JPS6255555A - Air/fuel ratio controller for internal combustion engine - Google Patents

Air/fuel ratio controller for internal combustion engine

Info

Publication number
JPS6255555A
JPS6255555A JP60195592A JP19559285A JPS6255555A JP S6255555 A JPS6255555 A JP S6255555A JP 60195592 A JP60195592 A JP 60195592A JP 19559285 A JP19559285 A JP 19559285A JP S6255555 A JPS6255555 A JP S6255555A
Authority
JP
Japan
Prior art keywords
air
fuel ratio
current
oxygen
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60195592A
Other languages
Japanese (ja)
Inventor
Tomohiko Kawanabe
川鍋 智彦
Noritaka Kushida
櫛田 孝隆
Masahiko Asakura
正彦 朝倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP60195592A priority Critical patent/JPS6255555A/en
Publication of JPS6255555A publication Critical patent/JPS6255555A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To achieve a higher operability where the air/fuel ratio is controlled to a value in the vicinity of the theoretical air/fuel ratio, by stopping the supply of current to an oxygen pump element when a target air/fuel ratio is set below a specified value. CONSTITUTION:An oxygen concentration detector has a pair of oxygen ion conductive solid electrolytic materials each having a pair of electrodes arranged as opposed to each other in an emission gas of an internal combustion engine through a specified clearance part 3; one thereof acts as oxygen pump element 1, and the other as battery element 2 for measuring oxygen concentration ratio. A current supply circuit 11 supplies current to electrodes 5 and 6 of the element 1. Then, a control circuit 31 discriminates the air/fuel ratio of a mixed gas fed to the engine according to a voltage generated between electrodes 7 and 8 of the element 2. A target air/fuel ratio is set for the supply mixed gas and according to the results of the discrimination, the air/fuel ratio of the supply mixed gas is adjusted. When the target air/fuel ratio is below a specified value, the supply of current to the element 1 is stopped by the circuit 11.

Description

【発明の詳細な説明】 逸五公1 本発明は内燃エンジンの空燃比制御装置に関する。[Detailed description of the invention] Itgoko 1 The present invention relates to an air-fuel ratio control device for an internal combustion engine.

m玉 内燃エンジンの排気ガス浄化、燃費改善等を目的として
、排気ガス中のFI!素濃度を検出し、この検出結果に
応じてエンジンへの供給混合気の空燃比を目標空燃比に
フィードバック制御する空燃比制御装置がある。
FI in the exhaust gas for the purpose of purifying the exhaust gas of m-ball internal combustion engines and improving fuel efficiency! There is an air-fuel ratio control device that detects the elementary concentration and performs feedback control of the air-fuel ratio of the air-fuel mixture supplied to the engine to a target air-fuel ratio according to the detection result.

このような空燃比制御装置に用いられる酸素濃度検出装
置として被測定気体中のm素m度に比例した出力を発生
するものがある(特開昭58−153155号)。かか
るR索漠度検出装置においては、一対の平板状の酸素イ
オン伝導性固体電解質材を有する酸素濃度検出鼎が設け
られている。
As an oxygen concentration detection device used in such an air-fuel ratio control device, there is a device that generates an output proportional to m degrees in the gas to be measured (Japanese Patent Laid-Open No. 153155/1983). Such an R desertity detection device is provided with an oxygen concentration detection device having a pair of flat oxygen ion conductive solid electrolyte materials.

その固体電解質材は被測定気体中に配置されるようにな
され、固体電解質材の各表に面には電極が各々形成され
かつ固体電解質材が所定の間隙部を介して対向するよう
に平行に配置されている。固体電解質材の一方が酸素ポ
ンプ素子として、他方が!!素′a度比測定用電池素子
として作用ザるようになっている。被測定気体中にJ3
いて間隙部側電極が角漫になるように酸素ポンプ素子の
電極間に電流を供給すると、酸素ポンプ索子の負極面側
にて間隙部内気体中の酸素ガスがイオン化して酸素ポン
プ素子内を正極面側に移動し1−極面から酸素ガスとし
て放出される。このとき、間隙部中の酸素ガスの減少に
より間隙部内の気体と電池素子外側の気体との間に酸素
m反差が生ずるのでII!2累ポンプ素子への供給電流
が一定値であれば電池素子の電極間にその酸素濃度差、
すなわち被測定気体中の酸素濃度に比例した電圧が発生
するのである。
The solid electrolyte material is placed in the gas to be measured, and electrodes are formed on each surface of the solid electrolyte material, and the solid electrolyte materials are arranged in parallel so as to face each other with a predetermined gap in between. It is located. One side of the solid electrolyte material serves as an oxygen pump element, and the other! ! It is designed to function as a battery element for measuring the elemental temperature ratio. J3 in the gas to be measured
When a current is supplied between the electrodes of the oxygen pump element so that the electrodes on the gap side become square, the oxygen gas in the gap is ionized on the negative electrode side of the oxygen pump cord, and the inside of the oxygen pump element is ionized. It moves to the positive electrode side and is released as oxygen gas from the 1-electrode surface. At this time, due to the decrease in oxygen gas in the gap, an oxygen m difference occurs between the gas in the gap and the gas outside the battery element, so II! If the current supplied to the dual pump element is constant, the oxygen concentration difference between the electrodes of the battery element,
In other words, a voltage proportional to the oxygen concentration in the gas to be measured is generated.

