JPS6256021B2 - - Google Patents

Info

Publication number
JPS6256021B2
JPS6256021B2 JP53078287A JP7828778A JPS6256021B2 JP S6256021 B2 JPS6256021 B2 JP S6256021B2 JP 53078287 A JP53078287 A JP 53078287A JP 7828778 A JP7828778 A JP 7828778A JP S6256021 B2 JPS6256021 B2 JP S6256021B2
Authority
JP
Japan
Prior art keywords
section
deceleration
train
predetermined
station
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53078287A
Other languages
Japanese (ja)
Other versions
JPS554269A (en
Inventor
Kazumi Matsui
Takashi Takasue
Masami Iwasaki
Minoru Otobe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP7828778A priority Critical patent/JPS554269A/en
Publication of JPS554269A publication Critical patent/JPS554269A/en
Publication of JPS6256021B2 publication Critical patent/JPS6256021B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Train Traffic Observation, Control, And Security (AREA)

Description

【発明の詳細な説明】 本発明は移動体並列運転に係り、移動体停止・
起動位置をその終端部に有する減速区間内(鉄道
の駅構内減速区間に相当する)に同時に少なくと
も2つの移動体を並存させることを特徴とし、そ
のことにより、該減速区間内に1移動体しか同時
存在させない鉄道に代表される従来方式に比し、
移動体運転時間間隔を少なく出来、従つて輸送力
(人/時間)が大きくできる減速区間及び同近傍
区間における運転制御装置を提供するにある。以
下、移動体の代表的なもの、例えば鉄道の場合に
よつて本願並列運転を説明する。
[Detailed Description of the Invention] The present invention relates to parallel operation of moving bodies, and includes stopping and
It is characterized in that at least two moving bodies coexist at the same time in a deceleration section (corresponding to a deceleration section inside a railway station) that has a starting position at its terminal end, so that only one moving object can exist within the deceleration section. Compared to the conventional method represented by railways, which does not allow simultaneous existence of
An object of the present invention is to provide an operation control device for a deceleration section and a nearby section that can reduce the time interval between moving bodies and increase the transportation capacity (persons/hour). Hereinafter, the parallel operation of the present application will be explained in the case of a typical moving object, for example, a railway.

鉄道の並列運転において通常全走行区間は、最
高速度、加減速度、制動距離、停車時分、1列車
(独立機能を有する単車両を含む)の編成長等を
勘案した所定区間長毎に区分された区間を閉塞区
間の単位(以下、区間と云う)として、任意区間
における列車の有無によつて所定後方区間が閉塞
され、同区間内で停止し、更に後方区間を徐行す
ることにより、列車安全運転上必要な所定の列車
時間間隔(以下、所定時隔と云う)を所定値以上
(この場合の最小値を以下最小時隔と云う)に維
持するよう列車運転制御が行われる。即ち列車の
居る区間の一つ後方区間は閉塞(赤信号)区間と
なり、更に一つ後方区間は徐行(黄信号)区間と
なり、徐行(黄信号)区間に列車が入つた場合、
運転士の判断により減速し、閉塞区間内即ち赤信
号で制動停止する。
In parallel railway operation, all running sections are usually divided into predetermined section lengths that take into account maximum speed, acceleration/deceleration, braking distance, stopping time, train size of one train (including single cars with independent functions), etc. Based on the presence or absence of a train in a given section, a predetermined rear section is blocked, the train stops within the same section, and then moves slowly in the rear section to ensure train safety. Train operation control is performed to maintain a predetermined train time interval (hereinafter referred to as a predetermined time interval) required for operation at a predetermined value or more (the minimum value in this case is hereinafter referred to as a minimum time interval). In other words, one section behind the section where the train is is a blocked (red light) section, and one section further behind is a slow-moving (yellow signal) section, and if a train enters the slow-moving (yellow signal) section,
The driver decelerates at the discretion of the driver and brakes to a stop within the blocked section, ie at a red light.

先行列車がこの原因となつた区間を抜け出すこ
とにより、閉塞条件が解除され、信号は赤から緑
又は黄となり、停止した後続列車は出発する事が
出来る。電気鉄道の場合、特に高速或いは高密度
運転の場合には、上記一連信号現示による有人列
車制御に加えて自動的に列車閉塞制御を行うべく
所謂ATS、ATCを通常併用する。
When the preceding train exits the section that caused this, the blockage condition is lifted, the signal changes from red to green or yellow, and the following train that has stopped can depart. In the case of electric railways, especially in the case of high-speed or high-density operation, so-called ATS and ATC are usually used in combination to automatically perform train blockage control in addition to the manned train control using the above-mentioned series of signal indications.

本発明者等は上記した在来鉄道に主流を占める
電気鉄道のATS、ATCによる列車運転方式にお
いて駆動用電力供給系と信号系がそれぞれ独立し
ているのに対し、両者を一元化した即ち、駆動用
電力供給系をなすキ電回路だけによる列車運転制
御方式を提案してきたが、本発明はこれを更に発
展させ構内減速区間に、2列車以上同時に最小時
隔を含む所定時隔を維持して並存させ、且つ、先
行列車が所定時分を経過してもスタートしないた
め、後続列車が緊急停車した場合でも、定常的
に、最小時隔を含む所定時隔を維持して再スター
ト出来る列車運転制御方式を新たに提供するもの
である。因みに在来鉄道、特に列車運転制御が容
易な電気鉄道(固定区間閉塞方式)の場合です
ら、本発明のような概念はなく1閉塞区間1列車
である。従つて、上記電気鉄道を含む在来鉄道の
場合は本発明の場合に比較して、即ち本発明の構
内減速区間内所定加減速度ないしは該区間内の低
等速区間速度以外のその他条件を同一としても、
最小時隔が閉塞区間構成上大きくならざるを得
ず、同相当分単位時間当りの列車数が少なくなり
最大輸送力(人/時間)も又小さくなる欠点は否
めない。
The present inventors have developed a system that integrates both the drive power supply system and the signal system, whereas the drive power supply system and signal system are independent in the ATS and ATC train operation systems of electric railways, which are the mainstream of conventional railways. We have proposed a train operation control system using only the main electric circuit that forms the electric power supply system, but the present invention further develops this and maintains a predetermined time interval including the minimum time interval for two or more trains at the same time in the deceleration section of the premises. Train operation in which the preceding train does not start even after a predetermined time has elapsed, so that even if the following train makes an emergency stop, the train can be restarted regularly while maintaining the predetermined time interval, including the minimum time interval. This provides a new control method. Incidentally, even in the case of conventional railways, especially electric railways (fixed section blockage system) where train operation is easy to control, there is no concept like the present invention, and each blockade section has one train. Therefore, in the case of a conventional railway including the above-mentioned electric railway, compared to the case of the present invention, other conditions other than the predetermined acceleration/deceleration within the deceleration section of the present invention or the low constant speed section speed within the section are the same. Even though
There is an undeniable disadvantage that the minimum time interval has to be large due to the structure of the blocked section, the number of trains per equivalent minute unit time is reduced, and the maximum transportation capacity (persons/hour) is also reduced.

本発明はかかる点に鑑みなされたものである。 The present invention has been made in view of this point.

