JPS6255588B2 - - Google Patents

Info

Publication number
JPS6255588B2
JPS6255588B2 JP55070133A JP7013380A JPS6255588B2 JP S6255588 B2 JPS6255588 B2 JP S6255588B2 JP 55070133 A JP55070133 A JP 55070133A JP 7013380 A JP7013380 A JP 7013380A JP S6255588 B2 JPS6255588 B2 JP S6255588B2
Authority
JP
Japan
Prior art keywords
refrigerant
tank body
tank
suction
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55070133A
Other languages
Japanese (ja)
Other versions
JPS56168068A (en
Inventor
Toshiji Hara
Katsumi Myazaki
Masao Moro
Susumu Kashiwazaki
Shigeyasu Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP7013380A priority Critical patent/JPS56168068A/en
Publication of JPS56168068A publication Critical patent/JPS56168068A/en
Publication of JPS6255588B2 publication Critical patent/JPS6255588B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/02Centrifugal separation of gas, liquid or oil

Landscapes

  • Compressor (AREA)

Description

【発明の詳細な説明】 本発明は空気調和機の冷凍サイクルに関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a refrigeration cycle for an air conditioner.

従来の空気調和機の冷凍サイクルを第1図およ
び第2図により説明する。1は回転式圧縮機、2
は凝縮用熱交換器、3は蒸発用熱交換器、4は減
圧用キヤピラリチユーブ、5はサクシヨンタンク
である。回転式圧縮機1で圧縮された高温・高圧
のガス状の冷媒は、凝縮用熱交換器(以下凝縮器
という)2で放熱、凝縮し、キヤピラリチユーブ
4で減圧され、蒸発用熱交換器(以下蒸発器とい
う)3で吸熱、蒸発して冷房運転を行なう。圧縮
機1の冷媒吸込側の前に第2図に示す構造のサク
シヨンタンク5を設けている。サクシヨンタンク
の第1の目的は圧縮機で発生する騒音の消音であ
り、第2の目的は圧縮機への液戻り防止である。
すなわちサクシヨンタンクは冷房運転中、余剰の
液化した冷媒7を一時タンク本体5′内に貯め、
ガス状の冷媒のみ圧縮機1に戻し、又冷媒中に滞
溜した冷凍機油8を冷媒吐出パイプ11に形成さ
れた小孔12から戻そうとするものである。しか
し、従来の冷凍サイクルでは、運転中サクシヨン
タンク中に滞溜した液状冷媒と、運転停止時凝縮
器2からキヤピラリチユーブを介して流入し増量
した蒸発器内滞溜液状冷媒とを、運転開始時(以
下始動時という)に圧縮器1が小孔12を通して
一時に吸引、押出するため圧縮機に液体圧縮のた
めの過大な負荷がかかり、このため圧縮機を大き
なトルクで回転させなければ始動できなかつた。
したがつて、圧縮機回転用に高出力の原動機もし
くは、始動時のみ高出力となる原動機付属装置が
必要である等の欠陥があつた。また始動時のトル
クを増すと原動機入力も増し省エネルギー的にも
望ましくない結果を与えていた。本発明の目的は
上記欠点を除去した始動トルクが小さい冷媒サイ
クルを提供することにある。本発明はこの目的の
ために、サクシヨンタンク内の冷媒蒸気流を利用
し、蒸気流と液体流とに高速流で慣性分離するこ
とにより1ケのタンクでサクシヨンタンクとアキ
ユムレータの作用を同時に行なわせるものであ
る。
The refrigeration cycle of a conventional air conditioner will be explained with reference to FIGS. 1 and 2. 1 is a rotary compressor, 2
3 is a condensing heat exchanger, 3 is an evaporation heat exchanger, 4 is a decompression capillary tube, and 5 is a suction tank. The high-temperature, high-pressure gaseous refrigerant compressed by the rotary compressor 1 radiates heat and condenses in a condensing heat exchanger (hereinafter referred to as a condenser) 2, is depressurized in a capillary tube 4, and is transferred to an evaporation heat exchanger. (hereinafter referred to as evaporator) 3 absorbs heat and evaporates to perform cooling operation. A suction tank 5 having the structure shown in FIG. 2 is provided in front of the refrigerant suction side of the compressor 1. The first purpose of the suction tank is to muffle the noise generated by the compressor, and the second purpose is to prevent liquid from returning to the compressor.
That is, during cooling operation, the suction tank temporarily stores surplus liquefied refrigerant 7 in the tank body 5'.
It is intended to return only the gaseous refrigerant to the compressor 1 and to return the refrigerating machine oil 8 accumulated in the refrigerant through the small hole 12 formed in the refrigerant discharge pipe 11. However, in conventional refrigeration cycles, the liquid refrigerant accumulated in the suction tank during operation and the liquid refrigerant accumulated in the evaporator, which flows in from the condenser 2 through the capillary tube when operation is stopped and increased in amount, are transferred during operation. At the time of starting (hereinafter referred to as "starting time"), the compressor 1 sucks and extrudes liquid through the small hole 12 at the same time, so an excessive load is placed on the compressor to compress the liquid, so the compressor must be rotated with a large torque. I couldn't start it.
Therefore, there were drawbacks such as the need for a high-output prime mover to rotate the compressor or a prime mover accessory device that outputs high output only during startup. Furthermore, increasing the starting torque also increases the input power to the prime mover, resulting in undesirable results in terms of energy conservation. SUMMARY OF THE INVENTION An object of the present invention is to provide a refrigerant cycle with low starting torque that eliminates the above-mentioned drawbacks. For this purpose, the present invention utilizes the refrigerant vapor flow in the suction tank and inertially separates it into a vapor flow and a liquid flow at high speed, thereby performing the functions of a suction tank and an accumulator simultaneously in one tank. It is something you can do.