この電池素子の発生電圧からエンジンに供給された混合
気の空燃比が目標空燃比よりリッヂ及びリーンのいずれ
であるか判別される。空燃比を2次空気によって制御す
る場合、リッチと判別されたならば、2次空気をエンジ
ンに供給し、リーンと判別されたならば、2次空気の供
給を停止づることにより空燃比が目標空燃比に制御され
る。
Based on the voltage generated by the battery element, it is determined whether the air-fuel ratio of the air-fuel mixture supplied to the engine is ridge or lean based on the target air-fuel ratio. When controlling the air-fuel ratio using secondary air, if it is determined to be rich, secondary air is supplied to the engine, and if it is determined to be lean, the supply of secondary air is stopped, thereby achieving the target air-fuel ratio. Controlled by air fuel ratio.

かかる酸素濃度検出装置においては、酸素ポンプ素子に
過剰の電流を供給すると、固体電解質材から酸素を奪う
ブラックニング現象が発生する。
In such an oxygen concentration detection device, when an excessive current is supplied to the oxygen pump element, a blackening phenomenon occurs in which oxygen is taken away from the solid electrolyte material.

例えば、固体電解質材としてZr0z(:、酸化ジルコ
ニウム)が用いられた場合、酸素ポンプ素子への過剰電
流供給によりZrO2から酸素02が奪われてジルコニ
ウムZrが析出される。このブラックニング現象はPi
!l索ポンプ素子の劣化を急速に進め酸素濃度検出器と
しての性能を悪化させる原因となる。
For example, when Zr0z (zirconium oxide) is used as the solid electrolyte material, oxygen 02 is taken away from ZrO2 by excessive current supply to the oxygen pump element, and zirconium Zr is precipitated. This blackening phenomenon is caused by Pi
! This causes rapid deterioration of the cable pump element and deteriorates its performance as an oxygen concentration detector.

第1図は電池素子に発生する電圧Vsをパラメータとし
てPa索濃度とR素ポンプ素子への供給電流値Ipとの
関係特性及びブラックニング現象発生領域を示しており
、ブラックニング現象発生領域との境界線は電圧Vsを
パラメータとした関係特性と同様に1次関数的特性であ
るので電圧Vsから酸素ポンプ素子への供給電流がブラ
ックニング現象発生領域の値に属するか否かを判別する
ことができる。よって、電圧Vsがブラックニング現象
発生領域境界電圧より若干小なる電圧以上に上界したと
ぎには酸素ポンプ素子への供給電流がブラックニング現
象発生領域に近い値になるとして該供給電流を減少させ
ることによりブラックニング現象の発生を防止すること
ができる。
Figure 1 shows the relationship between the Pa concentration and the current value Ip supplied to the R element pump element and the blackening phenomenon occurrence region using the voltage Vs generated in the battery element as a parameter. Since the boundary line is a linear functional characteristic similar to the relational characteristic using the voltage Vs as a parameter, it is possible to determine from the voltage Vs whether the current supplied to the oxygen pump element belongs to the value in the blackening phenomenon occurrence region. can. Therefore, when the voltage Vs exceeds a voltage slightly smaller than the boundary voltage of the blackening phenomenon occurrence region, the supply current to the oxygen pump element is reduced to a value close to the blackening phenomenon occurrence region. This makes it possible to prevent the blackening phenomenon from occurring.