(イ) それぞれ、所定長に絶縁キ電区分され個々に
自動閉塞、解除され、且つ、自動閉塞・解除の
原因となるべき閉塞単位(以下、区間と云う)
に分割された駅構内減速区間において、上記区
間毎に相対して所定時間で所定速度迄減速する
少なくとも1列車長以上の第1減速区間、この
減速された所定速度以下で走行する少なくとも
1列車長以上走行する低等速区間及び所定時間
で駅へ停車すべき少なくとも1列車長以上の第
2減速区間とからなる駅構内減速区間を設け、
定常的に先行列車(以下No.1列車と云う)が第
2減速区間(乗降のためにその終端部分に設け
られた駅停車区間も含む)を抜け出す前に、従
来方式とは異なり、後続列車(以下No.2列車と
云う)を同一駅構内減速区間入端部をなす上記
第1減速区間内へ、所定第1減速パターンで進
入走行させ低等速区間へ進入する迄の間にNo.1
列車が第2減速区間を抜け出し、そのことによ
り、No.2列車は上記低等速区間を上記所定速度
で上記第2減速区間へ進入、所定時隔で駅に停
車するよう制御される装置に係る。
(b) Each blockage unit (hereinafter referred to as section) that is divided into insulated electric currents of a predetermined length and is automatically blocked and released individually, and that should be the cause of automatic blocking and release.
A first deceleration section of at least one train length that decelerates to a predetermined speed in a predetermined time relative to each of the above-mentioned sections, and at least one train length that runs at the decelerated predetermined speed or less. Provide a station deceleration section consisting of a low constant speed section where the train runs at a constant speed of at least one train, and a second deceleration section with a length of at least one train that must stop at the station at a predetermined time,
Unlike the conventional system, when the preceding train (hereinafter referred to as the No. 1 train) regularly exits the second deceleration section (including the station stopping section provided at the end of the section for boarding and alighting), the following train (hereinafter referred to as the No. 2 train) enters the first deceleration section, which forms the entry end of the deceleration section within the same station, in a predetermined first deceleration pattern, and the No. 1
The train exits the second deceleration section, and as a result, the No. 2 train enters the second deceleration section at the predetermined speed through the low constant velocity section, and is controlled by the device to stop at the station at predetermined intervals. Related.

No.2列車が低等速区間へ進入する迄に停車中
のNo.1列車が第2減速区間を抜け出さない場
合、No.2列車は上記低等速区間に入つても同区
間は閉塞されている為所定低等速走行に移るこ
となく、進入前の上記第1減速区間減速パター
ンに従つて減速を続け、上記低等速減速区間内
の所定位置に停車する。該位置はNo.2列車が第
2減速区間を抜け出るのを待つて、再スタート
するNo.2列車が低等速区間内で第2減速区間へ
の所定進入速度、即ち上記低等速区間の所定速
度に復した上で上記第2減速区間へ進入、駅へ
停車出来、且つ、その間に最小時隔を含む所定
時隔を取りうる位置であればよい。又No.2列車
が異常停車のままでいる事により途中停車した
No.2列車の1つ後方の列車(以下No.3列車と云
う)は、No.2列車が停車している間に更に進行
して構内第1減速区間1つ後方の区間へ進入す
るが、該区間はNo.2列車が1つ先の区間にいる
ことで閉塞されているので同区間内所定位置で
減速停止する。また低等速区間適当位置で停車
していた上記No.2列車が再スタートしても該低
等速区間を抜け出るまでは、隣接後方区間の閉
塞は解除されずNo.3列車は再スタート出来な
い。前記したようにNo.2列車が低等速区間を抜
け切つた時点即ち、No.2列車との間に最小時隔
を含む所定時隔を有した時点で閉塞が解除され
再スタートし、当該区間内で、上記第1減速区
間所定進入速度(停止前の速度)に復する。
If the stopped No. 1 train does not exit the second deceleration section by the time train No. 2 enters the low constant speed section, the section will be blocked even if the No. 2 train enters the low constant speed section. Therefore, the vehicle does not shift to a predetermined low constant speed traveling, but continues to decelerate according to the first deceleration section deceleration pattern before entering the vehicle, and stops at a predetermined position within the low constant speed deceleration section. This position waits until the No. 2 train exits the second deceleration section, and then the restarted No. 2 train reaches the predetermined approach speed to the second deceleration section within the low constant speed section, that is, the above-mentioned low constant speed section. Any position may be used as long as the vehicle can return to the predetermined speed, enter the second deceleration section, stop at the station, and maintain a predetermined time interval including the minimum time interval therebetween. In addition, the No. 2 train stopped midway due to an abnormal stop.
The train one train behind the No. 2 train (hereinafter referred to as the No. 3 train) advances further and enters the section one place behind the first deceleration section in the yard while the No. 2 train is stopped. , since this section is blocked by the No. 2 train being in the section ahead, it decelerates and stops at a predetermined position within the same section. Furthermore, even if the No. 2 train stopped at an appropriate position in the low constant speed section restarts, the blockage in the adjacent rear section will not be released until it exits the low constant speed section, and the No. 3 train will not be able to restart. do not have. As mentioned above, when the No. 2 train passes through the low constant speed section, that is, when there is a predetermined time interval including the minimum time interval between it and the No. 2 train, the blockage is released and the train restarts. Within the section, the vehicle returns to the predetermined entry speed for the first deceleration section (speed before stopping).

本発明は以上のように定常的に所定最小時隔を
含む所定時隔を有して走行する事を可能とする区
間閉塞による列車並列運転方式(特に同一駅構内
減速区間に2列車以上を存在せしめ得る事を特徴
とする)を提供するものである。その為には駅構
内減速区間長、同加速区間長、その他閉塞区間
長、加減速度、最高等速度、制動距離、列車長、
駅停車時分及び最小時隔を含む所定時隔等相関関
係にある各パラメーターを後述実施例で示すよう
に適当に設定すればよい。
As described above, the present invention provides a train parallel operation system (particularly when two or more trains are present in the same station deceleration section) that allows trains to run at predetermined time intervals including a predetermined minimum time interval on a regular basis. It is characterized by the fact that it can be For this purpose, the length of the deceleration section within the station, the length of the acceleration section, the length of other blocked sections, acceleration/deceleration speed, maximum constant speed, braking distance, train length,
Parameters that are correlated, such as a predetermined time interval including station stop time and minimum time interval, may be appropriately set as shown in the embodiments described below.

又、列車を上記したような所定走行パターンで
並列運転するにはこれを具現する適当手段が必要
である事は云うまでもなく、特に、列車重量、走
行路面状況、風の向き等常に一定とは限らないの
で、これら外乱に影響されることなく所定の速度
制御、運転時隔維持等のためには、同一発明者等
による諸発明 (A) 特願昭51−108900号(特開昭53−36809号) 電力制御による走行移動体制御方式 特願昭51−109368号(特開昭53−36810号) 電力制御による走行体制御方式の定位置停止
方式 特願昭51−21691号(特開昭52−105412号) 直流サイリスターモータを用いた車両の自動
運転制御系統 等に示される閉塞区間長に合わせ延設されて列
車駆動用電力のキ電回路閉塞制御方式の技術思
想を採用してやればよい。
In addition, it goes without saying that in order to run trains in parallel in a predetermined running pattern as described above, appropriate means are required to realize this, and in particular, train weight, running road surface conditions, wind direction, etc. are always constant. Therefore, in order to control the speed, maintain the driving time interval, etc. without being affected by these disturbances, various inventions by the same inventors (A) Japanese Patent Application No. 108900/1983 -36809) Traveling body control system using electric power control Japanese Patent Application No. 51-109368 (Japanese Unexamined Patent Publication No. 53-36810) Fixed position stopping system of traveling body control system using electric power control Japanese Patent Application No. 51-21691 (Japanese Patent Application No. (Sho 52-105412) If the technical concept of the key electric circuit blockage control system for train drive power is adopted, the blockage section length is extended to match the length of the blockage section indicated in the automatic operation control system of vehicles using DC thyristor motors. good.