以下実施例によつて本発明を詳細に説明する。
第3図は本発明の一実施例を示す。サクシヨンタ
ンクは第3図に示すようにバツフル板13に冷媒
入口パイプ10から流出される冷媒流方向とずら
してとりつけたパイプ19の下端に小孔12′が
設けてありパイプ19の吐出口をタンク本体5″
の円周方向に向けてある。タンク本体5″内上方
にはバツフル板13とあみ9を配し、タンク上部
には蒸発器3の冷媒吐出口に接続されている冷媒
入口パイプ10が設けられている。冷媒吐出パイ
プ11はタンク本体5″下部より圧縮機1の冷媒
吸込口に接続されている。圧縮機1が始動すると
直ぐに蒸発器3内の液冷媒は吸引されタンク本体
5″に至るが従来と異なりバツフル板13にタン
ク本体5″下方に向つて垂れ下げてとりつけたパ
イプ19に流入しタンク本体5″下方で上向きに
なりタンク本体5″上方に位置された吐出口で高
速な冷媒噴流16(約10m/s)となりタンク本
体5″の円周方向に噴出する。冷媒噴流16中の
蒸気流17は比重が小さいためなめらかに流れ方
向を変換して冷媒吐出パイプ11内に流入するが
比重の大きな液体流18は遠心力でタンク本体
5″の壁面にそのまま衝突し補促された後重力で
タンク本体5″内に落下する。蒸気流17はその
まま冷媒吐出パイプ11を経て圧縮機1に至る。
なお蒸気流17中には微細な液滴も浮遊するがこ
れらも蒸気流17とともに圧縮機1に至る。この
作用があるため冷凍機油の圧縮機への回収が保証
される。パイプ19の下部には小孔12′を設け
タンク本体5″内に残溜した液状冷媒7と冷凍機
油8は常に小孔12′よりパイプ19内に流入し
微細な液滴として圧縮機に回収する。こうするこ
とにより一時の過大な液戻りを防止するとともに
常に一定の油戻りを保証することができる。
The present invention will be explained in detail below with reference to Examples.
FIG. 3 shows an embodiment of the invention. As shown in FIG. 3, the suction tank is provided with a small hole 12' at the lower end of a pipe 19 which is attached to the buttful plate 13 so as to be offset from the flow direction of the refrigerant flowing out from the refrigerant inlet pipe 10. Tank body 5″
It is oriented in the circumferential direction. A baffle plate 13 and a thread 9 are disposed above the tank body 5'', and a refrigerant inlet pipe 10 connected to the refrigerant discharge port of the evaporator 3 is provided at the top of the tank.The refrigerant discharge pipe 11 is connected to the tank body 5''. It is connected to the refrigerant suction port of the compressor 1 from the lower part of the main body 5''. Immediately when the compressor 1 starts, the liquid refrigerant in the evaporator 3 is sucked and reaches the tank body 5'', but unlike the conventional method, it flows into the pipe 19 attached to the buttful plate 13 hanging downward from the tank body 5'', and flows into the tank. The refrigerant jet 16 turns upward at the bottom of the main body 5'' and becomes a high-speed refrigerant jet 16 (approximately 10 m/s) at the discharge port located above the tank main body 5'' and is ejected in the circumferential direction of the tank body 5''. Steam in the refrigerant jet 16 Since the flow 17 has a low specific gravity, it smoothly changes its flow direction and flows into the refrigerant discharge pipe 11, but the liquid flow 18, which has a high specific gravity, directly collides with the wall of the tank body 5'' due to centrifugal force, and after being urged by gravity. The vapor flow 17 then passes through the refrigerant discharge pipe 11 and reaches the compressor 1.
Note that fine droplets also float in the vapor flow 17, and these also reach the compressor 1 together with the vapor flow 17. This effect ensures that the refrigerating machine oil is recovered to the compressor. A small hole 12' is provided at the bottom of the pipe 19, and the liquid refrigerant 7 and refrigerating machine oil 8 remaining in the tank body 5'' always flow into the pipe 19 through the small hole 12' and are collected in the compressor as fine droplets. By doing this, it is possible to prevent a temporary excessive return of liquid and to always guarantee a constant return of oil.