ところが、このような酸素濃度検出装置を空燃比制御装
置用に適用すると、エンジンに供給する混合気の空燃比
が理論空燃比(14,7>付近の目標空燃比に制御され
る場合に電圧Vsが激しく上下に変動して非常に不安定
となり、正常検出時の電圧レベルより低下することが分
った。これにより酸素濃度検出装置の出力電圧Vsがら
空燃比を正確に判別できなくなり、該判別結果に応じて
供給混合気の空燃比を制御すると運転性が悪化するので
ある。
However, when such an oxygen concentration detection device is applied to an air-fuel ratio control device, when the air-fuel ratio of the air-fuel mixture supplied to the engine is controlled to a target air-fuel ratio near the stoichiometric air-fuel ratio (14,7> It was found that the voltage fluctuated violently up and down, becoming very unstable, and dropping below the voltage level during normal detection.As a result, the air-fuel ratio could not be accurately determined from the output voltage Vs of the oxygen concentration detection device, and the If the air-fuel ratio of the supplied air-fuel mixture is controlled according to the result, drivability deteriorates.

1旦立見I そこで、本発明の目的は空燃比が理論空燃比付近の値に
制御される場合の運転性の向上を図った空燃比制御装置
を提供することである。
An object of the present invention is to provide an air-fuel ratio control device that improves drivability when the air-fuel ratio is controlled to a value near the stoichiometric air-fuel ratio.

本発明の空燃比制御装置は目標空燃比が所定値以下に設
定されたときには酸素ポンプ素子への電流供給を停止し
て誤った空燃比判別を防止することを特徴としている。
The air-fuel ratio control device of the present invention is characterized in that when the target air-fuel ratio is set below a predetermined value, the current supply to the oxygen pump element is stopped to prevent incorrect air-fuel ratio determination.

夫−通−1 以下、本発明の実施例を図面を参照しつつ説明する。Husband - 1 Embodiments of the present invention will be described below with reference to the drawings.

第2図は本発明による空燃比制御装置を示している。本
装置に、t3いては、互いに平行な一対の平板状素子の
酸素ポンプ索子1及び電池素子2からなる酸素濃度検出
器は排気管(図示せず)内に配設される。酸素ポンプ素
子1及び電池素子2の主体は酸素イオン伝導性固体電解
質材からなり、その一端部間には間隙部3が形成され、
他端部はスペーサ4を介して互いに結合されている。ま
た酸素ポンプ素子1及び電池素子2の一端部の表裏面に
多孔質の耐熱全屈からなる方形状の電極板5ないし8が
設けられ、他端部面には電極板5ないし8の引ぎ出しF
i15aないし8aが形成されている。
FIG. 2 shows an air-fuel ratio control device according to the present invention. In this apparatus, at t3, an oxygen concentration detector consisting of a pair of parallel planar elements, the oxygen pump cord 1 and the battery element 2, is disposed in an exhaust pipe (not shown). The main body of the oxygen pump element 1 and the battery element 2 is made of an oxygen ion conductive solid electrolyte material, and a gap 3 is formed between one end thereof,
The other ends are connected to each other via a spacer 4. Further, rectangular electrode plates 5 to 8 made of porous heat-resistant fully bendable material are provided on the front and back surfaces of one end of the oxygen pump element 1 and the battery element 2, and the electrode plates 5 to 8 are provided on the other end surface. Out F
i15a to i8a are formed.

酸素ポンプ素子1の電極板5.6間には定電流回路11
から定電流が供給される。定電流回路11は吸い込み型
回路であり、オペアンプ12.NPNトランジスタ13
及び抵抗15ないし17からなる。オペアンプ12の出
力端は抵抗15を介してトランジスタ13のベースに接
続されている。
A constant current circuit 11 is connected between the electrode plates 5 and 6 of the oxygen pump element 1.
A constant current is supplied from the The constant current circuit 11 is a sink type circuit, and the operational amplifier 12. NPN transistor 13
and resistors 15 to 17. The output terminal of the operational amplifier 12 is connected to the base of the transistor 13 via a resistor 15.

またトランジスタ13のエミッタは抵抗16を介してア
ースされると共に抵抗17を介してオペアンプ12の反
転入力端に接続されている。トランジスタ13のコレク
タは酸素ポンプ素子1の内側電極板6に引き出し線6a
を介して接続され、外側電極板5には電圧VBが引ぎ出
し線5aを介して供給されるようになっている。
Further, the emitter of the transistor 13 is grounded via a resistor 16 and connected via a resistor 17 to the inverting input terminal of the operational amplifier 12. The collector of the transistor 13 is connected to the inner electrode plate 6 of the oxygen pump element 1 by a lead wire 6a.
A voltage VB is supplied to the outer electrode plate 5 via a lead wire 5a.

