate of the column to ensure that the protein was not present. It was run until it was no longer detected. Next, 0.5M glycine-hydrochloric acid buffer aqueous solution (PH4.0) was added.
A saline solution was passed through the column and the eluted fraction was collected. Immediately neutralize this with sodium bicarbonate and use a phosphate buffered saline solution (0.85% PH).
7.0) for 72 hours. (The external dialysis solution was replaced every 24 hours.) Thus, an aqueous solution of antibodies against the patient's tumor purified using Affinity chromatography was obtained. The antibodies thus obtained were soluble in water and insoluble in organic solvents such as methanol, ethanol, acetone, and benzene. This purified antibody shows infrared absorption spectra and ultraviolet absorption spectra as shown in Figures 1 and 2 of the attached drawings, and its molecular weight is approximately 150,000, and disc electrophoresis shows that it exists between Rf0 and 0.1. It was a substance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例4に記載の手順で調製した癌患
者からの抗血清をアフイニテイクロマトグラフイ
により精製して得られた抗体についての赤外線吸
収スペクトルを示し、第2図は同じく紫外線吸収
スペクトルを示す。
Figure 1 shows the infrared absorption spectrum of an antibody obtained by purifying the antiserum from a cancer patient prepared by the procedure described in Example 4 by affinity chromatography, and Figure 2 shows the same ultraviolet absorption spectrum. shows.

Claims (1)

【特許請求の範囲】 1 腫瘍抗原を結合させたアフイニテイクロマト
グラフイーにより精製して得られる、腫瘍抗原に
対する同種抗体と、少なくとも1個のアミノ基又
はカルボキシル基を有する抗腫瘍性アルキル化剤
がアミド結合してなる物質を有効成分とする抗腫
瘍剤。 2 抗体は、ザルコーマ180、佐藤肺癌、L−
1210白血病、エーリツヒ癌、吉田肉腫、急性リン
パ性白血病、骨髄癌又はその他の人癌の抗原から
誘起された免疫グロブリン画分を腫瘍抗原を結合
させたアフイニテイクロマトグラフイーにより精
製したものである特許請求の範囲第1項記載の抗
腫瘍剤。 3 抗腫瘍性アルキル化剤はクロラムブチル、メ
ルフアラン、ウラムスチン、ACNUおよびシクロ
ホスフアミドからなる群から選択される特許請求
の範囲第1項記載の抗腫瘍剤。 4 抗腫瘍性アルキル化剤のアミノ基又はカルボ
キシル基は導入されたものである特許請求の範囲
第1項又は第3項記載の抗腫瘍剤。 5 前記アミノ基又はカルボキシル基の導入は、
X(CH2oCOOH(式中XはCl又はBrを示し、n
は1、2又は3の整数を示す)で表わされる化合
物を介して行われる特許請求の範囲第1項、第3
項又は第4項記載の抗腫瘍剤。 6 前記物質は、同種抗体1分子当り抗腫瘍性ア
ルキル化剤が1乃至10分子結合したものである特
許請求の範囲第1項記載の抗腫瘍剤。 7 注射剤形態にある特許請求の範囲第1項乃至
第6項記載のいずれかに記載の抗腫瘍剤。
[Scope of Claims] 1. An alloantibody against a tumor antigen obtained by purification by affinity chromatography bound to a tumor antigen, and an antitumor alkylating agent having at least one amino group or carboxyl group. An antitumor agent whose active ingredient is a substance formed by an amide bond. 2 Antibodies are Sarcoma 180, Sato lung cancer, L-
1210 Patent for immunoglobulin fractions derived from antigens of leukemia, Ehritzch cancer, Yoshida sarcoma, acute lymphocytic leukemia, bone marrow cancer, or other human cancers purified by affinity chromatography coupled with tumor antigens The antitumor agent according to claim 1. 3. The antitumor agent according to claim 1, wherein the antitumor alkylating agent is selected from the group consisting of chlorambutyl, melphalan, uramustine, ACNU, and cyclophosphamide. 4. The antitumor agent according to claim 1 or 3, wherein the amino group or carboxyl group of the antitumor alkylating agent is introduced. 5. The introduction of the amino group or carboxyl group is
X(CH 2 ) o COOH (in the formula, X represents Cl or Br, n
represents an integer of 1, 2 or 3).
The antitumor agent according to item 4 or item 4. 6. The antitumor agent according to claim 1, wherein the substance has 1 to 10 molecules of the antitumor alkylating agent bound per molecule of the alloantibody. 7. The antitumor agent according to any one of claims 1 to 6, which is in the form of an injection.
JP14215279A 1978-12-29 1979-11-02 Antitumor agent Granted JPS5665828A (en)

Priority Applications (12)