第4図に本発明により実施した結果を示した。
Aは従来例であり、Bは本発明によるものであ
る。本発明によれば圧縮機始動直後の液戻り量の
ピークを減少せしめ、かつ時間が経過した後の定
常的な液戻り量を確保している。
FIG. 4 shows the results carried out according to the present invention.
A is a conventional example, and B is according to the present invention. According to the present invention, the peak of the liquid return amount immediately after the compressor is started is reduced, and a steady liquid return amount is ensured after time has elapsed.

第5図、第6図には第3図で示したタンク構造
の断面図を示していて、第5図はパイプ19をタ
ンク内壁に沿わせた場合、第6図はパイプ19の
端面に斜めに切断した場合を示している。
5 and 6 show cross-sectional views of the tank structure shown in FIG. 3. In FIG. 5, the pipe 19 is placed along the inner wall of the tank, and in FIG. The figure shows the case when cut to .

第7図は本発明の別の一実施例を示していて、
パイプ19の先端をバツフル板13に対して垂直
にしたものである。このときにも気液間の比重量
の差により、慣性分離できる。また第8図、第9
図は冷媒吐出パイプ11の吸込口の形状の例を示
したもので、気体だけを吸い込むようにパイプ1
9と反対側に斜めカツト又はパイプ先端を曲げた
ものであり、さらに分離効果が著しい。
FIG. 7 shows another embodiment of the present invention,
The tip of the pipe 19 is made perpendicular to the vertical plate 13. At this time as well, inertial separation is possible due to the difference in specific weight between gas and liquid. Also, Figures 8 and 9
The figure shows an example of the shape of the suction port of the refrigerant discharge pipe 11.
The tip of the pipe is bent diagonally to the side opposite to 9, and the separation effect is even more remarkable.