一方、電池素子2の内側電極板7は引き出し線7aを介
してアースされ、外側電極板8は引き出し線8aを介し
てフィルタ回路19に接続されている。フィルタ回路1
9は抵抗20.コンデンサ21からなり、電池素子2の
電極板7.8間に発生した電圧信号のノイズ成分を除去
するようになっている。フィルタ回路19の出力端には
オペアンプ26.抵抗27ないし29からなる非反転増
幅器30を介して空燃比制御回路31のVs”入力端に
接続されている。空燃比制御回路31のIC制御出力端
にはD/A変換器32が接続され、D/A変換器32は
空燃比1.111110路31のIc制御出力端から出
力されるディジタル信号に応じた電圧を発生する。D/
A変換器32の出力端はオペアンプからなる電圧ホロワ
回路33、そして抵抗34を介してオペアンプ12の非
反転入力端に接続されている。
On the other hand, the inner electrode plate 7 of the battery element 2 is grounded via a lead wire 7a, and the outer electrode plate 8 is connected to a filter circuit 19 via a lead wire 8a. Filter circuit 1
9 is the resistance 20. It consists of a capacitor 21 and is designed to remove noise components of the voltage signal generated between the electrode plates 7 and 8 of the battery element 2. An operational amplifier 26. is connected to the output end of the filter circuit 19. It is connected to the Vs" input terminal of an air-fuel ratio control circuit 31 via a non-inverting amplifier 30 consisting of resistors 27 to 29. A D/A converter 32 is connected to an IC control output terminal of the air-fuel ratio control circuit 31. , the D/A converter 32 generates a voltage according to the digital signal output from the Ic control output terminal of the air-fuel ratio 1.111110 path 31.
The output terminal of the A converter 32 is connected to the non-inverting input terminal of the operational amplifier 12 via a voltage follower circuit 33 consisting of an operational amplifier and a resistor 34.

また非反転増幅器30の出力端にはリミッタ回路38が
接続されている。リミッタ回路38はオペアンプ39.
抵抗40,41.ダイオード42及びリミッタ基準電圧
発生?h43からなる。オペアンプ39の反転入ツノ端
はリミッタ基準電圧発生器43の出力端に接続され、非
反転入力端は非反転増幅器30の出力端に接続されてい
る。オペアンプ39は非反転増幅器30の出力電圧とリ
ミッタ基準電圧発生器43から出力されるリミッタ基準
電圧VLとの差電圧に応じた電圧を抵抗41゜ダイオー
ド42を順方向に介してオペアンプ12の反転入力端に
供給するようになっている。
Further, a limiter circuit 38 is connected to the output terminal of the non-inverting amplifier 30. The limiter circuit 38 includes an operational amplifier 39.
Resistance 40, 41. Diode 42 and limiter reference voltage generation? Consists of h43. The inverting input end of the operational amplifier 39 is connected to the output end of the limiter reference voltage generator 43, and the non-inverting input end is connected to the output end of the non-inverting amplifier 30. The operational amplifier 39 supplies a voltage corresponding to the difference voltage between the output voltage of the non-inverting amplifier 30 and the limiter reference voltage VL output from the limiter reference voltage generator 43 to the inverting input of the operational amplifier 12 through a resistor 41° diode 42 in the forward direction. It is designed to be fed at the end.

空燃比制御回路31は上、記したIc出力端、VS′入
力端の他にA/F駆動端を有し、A/F駆動端には2次
空気供給調整用の電磁弁44に接続されている。電磁弁
44はエンジンの気化器絞り弁下流の吸気通路に連通す
る吸気2次空気供給通路に設けられている。
The air-fuel ratio control circuit 31 has an A/F drive end in addition to the above-mentioned Ic output end and VS' input end, and the A/F drive end is connected to a solenoid valve 44 for adjusting secondary air supply. ing. The solenoid valve 44 is provided in a secondary intake air supply passage that communicates with the intake passage downstream of the carburetor throttle valve of the engine.