(B) 又更により確実に速度制御、位置停止、走
行、起動を地上側の設定条件だけで行うには同
一発明者等による特願昭51−69276号(特開昭
52−153584号)連続輸送装置、特願昭53−5236
号(特開昭54−100071号)移動体走行装置、即
ち車載界磁と地上側に所定間隔でそれぞれ所定
の設定回動速度を持つ磁性ベルトコンベアユニ
ツトを延設してなるベルトコンベアライン(移
動体駆動機構)への電力供給・遮断により所定
速度で回動、停止、再起動する磁性ベルト間に
生じる磁気吸着力によつて、移動体を強制的に
磁性ベルトコンベアユニツトの回動速度に同期
させる方式を併用してやればよい。前記特願昭
51−69276号連続輸送装置にあつては車上駆動
用電動機が不要であることは云うまでもない。
又地上側設備の移動速度に同期させる点では地
上1次式の同期式リニアモータを用いてもよ
い。なお、本発明において、移動体を駆動する
ためのこれら車上駆動用電動機、ベルトコンベ
アライン、同期式リニアモータ等を移動体駆動
装置という。
(B) Furthermore, in order to more reliably perform speed control, position stop, travel, and start using only the setting conditions on the ground side, Japanese Patent Application No. 51-69276 (Japanese Unexamined Patent Publication No.
No. 52-153584) Continuous transportation device, patent application No. 53-5236
(Unexamined Japanese Patent Publication No. 54-100071) A mobile traveling device, i.e., a belt conveyor line (mobile) consisting of magnetic belt conveyor units each having a predetermined set rotation speed installed at predetermined intervals on a vehicle-mounted field and on the ground side. The moving body is forced to synchronize with the rotating speed of the magnetic belt conveyor unit by the magnetic adsorption force generated between the magnetic belts, which rotate, stop, and restart at a predetermined speed when power is supplied or cut off to the conveyor unit (body drive mechanism). It would be better to use the method to do this together. Said special request
It goes without saying that the continuous transport device of No. 51-69276 does not require an on-board drive motor.
In addition, a ground primary type synchronous linear motor may be used in order to synchronize the moving speed of the ground equipment. In the present invention, these on-vehicle drive electric motors, belt conveyor lines, synchronous linear motors, etc. for driving the movable body are referred to as a movable body drive device.

実施例 (イ) 第1図に本発明の駅構内第1減速区間及び同
前後区間における最小複数2列車並列運転状況
にある、各列車の時間(距離)〜速度パターン
と、第2図に同上に対応する絶縁区分されたト
ロリーをもつ電力供給・遮断電力を自動的に制
御される閉塞単位区間と、閉塞作動、解除の単
純モデルを示した。
Example (a) Fig. 1 shows the time (distance) to speed pattern of each train in the situation of parallel operation of at least two trains in the first deceleration section in the station premises of the present invention and the sections before and after the same, and Fig. 2 shows the same as above. A blockage unit section with an insulated trolley corresponding to the blockage section in which power supply/cutoff power is automatically controlled, and a simple model of blockage operation and release are shown.

(イ‐1) 列車長(D)mのNo.1列車が駅構内減速区間
=(l′)mの終端にある第2減速区間=Vp
/2α≧Dにおいて、所定停車時分(t
p)sec停車後、スタート寸前にある…
(1A)で示す…時、定常的に後続No.2列車
(列車長(D)mは閉塞されていない区間(区
間長(l)m)の2Aの位置にいて、高等速度
(Vm)m/secで等速走行している。上記高
等速走行区間長(l)mは該区間が閉塞され列車
が自動的に所定減速度(−α)m/sec2で減
速・停止し、閉塞が解けることで自動的に所
定加速度(α)m/sec2で加速され元の速度
(Vn)m/secに復しうる長さ(Vn/α
以上であるが本単純モデル図では、その最小
値を用いてある。第1図では(l)mは最小値の
(Vm)2/αで示した。
(A-1) The No. 1 train with train length (D)m is in the second deceleration section at the end of the station deceleration section = (l')m = V p
2 /2α≧D, the predetermined stoppage time (t
p ) sec After stopping, it is about to start...
At the time shown by (1A), the following No. 2 train (train length (D) m is at position 2A of the unblocked section (section length (l) m), and the high speed (Vm) m The train is traveling at a constant speed of /sec. The above high-speed running section length (l)m is when the section is blocked and the train automatically decelerates and stops at a predetermined deceleration (-α) m/sec 2 . The length (V n ) 2 /α that can be automatically accelerated by a predetermined acceleration (α) m/sec 2 and return to the original velocity (V n ) m /sec by solving the problem.
As mentioned above, in this simple model diagram, the minimum value is used. In FIG. 1, (l)m is expressed as the minimum value (Vm) 2 /α.

(イ‐2) 駅構内加速区間に先行列車(図示せず)
がいないことを条件として(いれば、区
間は閉塞され、No.1列車はスタートできな
い。)、No.1列車がNo.2減速区間を抜けて
1Bの位置へ少なくとも列車長(D)mだけ進む
間に、駅構内減速区間の1列車長以上の第1
減速区間へ所定速度(Vm)m/secで進
入し所定減速度(−α)m/sec2で減速して
誘導低等速度(Vp)m/secに達して2Bの
位置を占めそのまま(Vp)m/secの低等速
区間bd≧Vp /αを進み第2減速区間に
進入し、第2の減速度(−α)m/sec2で減
速されNo.1列車がいた1Aの位置で停車し、
所定停車時分(tp)sec経過後スタートす
る。一方、所定停車時分(tp)sec停車して
スタート寸前になつているNo.1列車がスター
トしない異常事態の場合でも、後続No.2列車
は駅構内第1減速区間に所定速度(Vm)
m/secで進入し、所定減速度(−α)m/
sec2で低等速区間へ進入速度(Vp)m/sec
に減速されて2Bの位置まで進む事には変わ
りはない。
(A-2) A preceding train in the acceleration section inside the station (not shown)
(If there is, the section is blocked and the No. 1 train cannot start.) The No. 1 train passes through the No. 2 deceleration section.
While the train is proceeding to position 1B by at least the train length (D)m, the first
It enters the deceleration section at a predetermined speed (Vm) m/sec, decelerates at a predetermined deceleration (-α) m/sec 2 , reaches the induced low constant velocity (V p ) m/sec, and occupies position 2B and remains at ( The No. 1 train was traveling through the low constant velocity section bd≧V p 2 /α of V p ) m/sec, entered the second deceleration section, and was decelerated at the second deceleration (-α) m/sec 2. Stop at position 1A,
It starts after a predetermined stoppage time (t p )sec has elapsed. On the other hand, even in the case of an abnormal situation in which the No. 1 train, which has stopped for the predetermined stop time (t p ) sec and is about to start, does not start, the following No. 2 train will move to the first deceleration section within the station at the predetermined speed (Vm )
m/sec and predetermined deceleration (-α) m/sec.
Approach speed (V p ) m/sec to low constant velocity section at sec 2
There is no change in the fact that it will be decelerated to 2B and will proceed to the 2B position.