Application Number Priority Date Filing Date Title
JP14215279A JPS5665828A (en) 1979-11-02 1979-11-02 Antitumor agent
US06/103,474 US4315851A (en) 1978-12-29 1979-12-14 Pharmaceutical composition having antitumor activity
SE7910483A SE7910483L (en) 1978-12-29 1979-12-19 PHARMACEUTICAL COMPOSITION WITH TUMOR INHIBITION EFFECT
PH23447A PH16902A (en) 1978-12-29 1979-12-20 Pharmaceutical composition having anti-tumor activity
GB7944494A GB2038836B (en) 1978-12-29 1979-12-28 Antitumour substance
CH11501/79A CH655010A5 (en) 1978-12-29 1979-12-28 PHARMACEUTICAL ACTIVE SUBSTANCE WITH ANTITUM ORACTIVITY.
FR797932054A FR2445149B1 (en) 1978-12-29 1979-12-28 PHARMACEUTICAL COMPOSITION HAVING ANTI-TUMOR ACTIVITY
DE2952690A DE2952690C2 (en) 1978-12-29 1979-12-29 Antitumor substance, process for their preparation and pharmaceutical agent containing them
IT28464/79A IT1127324B (en) 1978-12-29 1979-12-31 Antitumour compsn. contg. high purity antibody
US06/321,486 US4401592A (en) 1978-12-29 1981-11-16 Pharmaceutical composition having antitumor activity
SE8406510A SE8406510L (en) 1978-12-29 1984-12-20 PHARMACEUTICAL COMPOSITION WITH TUMOR INHIBITION EFFECT
SE8406511A SE8406511L (en) 1978-12-29 1984-12-20 PHARMACEUTICAL COMPOSITION WITH TUMOR INHIBITION EFFECT

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14215279A JPS5665828A (en) 1979-11-02 1979-11-02 Antitumor agent

Publications (2)

Publication Number Publication Date
JPS5665828A JPS5665828A (en) 1981-06-03
JPS6256136B2 true JPS6256136B2 (en) 1987-11-24

Family

ID=15308563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14215279A Granted JPS5665828A (en) 1978-12-29 1979-11-02 Antitumor agent

Country Status (1)

Country Link
JP (1) JPS5665828A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0470125U (en) * 1990-10-25 1992-06-22

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58118520A (en) * 1982-01-09 1983-07-14 Hidematsu Hirai Antitumor proteinic complex and preparation thereof
JPH0653682B2 (en) * 1983-04-08 1994-07-20 呉羽化学工業株式会社 Human immunoglobulin-binding antitumor agent

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4962194A (en) * 1972-05-10 1974-06-17
JPS5161640A (en) * 1974-09-20 1976-05-28 Searle & Co Koshuyozaino seizoho
JPS51144723A (en) * 1975-05-27 1976-12-13 Yeda Res & Dev Antiitumor agent
JPS5592325A (en) * 1978-12-29 1980-07-12 Kureha Chem Ind Co Ltd Antitumor agent and its preparation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4962194A (en) * 1972-05-10 1974-06-17
JPS5161640A (en) * 1974-09-20 1976-05-28 Searle & Co Koshuyozaino seizoho
JPS51144723A (en) * 1975-05-27 1976-12-13 Yeda Res & Dev Antiitumor agent
JPS5592325A (en) * 1978-12-29 1980-07-12 Kureha Chem Ind Co Ltd Antitumor agent and its preparation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0470125U (en) * 1990-10-25 1992-06-22

Also Published As

Publication number Publication date
JPS5665828A (en) 1981-06-03

Similar Documents

Publication Publication Date Title
US4315851A (en) Pharmaceutical composition having antitumor activity
US4738843A (en) Anti-tumor substance of immunoglobulin and melphalan and process for producing the same
US4350626A (en) Antitumor hybrid and process for the preparation thereof
US4880935A (en) Heterobifunctional linking agents derived from N-succinimido-dithio-alpha methyl-methylene-benzoates
US4376765A (en) Medicaments, their preparation and compositions containing same
JP2001500528A (en) New glycoprotein
JPH02256700A (en) Cytotoxic drug conjugate
JPH02131499A (en) Cytotoxic drug conjugate and its manufacture
FR2516794A1 (en) NOVEL CANCER DRUGS FOR THE TREATMENT OF LEUKEMIA T CONTAINING RICIN AND A SPECIFIC MONOCLONAL ANTIBODY
CA1242982A (en) Immunostimulant derivatives and process for their preparation
HU210147B (en) Process for producing antibody-drug conjugates and pharmaceutical compositions containing them
JPH07223969A (en) Production of thioether-bonded body
US5672688A (en) Immunoglobulin Fc fragment bound to an alkylating, antibiotic, or antimetabolic antitum or substance
JPS6254086B2 (en)
JPS6256136B2 (en)
BE882541A (en) NEW PHARMACEUTICAL FORMS, THEIR PREPARATION AND THE COMPOSITIONS CONTAINING THEM
US20040052784A1 (en) Biotin derivatives
EP1289563B1 (en) Method for conditioning an avidin or streptavidin column matrix in an extracorporeal device
JPS6256137B2 (en)
JPH0133119B2 (en)
JPH0651643B2 (en) Cell-killing modified immunoglobulin and method for producing the same
JPH01199573A (en) Superoxide dismutase derivative and production thereof
CA2121990A1 (en) Antibody-drug conjugates
JPH0611714B2 (en) Human immunoglobulin-binding antitumor agent
JPH0653682B2 (en) Human immunoglobulin-binding antitumor agent