かかる構成においては、空燃比制御回路31のIc出力
端からディジタル信号がD/A′ilL換器32にに出
力されると、D/A変換器32によってディジタル信号
が電圧に変換され、その変換電圧が電圧ホロワ回路33
、そして抵抗34を介して基準電圧Vr+とじてオペア
ンプ12の非反転入力端に供給される。基準電圧Vr+
の供給時に酸素ポンプ素子1の電極板5.6間を流れる
ポンプ電流値4 pは抵抗16の端子電圧■ρによって
検出され、その端子電圧Vpは抵抗17を介してオペア
ンプ120反転入力端に供給される。端子電圧Vpが基
準電圧Vr+より小のとぎにはオペアンプ12の出力レ
ベルが高レベルになりトランジスタ13のベース電流を
増加さけるのでポンプ電流1pが増大し、端子電圧Vp
が基準電圧Vr+より大のときにはオペアンプ12の出
力レベルは低レベルとなり、トランジスタ13のベース
電流を減少させるのでポンプ電流が低下する。この動作
が高速で繰り返されるのでポンプ電流1p11塁準電圧
vrIに応じた定電流値となる。
In such a configuration, when a digital signal is output from the Ic output terminal of the air-fuel ratio control circuit 31 to the D/A'ilL converter 32, the digital signal is converted into a voltage by the D/A converter 32, and the digital signal is converted into a voltage. The voltage is the voltage follower circuit 33
, and is supplied to the non-inverting input terminal of the operational amplifier 12 via the resistor 34 as a reference voltage Vr+. Reference voltage Vr+
The pump current value 4p that flows between the electrode plates 5 and 6 of the oxygen pump element 1 when is supplied is detected by the terminal voltage ρ of the resistor 16, and the terminal voltage Vp is supplied to the inverting input terminal of the operational amplifier 120 via the resistor 17. be done. When the terminal voltage Vp is lower than the reference voltage Vr+, the output level of the operational amplifier 12 becomes high level and the base current of the transistor 13 is prevented from increasing, so the pump current 1p increases and the terminal voltage Vp
When Vr+ is greater than the reference voltage Vr+, the output level of the operational amplifier 12 becomes a low level, which reduces the base current of the transistor 13, thereby reducing the pump current. Since this operation is repeated at high speed, a constant current value is obtained according to the pump current 1p11 base voltage vrI.

一方、電池素子2の電極板7.8問には電圧VSが発生
し、電圧Vsはフィルタ回路19を介して非反転増幅器
30に供給される。非反転増幅器30はフィルタ回路1
9の出力電圧を電圧増幅して酸素濃度検出出力として空
燃比制御回路31のVs”入力端に供給する。
On the other hand, voltage VS is generated on electrode plates 7.8 of battery element 2, and voltage Vs is supplied to non-inverting amplifier 30 via filter circuit 19. The non-inverting amplifier 30 is the filter circuit 1
9 is amplified and supplied to the Vs'' input terminal of the air-fuel ratio control circuit 31 as an oxygen concentration detection output.

空燃比制御回路31はエンジン回転に同期して次の如く
動作する。第3図に示すように先ず、空燃比制御回路3
1はエンジンの運転状態に応じて供給混合気の空燃比を
どのような値に制御1べきか目標空燃比DA/「を設定
する(ステップ51)。
The air-fuel ratio control circuit 31 operates in synchronization with engine rotation as follows. As shown in FIG. 3, first, the air-fuel ratio control circuit 3
1 sets a target air-fuel ratio DA/' to which value the air-fuel ratio of the supplied air-fuel mixture should be controlled according to the operating state of the engine (step 51).