(イ‐3) その間に尚、先行No.1列車が第2減速区間
を抜け出さない即ち、1Bの位置まで進ん
でいなければ、低等速区間bdは閉塞されて
おり列車は自動的に今までの減速度(−α)
m/sec2で減速(点線表示)を継続、低等速
区間内所定位置C点迄進んで停車する…
(2C)で示す…。又、No.2列車が上記の原因
で低等速区間bd内で途中停車し、存在して
いる事で、更に1つ後方(l)m区間は閉塞
され、列車長(D)mの後続No.3列車は高等速度
(V)m/secから(−α)m/sec2の減速度
で減速し区間所定位置f点で3cの位置を
占めて停車する。
(B-3) If the preceding No. 1 train does not pass through the second deceleration section, that is, does not advance to position 1B, then the low constant speed section bd is blocked and the train will automatically move forward. deceleration to (-α)
Continuing to decelerate at m/sec 2 (dotted line display), proceed to a predetermined point C in the low constant velocity section and stop...
Shown by (2C)…. In addition, because the No. 2 train stopped midway in the low constant speed section bd due to the above reason, the presence of the No. 2 train further blocks the section (l)m behind, and the following train of length (D)m Train No. 3 decelerates from the high speed (V) m/sec at a deceleration of (-α) m/sec 2 and stops at a predetermined section point f, occupying position 3c.

(イ‐4) No.1列車が遅れてスタートab区間を抜
け、即ち、1Dの位置まで進む事で、区間
の閉塞は解除され、停車していたNo.2列車は
2Cの位置から点線表示の所定加速度(α)
m/sec2で加速され、低等速区間bd≧Vp
/α内で該区間の所定速度(Vp)m/sec
に復し第2減速区間へ進入、所定第2減速度
(−α)m/sec2で減速され所定位置、即
ち、2Eを占めて停車し、更に所定停車時分
(tp)sec停車後スタートする。
(A-4) When the No. 1 train leaves the delayed start section ab, that is, advances to the 1D position, the blockage in the section is released, and the stopped No. 2 train
Predetermined acceleration (α) indicated by dotted line from position 2C
Accelerated at m/sec 2 , low constant velocity section bd≧V p
Predetermined speed (V p )m/sec for the section within 2
The vehicle then returns to the second deceleration zone, decelerates at a predetermined second deceleration (-α) m/sec 2 , and stops at a predetermined position, that is, 2E, and then stops for a predetermined stopping time (t p sec). Start.

(イ‐5) 一方、再スタートしたNo.2列車が区間
を抜け出した即ち2Eの位置へ進んだ時点で
区間の閉塞が解けNo.3列車も(α)m/
sec2の加速度で再スタートし、区間内で元
の高等速度(V)m/secに復する。定常運
転時は当然のことながら後続列車が途中停車
して再スタートする場合でも最小運転時隔
(Tp)secを含む所定運転時隔(T)secを維
持走行するには列車長、駅停車時分、駅構内
各減速区間、同低等速区間、後方閉塞区間単
位の長さ及び速度、加減速度等の条件をそれ
ぞれ次のように適当に設定してやれば良い。
(A-5) On the other hand, when the restarted No. 2 train exits the section, that is, advances to the 2E position, the section is unblocked and the No. 3 train also moves (α)m/
It restarts with an acceleration of sec 2 and returns to the original high velocity (V) m/sec within the section. During steady operation, it goes without saying that even if the following train stops midway and restarts, the train length and station stops are required to maintain the specified operating interval (T) sec, including the minimum operating interval (T p ) sec. Conditions such as time and minutes, length and speed for each deceleration section within the station, each low constant velocity section, the rear blockage section, acceleration and deceleration may be set appropriately as follows.

(イ‐1) No.1列車1A、No.2列車2Aの位置関係か
ら、最小時隔を含む所定時隔(TA)secは
次のようになる。(tp)sec停車して、発
車寸前にNo.1列車1Aがある時、No.2列車
は2Aの位置まで来ている。
(A-1) From the positional relationship of No. 1 train 1A and No. 2 train 2A, the predetermined time interval ( TA ) sec including the minimum time interval is as follows. (t p )sec When No. 1 train 1A is at the stop and about to depart, No. 2 train is at position 2A.

∴TA―tp≧V―V/α+1/V(V
/α)+V/α =V+V/α …… ∴TA≧V+V/α+tp …… (イ‐2) No.1列車1B、No.2列車2B位置関係から、
最小時隔を含む所定時隔(TB)secは次の
ようになる。No.2列車が2Bの位置からNo.
1列車のいた位置1Bに達するにはその間
にNo.2列車は駅で所定時分(to)sec停車
する。
∴T A -t p ≧V n -V p /α+1/V p (V p 2
/α) +V p /α =V n +V p /α ... ∴T A ≧V n +V p /α+t p ... (A-2) From the positional relationship of No. 1 train 1B and No. 2 train 2B,
The predetermined time interval (T B )sec including the minimum time interval is as follows. The No. 2 train moves from the 2B position to the No.
In order to reach the position 1B where train No. 1 was, train No. 2 stops at the station for a predetermined time (to) seconds.

∴TB≧1/V(V /α)+V/α+tp
+1/α√2 =2V/α+tp+√2 …… (イ‐3) 後続No.2列車が2Cの位置を占めて停車す
る原因となつた発車遅れのNo.1列車が1C
の停車位置から区間を抜け出した、即
ち1Dの位置に進んだ時点において区間
の閉塞が解けNo.2列車は自動的にスタート
し、No.1列車のいた1Cの位置へ進み所定
時分(tp)sec停車する。このような
1C、2C位置関係から最小時隔を含む所定
間隔(Td)secは次のようになる。
∴T B ≧1/V p (V p 2 /α)+V p /α+t p
+1/α√2 = 2V p /α+t p +√2 ... (A-3) The No. 1 train that started late caused the following No. 2 train to occupy the 2C position and stop at 1C.
When the No. 2 train exits the section from the stop position, that is, advances to the 1D position, the blockage in the section is released, and the No. 2 train automatically starts, proceeds to the No. 1 train's position 1C, and continues for a predetermined time (t). p ) sec stop. like this
From the positional relationship of 1C and 2C, the predetermined interval (T d ) sec including the minimum time interval is as follows.

d―tp≧V/α+V/α+1/α√2 ∴Td≧2V/α+tp+√2 …… となり、式の右辺と同一である。 T d −t p ≧V p /α+V p /α+1/α√2 ∴T d ≧2V p /α+t p +√2 ..., which is the same as the right side of the equation.

今、TA=TB=Tdである為には、
、式より、 TA=TB =Td≧V+V/α+tp=2V/α+tp
+√2 α … 本実施例第1図ではD==V /2αな
の で、 TA=TB=Td≧V+V/α+tp =3V/α+tp …… となり、式の右辺より Vp=Vn/2 … ∴最小時隔(T12)secは、式よ
り、 T12=(3/2)(Vn/α)+tp …… (イ‐4) 後続No.3列車は3C位置で停車原因となつ
たNo.2列車(2Cの位置)がスタートし、
区間を抜け出した時点で、即ち、 〔V/α+1/α(Vp―√p ―2)〕
sec 後、区間の閉塞が解け自動的に発車す
る。先行No.2列車が2E位置を占めて所定
時分(tp)sec停止後スタートし、区間
を抜け出した即ち1Dの位置まで進んだ時
点で、区間の閉塞が、解けるので後続
No.3列車は区間の入端位置まで最近接
できる(上記イ―2における1B、2Bの相
対位置と同じ)。即ち再スタート後、上記
区間入端位置まで進むには、さらに V/α+V―V/αの時間を要する。
Now, in order for T A = T B = T d ,
, from the formula, T A = T B = T d ≧V n +V p /α+t p =2V p /α+t p
+√2 α ... In this embodiment, in Figure 1, D = = V p 2 /2 α, so T A = T B = T d ≧ V n + V p /α + t p = 3V p /α + t p ... and the equation From the right side, V p = V n /2... ∴The minimum time interval (T 12 ) sec is, from the formula, T 12 = (3/2) (V n /α) + t p ... (A-4) Subsequent No. The No. 2 train (position 2C), which caused the stoppage of the 3rd train, started at position 3C.
At the time of exiting the section, that is, [V p /α+1/α (V p −√ p 2 −2)]
After sec, the section will be unblocked and the train will depart automatically. The preceding No. 2 train occupies the 2E position and stops for a predetermined time (t p ) sec, then starts, and when it leaves the section, that is, advances to the 1D position, the blockage in the section is resolved and the following train
Train No. 3 can come closest to the entrance position of the section (same as the relative position of 1B and 2B in E-2 above). That is, after restarting, it takes an additional time of V n /α+V n −V p /α to advance to the section entry end position.