なお消音器(サイレンサ)としての効果を失う
ことのないようタンク本体5″の内容積、縦横比
を回転式圧縮機の要求する寸法範囲内で上記効果
を出すことが要求されたが、実験によれば従来と
同等の消音効果のままで始動トルクが22%減小す
ることが確認できた。なお本発明の効果は第4〜
7図に示した他にも流体の慣性力を利用したサク
シヨンタンクでも同様で、本発明は以上に図示し
たものに制限されない。
In order not to lose its effectiveness as a silencer, it was necessary to maintain the internal volume and aspect ratio of the tank body 5'' within the size range required by the rotary compressor, but this was not possible in the experiment. According to the results, it was confirmed that the starting torque was reduced by 22% while maintaining the same noise reduction effect as the conventional one.
In addition to the suction tank shown in FIG. 7, the same applies to suction tanks that utilize the inertial force of fluid, and the present invention is not limited to what is shown above.

以上説明したように本発明は、サクシヨンタン
ク5にアキユムレータ効果を具備した第3図に示
す構造としたため、冷房運転停止時にタンク本体
に貯まつた液状冷媒7、冷凍機油8を始動時圧縮
機1が急激大量に吸い込むことがないため、圧縮
機回転負荷が小さく低出力の原動機にて冷房運転
ができるようになつた。
As explained above, in the present invention, the suction tank 5 has the structure shown in FIG. 1 does not sud- denly draw in a large amount, so the rotational load on the compressor is small and cooling operation can now be performed using a low-output prime mover.

尚、本実施例によれば、サクシヨンタンク5の
構造(第3図)は、従来のもの(第2図)の若干
の改造により製作可能であり、価格差はほとんど
無い。
According to this embodiment, the structure of the suction tank 5 (FIG. 3) can be manufactured by slightly modifying the conventional structure (FIG. 2), and there is almost no difference in price.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の空気調和機の冷凍サイクル構成
図、第2図は従来のサクシヨンタンクの構造図、
第3図、第5図〜第9図は本発明の一実施例のサ
クシヨンタンクの構造図、第4図は本発明の一実
施例の性能を示す図である。 1……回転式圧縮機、2……凝縮用熱交換器、
3……蒸発用熱交換器、4……キヤピラリチユー
ブ、5……サクシヨンタンク、5′,5″……タン
ク本体、7……液状冷媒、8……冷凍機油、9…
…あみ、10……冷媒入口パイプ、11……冷媒
吐出パイプ、12,12′……冷凍機油通過用小
孔、13……バツフル板、16……冷媒噴流、1
7……蒸気流、18……液体流、19……パイ
プ、→は冷媒の流れる方向を示す。
Figure 1 is a configuration diagram of the refrigeration cycle of a conventional air conditioner, Figure 2 is a structural diagram of a conventional suction tank,
3 and 5 to 9 are structural diagrams of a suction tank according to an embodiment of the present invention, and FIG. 4 is a diagram showing the performance of an embodiment of the present invention. 1...Rotary compressor, 2...Condensing heat exchanger,
3... Evaporation heat exchanger, 4... Capillary tube, 5... Suction tank, 5', 5''... Tank body, 7... Liquid refrigerant, 8... Refrigerating machine oil, 9...
... Net, 10 ... Refrigerant inlet pipe, 11 ... Refrigerant discharge pipe, 12, 12' ... Refrigerating machine oil passage small hole, 13 ... Full plate, 16 ... Refrigerant jet, 1
7...vapor flow, 18...liquid flow, 19...pipe, → indicates the direction in which the refrigerant flows.