目標空燃比DA/Fは例えば、エンジン回転数及びエン
ジン吸気管内圧力から設定され、空燃比制御回路31内
のROM等に予め記憶されたデータマツプから検索され
る。目標空燃比DA/Fの設定後、その目標空燃比DA
7Fが所定値[)rより人であるか否かを判別する(ス
テップ52)。所定値Orは理論空燃比より若干人なる
値である。OA/F≦[)rならば、目標空燃比が理論
空燃比付近又はそれよりリッチに設定されたとしてポン
プ電流からは正確な空燃比判別ができないのでポンプ電
流の供給を停止すべく基準電圧Vr+をO(V)にする
ようにIc制御出力端から出力されるディジタル信号の
内容が“O”に、例えば、4ビツトのディジタル信号の
場合、” o o o o ”に変更される(ステップ
53)。基準電圧Vr+を0(V)にするとオペアンプ
12の出力レベルが低レベルとなるので1−ランジスタ
13がオ゛フになり、酸素ポンプ素子1の電極板5.6
間にポンプ電流が流れなくなる。空燃比制御回路31は
ステップ53の実行後、2次空気のエンジンへの供給を
停止するために電磁弁44の開弁駆動を停止づる(ステ
ップ54)。一方、DA/F>Drならば、目標空燃比
が理論空燃比付近よりリーンに設定されたとしてポンプ
電流を供給するためにIc制御出力端から出力するディ
ジタル信号を予め定められた酸素濃度検出用の値にする
(ステップ55)。その侵、非反転増幅器30の出力電
圧Vs−を読み込み(ステップ56)、読み込んだ出力
電圧Vs′が目標空燃比り、/、に対応する基準電圧V
r2より大であるか否かを判別する(ステップ57)。
The target air-fuel ratio DA/F is set, for example, from the engine speed and the engine intake pipe pressure, and is retrieved from a data map stored in advance in a ROM or the like in the air-fuel ratio control circuit 31. After setting the target air-fuel ratio DA/F, the target air-fuel ratio DA
It is determined whether 7F is a person based on a predetermined value [)r (step 52). The predetermined value Or is a value slightly different from the stoichiometric air-fuel ratio. If OA/F≦[)r, even if the target air-fuel ratio is set near the stoichiometric air-fuel ratio or richer than it, it is not possible to accurately determine the air-fuel ratio from the pump current, so the reference voltage Vr+ is set to stop the pump current supply. The content of the digital signal output from the Ic control output terminal is changed to "O" so as to make the voltage O(V), for example, "o o o o" in the case of a 4-bit digital signal (step 53). ). When the reference voltage Vr+ is set to 0 (V), the output level of the operational amplifier 12 becomes a low level, so the 1- transistor 13 is turned off, and the electrode plate 5.6 of the oxygen pump element 1 is turned off.
Pump current stops flowing during this period. After executing step 53, the air-fuel ratio control circuit 31 stops driving the solenoid valve 44 to open in order to stop supplying secondary air to the engine (step 54). On the other hand, if DA/F>Dr, the target air-fuel ratio is set leaner than near the stoichiometric air-fuel ratio, and the digital signal output from the Ic control output terminal is set to a predetermined oxygen concentration detection signal to supply pump current. (step 55). Then, the output voltage Vs- of the non-inverting amplifier 30 is read (step 56), and the read output voltage Vs' is the reference voltage V corresponding to the target air-fuel ratio, /.
It is determined whether it is greater than r2 (step 57).

Vs=>yr2ならば、エンジンに供給された混合気の
空燃比がリップであるとして空燃比制御回路31は電磁
弁44を開弁駆動して2次空気をエンジンに供給せしめ
る(ステップ58)。VS−≦V r 2ならば、供給
混合気の空燃比がリーンであるとしてステップ54を実
行して2次空気のエンジンへの供給を停止させる。
If Vs=>yr2, the air-fuel ratio of the air-fuel mixture supplied to the engine is a lip, and the air-fuel ratio control circuit 31 opens the solenoid valve 44 to supply secondary air to the engine (step 58). If VS-≦V r 2, it is assumed that the air-fuel ratio of the supplied air-fuel mixture is lean, and step 54 is executed to stop the supply of secondary air to the engine.

また電池素子2の電極板7.8間の電圧Vsが上昇する
と、非反転増幅器30の出力電圧Vs=が上昇する。そ
の出力電圧Vs’がリミッタ基準電圧vしを越えた場合
には出力電圧Vs′とリミッタ基準電圧VLとの差電圧
に応じた電圧が端子電圧Vpより高くなるのでオペアン
プ39から抵抗41.ダイオード42.抵抗17そして
抵抗16を介して電流が流れてオペアンプ12の反転入
力端の電圧を基準電圧Vr+より上がさせる・よって、
オペアンプ12の出力電圧が低下してトランジスタ13
のベース電流が減少づるので酸素ポンプ素子1のポンプ
電流1pも減少するのである・リミッタ基準電圧VLは
基準電圧■r2より若干高く設定されているので非反転
増幅器30の出力電圧Vs−がリミッタ基準電圧VLに
達するとブラックニング現象発生領域に接近したことを
表ね11′。Vs−>VLでは空燃比がリップであるほ
どオペアンプ39の出力電圧が高くなりポンプ電流Tp
を減少せしめてブラックニング現象の発生が防止される
のである。
Further, when the voltage Vs between the electrode plates 7.8 of the battery element 2 increases, the output voltage Vs= of the non-inverting amplifier 30 increases. When the output voltage Vs' exceeds the limiter reference voltage v, the voltage corresponding to the difference voltage between the output voltage Vs' and the limiter reference voltage VL becomes higher than the terminal voltage Vp, so that the operational amplifier 39 is connected to the resistor 41. Diode 42. A current flows through the resistor 17 and then through the resistor 16, causing the voltage at the inverting input terminal of the operational amplifier 12 to rise above the reference voltage Vr+.Thus,
The output voltage of the operational amplifier 12 decreases and the transistor 13
Since the base current of the oxygen pump element 1 decreases, the pump current 1p of the oxygen pump element 1 also decreases. Since the limiter reference voltage VL is set slightly higher than the reference voltage ■r2, the output voltage Vs- of the non-inverting amplifier 30 becomes the limiter reference. When the voltage reaches VL, it means that the area where the blackening phenomenon occurs is approached 11'. When Vs->VL, the higher the air-fuel ratio is, the higher the output voltage of the operational amplifier 39 becomes, and the pump current Tp increases.
This prevents the blackening phenomenon from occurring.