このようなNo.2列車(2F)、No.3列車
(3C)の位置(時間差)から、No.2、No.3
列車の最小時隔を含む所定時隔TFは次の
ようになる。
From this position (time difference) of No. 2 train (2F) and No. 3 train (3C), No. 2, No. 3
The predetermined time interval T F including the minimum train time interval is as follows.

F≧V/α+V/α+tp+1/α√2 =V/α+1/α(Vp―√p 2―2
) +V/α+V―V/α 上式より、TF≧2V/α+tp+√2 =2V/α+1/α(Vp―√p ―2
) ……と成る。
T F ≧V p /α+V p /α+t p +1/α√2 =V p /α+1/α(V p −√ p 2 −2
) +V p /α+V n −V p /α From the above formula, T F ≧2V p /α+t p +√2 =2V n /α+1/α(V p −√ p 2 −2
)......

本実施例第1図では D==V /2α なので、式は次のようになる。 In this embodiment, in FIG. 1, D==V p 2 /2α, so the equation is as follows.

F≧3V/α+tp=2V+V/α … TFの最小時隔をT23とすれば式より T23=3V/α+tp=3/2(Vn/α)+tp
… (〓式よりVp=V/2) となり、式におけるNo.1、No.2列車の最
小時隔T12と同じになる。
T F ≧3V p /α+t p =2V n +V p /α … If the minimum time interval of T F is T 23 , then from the formula T 23 =3V p /α+t p = 3/2 (V n /α) + t p
... (From the formula, V p = V n /2), which is the same as the minimum time interval T 12 of No. 1 and No. 2 trains in the formula.

この場合、式の右辺より となる。従つて、No.1、No.2列車間の最小
時隔T12(式)の所定停車時分tpも又
(11―2)の相関関係により定めることも
出来る。
In this case, from the right side of Eq. becomes. Therefore, the predetermined stop time t p of the minimum time interval T 12 (formula) between No. 1 and No. 2 trains can also be determined by the correlation in (11-2).

第2図は第1図に図示した本発明の実施例を具
現すべき、キ電区分単位毎に動力用電力の供給・
遮断制御による閉塞区間制御の実施例である。即
ち各走行区間の閉塞区間単位長に対応し設けられ
た電流継電器I′2,I2,I3,I4,…と該継電器への
電力負荷によつて解放される常閉接型スイツチ
S′2,S2,S3,S4,…を有してなる区分制御所、
該区分制御所によりキ電制御される走行区間に対
応して設けられた絶縁区分されたキ電線1,2、
他のキ電線3、電力供給線4、又常時負荷の絶縁
区分されたキ電線1に動接する集電機構5、キ電
制御される絶縁区分されたキ電線2に動接する集
電機構6及びキ電線3に動接する集電機構7によ
りキ電される適当回路を有する駆動用電動機(図
示せず)をもつ列車(1A、2B)からなるキ電回
路閉塞方式を示した。
FIG. 2 shows the supply and distribution of motive power for each electricity classification unit, which is to embody the embodiment of the present invention shown in FIG. 1.
This is an example of closed section control using cutoff control. That is, current relays I' 2 , I 2 , I 3 , I 4 , etc. are provided corresponding to the unit length of the blocked section of each running section, and normally closed type switches are opened by the power load to the relays.
A sectional control center comprising S' 2 , S 2 , S 3 , S 4 ,...
Insulated and sectioned power lines 1 and 2 provided corresponding to the running section to be controlled by the section control center;
A current collection mechanism 5 that is in dynamic contact with other power lines 3, power supply lines 4, and the insulated power line 1 of the constant load, a current collection mechanism 6 that is in dynamic contact with the insulated power line 2 that is subjected to power control; A power circuit blocking system is shown, which consists of trains (1A, 2B) each having a driving motor (not shown) having an appropriate circuit that is energized by a current collecting mechanism 7 that is in dynamic contact with the power line 3.

本例は特願昭51−109368号(特開昭53−36810
号)等の技術思想を援用したものであるが、使用
駆動用電動機については同出願等に示すような電
動機(電機子・界磁)を適当回路即ち電動機への
定常的電力負荷が(i/2)と減少することで自
動的に発電制動力が生じ、電力負荷が元に復する
ことで駆動力を生じるような回路に構成してある
ので、今No.1列車が1Aの位置にいる場合、継電
器I2が作動し、常閉接スイツチS2がオフになり、
絶縁区分されたキ電線2は無加圧となるので、
区間は閉塞された制動区間となりNo.2列車が
閉塞された区間に進入すると同列車電動機へ
の電力負荷は(i/2)に減少するので発電制動
力が生じ2Cの位置を占めて減速停車する。区
間、閉塞の原因となつた上記1Aの位置を占めて
いたNo.1列車が区間を抜け出せば区間の閉
塞が解除され、停車していたNo.2列車は再起動す
る。即ち継電器I2への電力負荷がなくなりオフに
なつていた常閉接型スイツチS2は閉接され絶縁区
分された区間のキ電線2が加圧されて、No.2
列車への電力負荷も定常に復するため再起動・加
速され区間内で、同区間の定常低等速度Vp
達して、第2の減速区間へ進入、No.1列車の
いた位置1Aと同じ1Cの位置を占めて、減速停車
する。
This example is published in Japanese Patent Application No. 51-109368 (Japanese Patent Application No. 53-36810).
However, regarding the drive motor used, the motor (armature/field) as shown in the same application is connected to an appropriate circuit, that is, the steady power load to the motor is (i/ 2), the circuit is configured such that a dynamic braking force is automatically generated when the electric power load is reduced, and a driving force is generated when the electric load is restored, so the No. 1 train is currently at the 1A position. , relay I 2 is tripped, normally closed switch S 2 is turned off,
Since the insulated electric wire 2 is not pressurized,
The section becomes a blocked braking section, and when the No. 2 train enters the blocked section, the electric load on the train's motor decreases to (i/2), so a dynamic braking force is generated and it occupies position 2C and decelerates to a stop. do. If the No. 1 train occupying position 1A above, which caused the blockage, leaves the section, the blockage in the section will be lifted and the stopped No. 2 train will restart. In other words, the normally closed contact type switch S2 , which had been turned off due to the loss of power load to the relay I2 , was closed and the main power line 2 in the insulated section was pressurized, and the No. 2
In order to restore the electric power load to the train, it is restarted and accelerated, and within the section, it reaches the steady low constant speed V p of the same section, enters the second deceleration section, and returns to position 1A where No. 1 train was. It occupies the same 1C position and decelerates to a stop.

区間は前方区間に列車が介在すると否とに
かかわらず、常に所定減速を行わしむべき第1減
速区間なので該区間の列車電動機に制動力を生ず
る電力負荷が(i/2)となるようにこの区間の
絶縁区分されたキ電線1,2の内2は無加圧にセ
ツトされる。
This section is the first deceleration section in which a predetermined deceleration should always be performed regardless of whether or not there is a train intervening in the section ahead, so the electric power load that generates braking force on the train motor in this section is set to (i/2). Two of the insulated main wires 1 and 2 in the section are set to be unpressurized.