Claims (1)

【特許請求の範囲】[Claims] 1 蒸発用熱交換器の冷媒吐出口と圧縮機の冷媒
吸込口との間にサクシヨンタンクを有する空気調
和機の冷凍サイクルにおいて、上記サクシヨンタ
ンクが、タンク本体と、該タンク本体の上端と上
記冷媒吐出口とに接続された冷媒入口パイプと、
上記タンク本体内上方に水平に配設されたバツフ
ル板と、該バツフル板にとりつけられるとともに
タンク本体内下方に向つて垂れ下がりタンク本体
内下方で曲げられてタンク本体内上方にその吐出
口を位置せしめられたパイプと、上記タンク本体
内下部と上記冷媒吸込口とに接続されるとともに
その吸込口をタンク本体内上方に位置せしめた冷
媒吐出パイプとを備え、上記パイプは上記バツフ
ル板へのとりつけ位置を上記冷媒入口パイプから
流出される冷媒の流れ方向とずらされているとと
もに下部の曲げられた部分に小孔が形成されて成
ることを特徴とする空気調和機の冷凍サイクル。
1. In the refrigeration cycle of an air conditioner having a suction tank between the refrigerant discharge port of the evaporative heat exchanger and the refrigerant suction port of the compressor, the suction tank has a tank body, an upper end of the tank body, a refrigerant inlet pipe connected to the refrigerant discharge port;
A buttful plate is installed horizontally above the tank body, and is attached to the buttfull plate and hangs downwardly within the tank body, and is bent below the tank body to position its discharge port above the tank body. and a refrigerant discharge pipe connected to the lower part of the tank body and the refrigerant suction port, with the suction port located above the tank body, and the pipe has a mounting position on the butt-full plate. A refrigeration cycle for an air conditioner, characterized in that the refrigerant inlet pipe is deviated from the flow direction of the refrigerant flowing out from the refrigerant inlet pipe, and a small hole is formed in a lower bent portion.
JP7013380A 1980-05-28 1980-05-28 Refrigeration cycle for airconditioner Granted JPS56168068A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7013380A JPS56168068A (en) 1980-05-28 1980-05-28 Refrigeration cycle for airconditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7013380A JPS56168068A (en) 1980-05-28 1980-05-28 Refrigeration cycle for airconditioner

Publications (2)

Publication Number Publication Date
JPS56168068A JPS56168068A (en) 1981-12-24
JPS6255588B2 true JPS6255588B2 (en) 1987-11-20

Family

ID=13422756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7013380A Granted JPS56168068A (en) 1980-05-28 1980-05-28 Refrigeration cycle for airconditioner

Country Status (1)

Country Link
JP (1) JPS56168068A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1114199A (en) * 1997-06-24 1999-01-22 Mitsubishi Electric Corp Accumulator

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5060818A (en) * 1973-10-03 1975-05-26

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4880140U (en) * 1971-12-30 1973-10-01

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5060818A (en) * 1973-10-03 1975-05-26

Also Published As

Publication number Publication date
JPS56168068A (en) 1981-12-24

Similar Documents

Publication Publication Date Title
US1836318A (en) Refrigerating system
JP3322263B1 (en) Ejector cycle, gas-liquid separator used therefor, and water heater and heat management system using this ejector cycle
US7386994B2 (en) Oil separator and cooling-cycle apparatus using the same
CN105339678A (en) Ejector
US6389842B1 (en) Accumulator-dehydrator assembly with anti-bump expansion chamber “J”-tube
JP4407094B2 (en) Gas-liquid separator
JPH0697122B2 (en) Turbo refrigerator
CN106969558A (en) The heat-exchange method of refrigeration system and refrigeration system
JP4147793B2 (en) Gas-liquid separator for ejector cycle
CN113944964A (en) Air conditioning system
JP2002349978A (en) Ejector cycle
JPS6255588B2 (en)
CN216203957U (en) Air conditioning system
JPS6319785B2 (en)
CN216203954U (en) Air conditioning system
KR100819015B1 (en) Internal oil separator for compressor
JP2000199658A (en) Gas/liquid separator for cooling device
CN113864930A (en) Air conditioning system
JPH0541318Y2 (en)
JP6780567B2 (en) Gas-liquid separator and refrigeration cycle equipment
JPH07127951A (en) Accumulator
US3411319A (en) Accumulator
JPS6240298Y2 (en)
JPS5822064Y2 (en) turbo refrigerator
JPH08166175A (en) Refrigerant heating type heating-cooling machine