なお、上記した本発明の実施例においては、目標空燃比
DA/Fが所定値[)rより小のときにはディジタル信
号の内容を変更することによりポンプTi流の供給が停
止されるが、これに限らず、例え。
In the embodiment of the present invention described above, when the target air-fuel ratio DA/F is smaller than the predetermined value [)r, the supply of the pump Ti flow is stopped by changing the content of the digital signal. Not limited to, just an example.

ばオペアンプ12の非反転入力端の電圧を強制的に0(
V)にするようにしてもよいのである。また目標空燃比
隅ハがl’ill累淵度検出濃度の出力電圧レベルで制
御回路31内のメモリから検索されるならば、検索され
た目標空燃比DA/Fをぞのまま基準電圧Vr2として
用いることができる。
For example, the voltage at the non-inverting input terminal of the operational amplifier 12 is forced to 0 (
V) may also be used. Furthermore, if the target air-fuel ratio DA/F is retrieved from the memory in the control circuit 31 at the output voltage level of the l'ill depth detection concentration, the retrieved target air-fuel ratio DA/F is directly used as the reference voltage Vr2. Can be used.

l旦立公浬 以上の如く、本発明の内燃エンジンの空燃比制御2I!
装置においては、M木製度検出装置の出力が不安定とな
るI!l!論空燃論告燃比付近目標空燃比が設定された
場合には酸素ポンプ素子への電流供給を停止するのでブ
ラックニング現象の発生が回避され、酸素ポンプ素子の
急速な劣化を防thすることができる。また酸素a度検
出装置の出力電圧に応じて誤った空燃比判別をすること
が防止される。
As described above, the air-fuel ratio control of the internal combustion engine of the present invention 2I!
In the device, the output of the M wood degree detection device becomes unstable. l! When a target air-fuel ratio near the theoretical air-fuel ratio is set, the current supply to the oxygen pump element is stopped, thereby avoiding the occurrence of the blackening phenomenon and preventing rapid deterioration of the oxygen pump element. . Further, it is possible to prevent incorrect air-fuel ratio determination based on the output voltage of the oxygen a degree detection device.

よって、空燃比が理論空燃比付近にある場合のエンジン
の運転性の向上を図ることができるのである。
Therefore, it is possible to improve the drivability of the engine when the air-fuel ratio is around the stoichiometric air-fuel ratio.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は酸素濃度−ポンプ電流特性及びブラックニング
現象発生領域を示す図、第2図は本発明による空燃比制
御装置を示す回路図、第3図は第2図の装置中の制御回
路の動恰を示すフロー図である。 主要部分の符号の説明 1・・・・・・酸素ポンプ素子 2・・・・・・電池素子 3・・・・・・間隙部 4・・・・・・スペーサ 5ないし8・・・・・・電極板 11・・・・・・定電流回路 30・・・・・・非反転増幅器 38・・・・・・リミッタ回路 出願人  本田技研工業株式会社 、代理人  弁理士  藤村元彦 第1図 酸素濃度
Fig. 1 is a diagram showing the oxygen concentration-pump current characteristics and the blackening phenomenon occurrence region, Fig. 2 is a circuit diagram showing the air-fuel ratio control device according to the present invention, and Fig. 3 is a diagram showing the control circuit in the device of Fig. 2. It is a flow diagram showing the behavior. Explanation of symbols of main parts 1...Oxygen pump element 2...Battery element 3...Gap portion 4...Spacer 5 to 8...・Electrode plate 11... Constant current circuit 30... Non-inverting amplifier 38... Limiter circuit Applicant Honda Motor Co., Ltd., Agent Patent attorney Motohiko Fujimura Figure 1 Oxygen concentration