区間に列車……2Bの位置を占めてNo.2列車
……がいると継電器I3が作動し常閉接スイツチS3
がオフになるので区間も閉塞され絶縁区分さ
れたキ電線1,2の内キ電線2が無加圧となり制
動区間となる。そのため、更に後続No.3列車8図
示せず)が閉塞された上記区間へ進入すれば
上記キ電線2は無加圧のため、列車電動機への電
力負荷は(i/2)に減少し、発電制動力が生
じ、3Cの位置を占めて減速・停車する。上記
区間閉塞の原因となつた区間の2Bの位置を占
めて停車していたNo.2列車が該区間を抜け出せ
ば、区間の閉塞は解除され、3Cの位置を占め
て停車したいたNo.3列車は再起動する。即ち継電
器I3への電力負荷が無くなるので、オフになつて
いた常閉接型スイツチS3は閉接され絶縁区分され
た区間のキ電線2が加圧されて、No.3列車へ
の電力負荷も定常に復するため再起動・加速され
区間内で、定常速度Vnになり、第1の減速区
間へ進入する。
When there is a train in the section, No. 2 train occupying position 2B, relay I 3 is activated and normally closed switch S 3 is activated.
Since the section is turned off, the section is also closed, and of the insulated and sectioned main electric wires 1 and 2, the main electric wire 2 becomes unpressurized and becomes a braking section. Therefore, when the following train No. 3 (not shown) enters the blocked section, the electric wire 2 is not pressurized, so the power load on the train motor decreases to (i/2). Dynamic braking force is generated, and the vehicle decelerates and stops at position 3C. When No. 2 train, which had stopped at position 2B in the section that caused the section blockage, exits the section, the blockage in the section will be lifted, and No. 3 train, which had stopped at position 3C, will be released. The train restarts. In other words, since the power load to relay I3 is eliminated, the normally closed contact type switch S3 , which had been off, is closed, and the main power line 2 in the insulated section is pressurized, and the power to the No. 3 train is reduced. Since the load also returns to steady state, it is restarted and accelerated, and within the section, the speed reaches the steady speed V n and enters the first deceleration section.

低等速区間区間地区制御所における開閉ス
イツチS2と電力供給線4との間に列車速度がVp
に保たれるよう適当値を有する分圧抵抗器R2
いれる。
The train speed is V p between the on-off switch S 2 and the power supply line 4 in the low constant speed section district control center.
Insert a voltage dividing resistor R2 with an appropriate value to maintain the voltage.

実際には列車電動機出力を所望値に維持すると
しても、走行抵抗等の変化があるので、計画通り
の走行パターンでの運転が困難になり、常に列車
を最小運転時隔で高密度頻発運転をするような場
合、外乱による走行パターン変動を除去するた
め、構内減速区間の各区間,,区間に強
制的に同期速度で誘導出来る同一発明者による特
願昭51−69276号(特開昭53−153584号)連続輸
送装置に示すそれぞれ所定設定回動速度をもつ磁
性ベルトコンベアユニツトを設け一方列車側にも
駆動用電動機に加え上記磁性ベルトコンベアユニ
ツトに吸着すべき界磁を設け計画速度を維持させ
る事がのぞましい。又、全軌道長に互つて上記特
願昭51−69276号の連続輸送装置に置きかえるこ
ともできる。この場合、列車は電動機にかえて吸
着界磁を設けたものになる。また特に図示しなか
つたが、第2図の閉塞区間単位を構成するように
絶縁区分されたキ電線2の内、定常無加圧にセツ
トされたeg区間のキ電線に替えて、同様な閉塞
区間単位を構成するように区間のキ電線を
区間にわたるよう延伸し、第1の減速区間、低等
速区間、第2の減速区間の所定速度パターンにな
るよう、それぞれ所定の回動速度、減速力、加速
力を有する磁性ベルトコンベアユニツトが常閉接
スイツチS1,S2,S3,S4…を介して電力給電線4
と他のキ電線3或いは接地により電気的に接続さ
れる。或いは上記電力給電線4と他のキ電線3に
かえ別に併設された例えば3相交流電力供給線
(図示せず)と電力中線(図示せず)に接続或い
は接地してもよい。この場合、第2図の集電機構
6、区間の抵抗R2及びキ電線2は不要とな
り、集電機構5,7は区間閉塞、同解除条件設
定、列車界磁、或いは、列車空調、照明等の為の
ものとなる。同様に、区間の磁性ベルトコン
ベアユニツトは上記電力供給線(図示せず)と上
記電力中線(図示せず)へ電気的に接続されてい
る。
In reality, even if the train motor output is maintained at the desired value, there are changes in running resistance, etc., making it difficult to operate according to the planned running pattern, and trains must always be operated in high-density and frequent operations at minimum intervals. In such cases, in order to eliminate fluctuations in the running pattern caused by disturbances, it is possible to forcibly guide the vehicle at a synchronous speed in each section of the on-site deceleration section. No. 153584) Magnetic belt conveyor units each having a predetermined rotation speed as shown in the continuous transportation device are provided, and on the train side, in addition to a driving electric motor, a field to be attracted to the magnetic belt conveyor unit is provided to maintain the planned speed. Things are terrible. It is also possible to replace the continuous transport device of the above-mentioned Japanese Patent Application No. 51-69276 along the entire track length. In this case, the train would be equipped with an attractive field instead of an electric motor. Also, although not particularly shown in the figure, among the main power wires 2 which are insulated and sectioned to constitute the block section unit in Fig. 2, a similar blockage The electric wires of the section are extended across the section so as to constitute a section unit, and are rotated at a predetermined rotational speed and decelerated so that the predetermined speed patterns of the first deceleration section, low constant velocity section, and second deceleration section are achieved. A magnetic belt conveyor unit with force and acceleration power connects the power supply line 4 via normally closed switches S 1 , S 2 , S 3 , S 4 .
and another electrical wire 3 or ground. Alternatively, instead of the power supply line 4 and other power lines 3, it may be connected or grounded to, for example, a three-phase AC power supply line (not shown) and a power line (not shown) that are provided separately. In this case, the current collecting mechanism 6, section resistance R 2 , and power line 2 shown in Fig. 2 are no longer necessary, and the current collecting mechanisms 5 and 7 are used for section closing, setting release conditions, train field, train air conditioning, and lighting. etc. It will be for. Similarly, the magnetic belt conveyor units of the sections are electrically connected to the power supply line (not shown) and the power main line (not shown).

第3図は従来の列車並行ダイヤ運転の場合、即
ち駅構内減速区間に1列車しか介在させない列車
運転方式の説明図であり、この運転方式以外のそ
の他条件を同一として第1図の場合に対比して示
している。
Figure 3 is an explanatory diagram of the conventional train parallel timetable operation, that is, the train operation method in which only one train is interposed in the station deceleration section, and is compared with the case of Figure 1 with the other conditions being the same except for this operation method. It is shown as follows.

今、所定停車時分tp停車したNo.1列車駅をス
タートする寸前…1Aの位置で示す…にある時、
後続No.2列車は2つ後方の区間fh高等速度(V
n)m/secの間にあり、1つ後方の高等速度(V
n)m/secの区間efは閉塞されている。正常にNo.
1列車がスタートして駅構内減速区間acを抜け出
す時点でNo.2列車は閉塞をとかれたcf区間入端部
迄2Bの位置を占めて進んでおり、そのまま進ん
で駅構内減速区間acに進入所定減速度(―α)
m/sec2減速停車する。
Now, when the No. 1 train is about to start from the station where it stopped at the designated stop time tp ...shown at position 1A...
The following No. 2 train is two seats behind the section fh high speed (V
n ) m/sec and one backward higher velocity (V
n ) The interval ef of m/sec is closed. Normally No.
When the 1st train starts and leaves the station deceleration section ac , the No. 2 train is proceeding at position 2B until the end of the CF section, where the blockage has been cleared, and it continues on its way to the station deceleration section ac. Predetermined approach deceleration (-α)
m/sec 2 decelerate and stop.

No.1列車が所定時分経つてもスタートしない
時、cf区間の閉塞は維持されたままであり、進入
したNo.2列車は所定変速度(―α)m/sec2で減
速、同区間内適当位置e点で2Cの位置を占めて
停車する。No.1列車が遅れてスタートし駅構内減
速区間acを抜けて少なくとも1Dの位置迄進んだ
時、cf区間の閉塞は解かれNo.2列車(2Cの位置)
はスタートする事が出来る。この適当位置は再ス
タートしたNo.2列車が所定加速度(α)m/sec2
で加速され途中停車した該cf区間内で旧の高等速
度(Vn)m/secに復した上で駅構内減速区間ac
に進入し所定減速度(―α)m/sec2で減速、駅
に停車出来、且つ、先行No.1列車との間に駅停車
時間(tp)secを含めて所定時隔(T)secを維
持しうる位置であればよい。
When the No. 1 train does not start after a predetermined period of time, the cf section remains blocked, and the No. 2 train that has entered decelerates at a predetermined variable speed (-α) m/sec 2 and stops within the same section. It stops at a suitable position e, occupying position 2C. When the No. 1 train started late and passed through the deceleration section ac inside the station and proceeded to at least the 1D position, the cf section was unblocked and the No. 2 train (position 2C)
can start. At this appropriate position, the restarted No. 2 train has a predetermined acceleration (α) m/sec 2
Within the cf section where the vehicle was accelerated at
The train enters the train, decelerates at a predetermined deceleration (-α) m/sec 2 , is able to stop at the station, and has a predetermined time interval (T) between it and the preceding No. 1 train, including the station stopping time (t p )sec. Any position that can maintain sec is sufficient.

この場合、上記所定時隔(T)sec最小時隔
(Tp)secは次のように適当値に設定すればよ
い。
In this case, the predetermined time interval (T)sec minimum time interval ( Tp )sec may be set to an appropriate value as follows.

駅構内減速区間1列車以外は上記第1図の場合
と同一条件とすれば、No.1列車1A(スタート寸
前)とNo.2列車2Aとの位置関係から、 Tp―tp≧V/2α+V/α+V/α =5/2(V/α) …… ∴ Tp=5/2(V/α)+tp …… となる。
If the conditions are the same as in Figure 1 above except for the 1 train in the station deceleration section, then from the positional relationship between No. 1 train 1A (just before the start) and No. 2 train 2A, T p - t p ≧ V n /2α+V n /α+V n /α = 5/2 (V n /α) ... ∴ T p = 5/2 (V n /α) + t p ....

上記実施例より明らかなように、本発明に云う
駅構内減速区間に最小複数2列車を存在させる場
合でも最小運転時隔(tp)secは (3/2・V/α+tp)=(5/2)(V/α
)sec… (〓11―2式よりtp=Vn/α)前出==
……であるのに対し、従来の駅構内1列車の場
合、その他条件を同一として最小運転時隔Tpは (5/2・V/α+tp)=(7/2)(V/α
)sec …(〓11―2式よりtp=Vn/α)であり、前者
に比し40%大である。
As is clear from the above embodiment, even when a minimum of two trains are present in the station deceleration section according to the present invention, the minimum operation time interval (t p )sec is (3/2・V n /α+t p )=( 5/2) (V n
) sec… (〓From formula 11-2, t p =V n /α) Previous ==
On the other hand, in the conventional case of one train within a station, the minimum operating time interval T p is (5/2・V n /α+t p )=(7/2) (V n / α
) sec...(from formula 11-2, t p =V n /α), which is 40% larger than the former.

一般に所定運転時隔(T)時間を有して行う並
列運転の場合の輸送力Q(人/時間)=3600
(MD/T)で示され、その他を一定とすればQ
は運転時隔に逆比例することになる。但し、Mは
列車長Dのm当たりの定員(人/m)とする。
In general, transportation capacity Q (person/hour) in the case of parallel operation performed with a predetermined operation interval (T) hours = 3600
(MD/T), and assuming other things are constant, Q
is inversely proportional to the driving time interval. However, M is the capacity (persons/m) per m of train length D.

第1図に示す本発明一実施例の単純モデルの場
合は上記した従来方式に比し、40%UPの輸送力
を有することになる。
The simple model of the embodiment of the present invention shown in FIG. 1 has a transport capacity 40% higher than that of the conventional system described above.

上記の場合、本発明の1例であり列車の進入し
た閉塞区間が閉塞された場合の減速度、第1、第
2減速区間長、高等速区間長列車長、停車時分等
の値を異にすることで、最小時隔を含む所定時隔
が異なつてくることは云うまでもなく、上記各運
転条件を必要に応じて条件設定してやればよい。
In the above case, which is an example of the present invention, the values of the deceleration, first and second deceleration section lengths, high speed section length, train length, stopping time, etc. when the blocked section into which the train entered is blocked are changed. By doing so, it goes without saying that the predetermined time intervals including the minimum time interval will be different, and each of the above operating conditions may be set as necessary.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す説明図、第2
図は第1図のキ電区分による駅構内列車並列運転
の為の電力供給・遮断制御回路の一例を示す電気
回路図、第3図は従来の電気鉄道を含む鉄道の列
車閉塞の一例を示す説明図である。 1および2はそれぞれキ電線、3は負のキ電
線、4は電力供給線、5および6はそれぞれ集電
機構、7は電力供給線である。
FIG. 1 is an explanatory diagram showing one embodiment of the present invention, and FIG.
The figure is an electric circuit diagram showing an example of the power supply/cutoff control circuit for parallel operation of trains within the station premises using the electric power division shown in Figure 1. Figure 3 shows an example of train blockage on railways including conventional electric railways. It is an explanatory diagram. 1 and 2 are power wires, 3 is a negative power wire, 4 is a power supply line, 5 and 6 are current collection mechanisms, and 7 is a power supply line.

Claims (1)