Claims (1)

【特許請求の範囲】[Claims] 内燃エンジンの排気ガス中に配設される一対の酸素イオ
ン伝導性固体電解質材を有しその各固体電解質材に一対
の電極が形成されかつ前記一対の固体電解質材が所定の
間隙部を介して対向するように配置され前記一対の固体
電解質材の一方が酸素ポンプ素子として他方が酸素濃度
比測定用電池素子として各々作用する酸素濃度検出器と
、前記酸素ポンプ素子の電極間に電流を供給する電流供
給手段と、前記電池素子の電極間に発生する電圧に応じ
てエンジンに供給された混合気の空燃比を判別する判別
手段と、供給混合気の空燃比の目標空燃比を設定し前記
判別手段の判別結果に応じて供給混合気の空燃比を目標
空燃比に調整する空燃比調整手段とを含み、前記電流供
給手段は目標空燃比が所定値以下のときは前記酸素ポン
プ素子への電流供給を停止することを特徴とする空燃比
制御装置。
A pair of oxygen ion conductive solid electrolyte materials disposed in the exhaust gas of an internal combustion engine, a pair of electrodes formed on each of the solid electrolyte materials, and the pair of solid electrolyte materials are connected to each other through a predetermined gap. A current is supplied between an electrode of the oxygen pump element and an oxygen concentration detector arranged to face each other, one of the pair of solid electrolyte materials acts as an oxygen pump element and the other acts as a battery element for measuring oxygen concentration ratio. a current supply means; a determination means for determining an air-fuel ratio of the air-fuel mixture supplied to the engine according to a voltage generated between the electrodes of the battery element; and a determination means for setting a target air-fuel ratio of the air-fuel ratio of the supplied air-fuel mixture; and an air-fuel ratio adjusting means for adjusting the air-fuel ratio of the supplied air-fuel mixture to a target air-fuel ratio according to the determination result of the means, and the current supply means supplies current to the oxygen pump element when the target air-fuel ratio is below a predetermined value. An air-fuel ratio control device characterized by stopping supply.
JP60195592A 1985-09-03 1985-09-03 Air/fuel ratio controller for internal combustion engine Pending JPS6255555A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60195592A JPS6255555A (en) 1985-09-03 1985-09-03 Air/fuel ratio controller for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60195592A JPS6255555A (en) 1985-09-03 1985-09-03 Air/fuel ratio controller for internal combustion engine

Publications (1)

Publication Number Publication Date
JPS6255555A true JPS6255555A (en) 1987-03-11

Family

ID=16343709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60195592A Pending JPS6255555A (en) 1985-09-03 1985-09-03 Air/fuel ratio controller for internal combustion engine

Country Status (1)

Country Link
JP (1) JPS6255555A (en)

Similar Documents

Publication Publication Date Title
US4804454A (en) Oxygen concentration sensing apparatus
US4566419A (en) Apparatus and method for controlling air-to-fuel ratio for an internal combustion engine
JPH0672867B2 (en) Oxygen concentration detector
US4698209A (en) Device for sensing an oxygen concentration in gaseous body with a source of pump current for an oxygen pump element
US4818362A (en) Oxygen concentration sensing apparatus
JPS6255555A (en) Air/fuel ratio controller for internal combustion engine
JPS61294355A (en) Oxygen concentration detector
JP2596537B2 (en) Oxygen concentration detector
JPS6255554A (en) Air/fuel ratio controller for internal combustion engine
JPH0612357B2 (en) Oxygen concentration detector
JPS6276446A (en) Method for controlling oxygen concentration sensor
JPS6271849A (en) Air-fuel ratio controller for internal combustion engine
JPH0580618B2 (en)
JPH0523387B2 (en)
JPH0580617B2 (en)
JPS623142A (en) Air-fuel ratio controller for internal-combustion engine
JPH0580616B2 (en)
JPS61294359A (en) Oxygen concentration detector
JPS6276449A (en) Method for controlling oxygen concentration sensor
JPS6270640A (en) Air-fuel ratio control device for internal combustion engine
JPH0580619B2 (en)
JPS6275255A (en) Air-fuel ratio controller for internal combustion engine
JPS61294360A (en) Oxygen concentration detector
JPS6255553A (en) Oxygen concentration detector
JPS62218856A (en) Oxygen concentration detector