【特許請求の範囲】 1 駅構内減速区間には、所定時間で所定速度ま
での移動体を減速させる少なくとも1移動体長以
上の第1減速区間と、この減速された速度以下で
移動体を走行させる少なくとも1移動体長以上の
低等速区間と、終端に乗降のための駅停車区間を
含む1移動体長以上の第2減速区間とが移動体進
行方向に順次設けられ、 所定区間に存在する移動体を駆動する移動体駆
動装置は、1つ前方区間の移動体駆動装置が電力
負荷を受けることにより、電力供給が遮断され
て、各区間が閉塞制御され、 先行移動体(以下No.1移動体と云う)が第2減
速区間にいると否とにかかわらず、後続移動体
(以下No.2移動体と云う)は第1減速区間内へ、
所定第1減速パターンで進入走行し、 低等速区間へ進入する迄の間にNo.1移動体が第
2減速区間を抜け出した場合は、No.2移動体は上
記低等速区間を所定速度で上記第2減速区間へ進
入し、所定時隔で駅に停車し、 No.2移動体が低等速区間へ進入する迄に停車中
のNo.1移動体が第2減速区間を抜け出さない場合
は、No.2移動体は上記低等速区間に入つても同区
間は閉塞されているため所定低等速走行に移るこ
となく、所定の減速パターンに従つて減速を続
け、上記低等速減速区間内の所定位置に停車し、
No.1移動体が第2減速区間を抜け出るのを待つ
て、再スタートし、低等速区間内で第2減速区間
への所定進入速度に復した上で上記第2減速区間
へ進入し、所定時隔で駅に停車し、 No.1移動体が第2減速区間に異常停車のままで
いる事により途中停車したNo.2移動体の1つ後方
の移動体(以下No.3移動体と云う)は、駅構内減
速区間1つ後方の区間へ進入するが、該区間はNo.
2移動体が低等速区間にいることで閉塞され、構
内第1減速区間1つ後方の区間の所定位置で減
速・停止し、No.2移動体が低等速区間を抜け切つ
た時点でスタートし、当該区間内で、上記第1減
速区間所定進入速度(停止前の速度)に復するよ
うに制御されることを特徴とする駅構内減速区間
複数列車並列運転装置。 2 少なくとも駅構内減速区間の各区間には、そ
れぞれ区間毎に絶縁区分された2つのキ電線と各
区間間に連続した他のキ電線が設けられ、これら
キ電線から移動体駆動装置が電力負荷を受けるよ
うに構成され、各区間の前記一方のキ電線と電力
を給電する電力供給線との間には、それぞれ移動
体進行方向1つ前方区間に存在する移動体駆動装
置が前記他方のキ電線から電力負荷を受けること
により動作する常閉接型スイツチが設けられて、
各区間が閉塞制御されることを特徴とした特許請
求の範囲第1項記載の駅構内減速区間複数列車並
列運転装置。 3 少なくとも駅構内減速区間の各区間には所定
の走行パターンになるよう周回する磁性ベルトコ
ンベアユニツトを移動体駆動装置として設置した
ことを特徴とした特許請求の範囲第1項記載の駅
構内減速区間複数列車並列運転装置。
[Scope of Claims] 1. The station deceleration section includes a first deceleration section of at least one length of the moving body in which the moving body is decelerated to a predetermined speed in a predetermined time, and a first deceleration section in which the moving body is made to travel at the reduced speed or less. A low constant velocity section of at least one moving body length or more, and a second deceleration section of one moving body length or more including a station stop section for boarding and alighting at the end thereof are provided sequentially in the moving direction of the moving body, and the moving body existing in the predetermined section When the moving body driving device in one section ahead receives a power load, the power supply is cut off, each section is controlled to be blocked, and the moving body driving device driving the preceding moving body (hereinafter referred to as No. 1 moving body Regardless of whether or not the No. 2 moving object (hereinafter referred to as No. 2 moving object) is in the second deceleration section, the following moving object (hereinafter referred to as No. 2 moving object) moves into the first deceleration section,
If the No. 1 mobile object enters the predetermined first deceleration pattern and exits the second deceleration section before entering the low constant velocity section, the No. 2 mobile object moves through the above low constant speed section in the predetermined manner. The vehicle enters the second deceleration zone at a constant speed, stops at a station at a predetermined interval, and the stationary No. 1 moving object exits the second deceleration zone by the time the No. 2 mobile object enters the low constant speed zone. If not, even if the No. 2 moving object enters the above-mentioned low constant velocity section, since the same section is blocked, it will not shift to the predetermined low constant speed traveling, but will continue to decelerate according to the predetermined deceleration pattern, and will continue to decelerate according to the predetermined deceleration pattern. Stop at a predetermined position within the constant speed deceleration section,
Waiting for the No. 1 mobile object to exit the second deceleration zone, restart the vehicle, return to the predetermined approach speed to the second deceleration zone within the low constant velocity zone, and then enter the second deceleration zone, The No. 1 mobile object stops at the station at predetermined intervals, and as a result of the No. 1 mobile object remaining at an abnormal stop in the second deceleration zone, the No. ) enters the section one step behind the station deceleration section, but that section is No.
The No. 2 mobile object is blocked because it is in the low constant velocity section, and it decelerates and stops at a predetermined position in the section behind the first deceleration section in the premises, and when the No. 2 mobile object passes through the low constant speed section, it decelerates and stops. A device for parallel operation of multiple trains in a deceleration section within a station, characterized in that the system is controlled to start and return to a predetermined entry speed (speed before stopping) in the first deceleration section within the section. 2 At least in each section of the deceleration section within the station premises, there are two electrical wires insulated for each section and another electrical wire continuous between each section, and the mobile object driving device receives the power load from these electrical wires. A movable body driving device, which is located one section ahead in the moving direction of the movable body, is located between the one main electric wire in each section and the power supply line that supplies electric power. A normally closed contact type switch is provided, which operates by receiving a power load from the electric wire.
2. A parallel train operation system for multiple trains in deceleration sections within a station according to claim 1, wherein each section is controlled to be blocked. 3. The station deceleration section according to claim 1, wherein at least each section of the station deceleration section is provided with a magnetic belt conveyor unit that circulates in a predetermined running pattern as a moving body drive device. Multiple train parallel operation device.
JP7828778A 1978-06-28 1978-06-28 Multiple train parallel operation system for deceleration sections in station Granted JPS554269A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7828778A JPS554269A (en) 1978-06-28 1978-06-28 Multiple train parallel operation system for deceleration sections in station

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7828778A JPS554269A (en) 1978-06-28 1978-06-28 Multiple train parallel operation system for deceleration sections in station

Publications (2)

Publication Number Publication Date
JPS554269A JPS554269A (en) 1980-01-12
JPS6256021B2 true JPS6256021B2 (en) 1987-11-24

Family

ID=13657729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7828778A Granted JPS554269A (en) 1978-06-28 1978-06-28 Multiple train parallel operation system for deceleration sections in station

Country Status (1)

Country Link
JP (1) JPS554269A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5241307A (en) * 1975-09-26 1977-03-30 Hitachi Ltd Control system for stopping a vehicle at a predetermined position

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5241307A (en) * 1975-09-26 1977-03-30 Hitachi Ltd Control system for stopping a vehicle at a predetermined position

Also Published As

Publication number Publication date
JPS554269A (en) 1980-01-12

Similar Documents

Publication Publication Date Title
EP0714355B1 (en) Switch system for personal rapid transit
US3037462A (en) Railway control system for coincident local and express service
CN109398161B (en) Trackside signal equipment system of automatic neutral section passing (ATP) area
JP3041525B2 (en) Guided vehicle automatic control method and guided vehicle automatic control device
GB1560266A (en) Control system for controlling electrically driven vehicles running a fixed path
CN108163008A (en) A kind of rail system and its control method of public dynamic means of transportation
KR100943782B1 (en) Automatic and guided system for transporting people and method for controlling transport modules running in such a system
US3817182A (en) Automatic transportation system car units and control circuits therefor
JPS6256021B2 (en)
US5016542A (en) Transit system
JP4436073B2 (en) Railway vehicle operation method and operation system
US5116002A (en) Stopping zones in a linear motor in-track transit system
US5118055A (en) Reduced voltage braking system in a linear motor in-track transit system
USRE28306E (en) Automatic electric power supply and speed control system for automated driverless vehicles
JPS5915247B2 (en) Fixed position stopping method for moving objects using electric power control
US3037461A (en) Railway control system
US2525507A (en) Automatic control for booster relay on electric vehicles
Longo et al. The automation control systems for the efficiency of metro transit lines
JP7309299B2 (en) train control system
JPS5852403B2 (en) Traveling body control method using electric power control
WO1992000862A1 (en) Linear motor in-track transit system
US3432654A (en) Vehicle remote control system
JP2022143945A (en) train control system
JPS6233108B2 (en)
KR800001579B1 (en) Ravelling object control system utilizing power control