JPS6255554A - Air/fuel ratio controller for internal combustion engine - Google Patents

Air/fuel ratio controller for internal combustion engine

Info

Publication number
JPS6255554A
JPS6255554A JP60195591A JP19559185A JPS6255554A JP S6255554 A JPS6255554 A JP S6255554A JP 60195591 A JP60195591 A JP 60195591A JP 19559185 A JP19559185 A JP 19559185A JP S6255554 A JPS6255554 A JP S6255554A
Authority
JP
Japan
Prior art keywords
fuel ratio
air
current
oxygen
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60195591A
Other languages
Japanese (ja)
Inventor
Tomohiko Kawanabe
川鍋 智彦
Noritaka Kushida
櫛田 孝隆
Masahiko Asakura
正彦 朝倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP60195591A priority Critical patent/JPS6255554A/en
Publication of JPS6255554A publication Critical patent/JPS6255554A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To elevate the operability when the air/fuel ratio is controlled to be in the vicinity of the theoretical air/fuel ratio, by stopping the supply of current to an oxygen pump element when the target air/fuel ratio is below a specified value. CONSTITUTION:An oxygen concentration detector has a pair of oxygen ions conducting solid electrolytic materials each having a pair of electrodes arranged as opposed to each other in an emission gas of an internal combustion engine through a specified clearance part 3; one thereof acts as oxygen pump element 1, and the other as element 2 for measuring oxygen concentration ratio. A current supply circuit 11 supplies current between electrodes 5 and 6 of the element 1 and changes the supply current value to keep the voltage at a constant value as generated between electrodes 7 and 8 of the element 2. Then, a control circuit 31 discriminates the air/fuel ratio of a mixed gas supplied to the engine according to the value of current flowing between the electrodes 5 and 6 of the element 1. A target air/fuel ratio is set to control the air/fuel ratio of the supply mixed gas and when the target air/fuel ratio is below a specified value, the current supply to the element 1 is stopped by the circuit 11.

Description

【発明の詳細な説明】 炎五欠1 本発明は内燃エンジンの空燃比制御装置に関する。[Detailed description of the invention] flame five lack 1 The present invention relates to an air-fuel ratio control device for an internal combustion engine.

背景技術 内燃エンジンの排気ガス浄化、燃費改善等を目的として
、排気ガス中の酸素濃度を検出し、この検出結果に応じ
てエンジンへの供給混合気の空燃比を目標空燃比にフィ
ードバック制御する空燃比制御装置がある。
BACKGROUND ART In order to purify the exhaust gas of internal combustion engines and improve fuel efficiency, an air-fuel system detects the oxygen concentration in the exhaust gas and feedback-controls the air-fuel ratio of the air-fuel mixture supplied to the engine to a target air-fuel ratio according to the detection result. There is a fuel ratio control device.

このような空燃比制御装置に用いられる酸素濃度検出装
置として被測定気体中の!素漠度に比例した出力を発生
するものがある(特開昭58−153155号)。かか
る酸素濃度検出装置においては、一対の平板状の酸素イ
オン伝導性固体電解質材を有する酸素cJ度検出器が設
けられている。
As an oxygen concentration detection device used in such an air-fuel ratio control device! There is one that generates an output proportional to the degree of obscurity (Japanese Patent Laid-Open No. 153155/1983). Such an oxygen concentration detection device is provided with an oxygen cJ degree detector having a pair of flat oxygen ion conductive solid electrolyte materials.

その固体電解質材は被測定気体中に配置されるようにな
され、固体電解質材の各表裏面には電極が各々形成され
かつ固体電解質材が所定の間隙部を介して対向するよう
に平行に配置されている。固体電解¥lの一方が酸素ポ
ンプ素子として、他方が酸素濃度比測定用電池素子とし
て作用するようになっている。被測定気体中にJ3いて
間隙部側電極が負極になるように酸素ポンプ素子の電極
間に電流を供給すると、酸素ポンプ素子の負極面側にて
間隙部内気体中の酸素ガスがイオン化して酸素ポンプ素
子内を正極面側に移動し正極面から酸素ガスとして放出
される。このとき、間隙部中の酸素ガスの減少により間
隙部内の気体と電池素子外側の気体との間に酸素濃度差
が生ずるので電池素子の電極間に電圧が発生し、その電
圧を一定値にするように酸素ポンプ素子に供給づる電流
値を変化させると、定温においてその電流値が被測定気
体中の酸素濃度にほぼ比例することになる。このMfポ
ンプ素子への供給電流値からエンジンに供給された混合
気の空燃比が目標空燃比よりリッチ及びリーンのいずれ
であるか判別される。空燃比を2次空気によって制御i
t =J’る場合、リッチと判別されたならば、2次空
気をエンジンに供給し、リーンと判別されンこならば、
2次空気の供給を停止することにより空燃比が目標空燃
比に制御される。
The solid electrolyte material is arranged in the gas to be measured, and electrodes are formed on each of the front and back surfaces of the solid electrolyte material, and the solid electrolyte materials are arranged in parallel so as to face each other with a predetermined gap in between. has been done. One of the solid electrolytes acts as an oxygen pump element, and the other acts as a battery element for measuring oxygen concentration ratio. When J3 is in the gas to be measured and a current is supplied between the electrodes of the oxygen pump element so that the electrode on the gap side becomes the negative electrode, the oxygen gas in the gas in the gap is ionized on the negative electrode side of the oxygen pump element and becomes oxygen. It moves within the pump element toward the positive electrode surface and is released from the positive electrode surface as oxygen gas. At this time, due to the decrease in oxygen gas in the gap, a difference in oxygen concentration occurs between the gas in the gap and the gas outside the battery element, so a voltage is generated between the electrodes of the battery element, and the voltage is kept at a constant value. When the current value supplied to the oxygen pump element is changed in this manner, the current value becomes approximately proportional to the oxygen concentration in the gas to be measured at a constant temperature. Based on the current value supplied to the Mf pump element, it is determined whether the air-fuel ratio of the air-fuel mixture supplied to the engine is richer or leaner than the target air-fuel ratio. Air-fuel ratio controlled by secondary air
When t = J', if it is determined to be rich, secondary air is supplied to the engine, and if it is determined to be lean, then
By stopping the supply of secondary air, the air-fuel ratio is controlled to the target air-fuel ratio.

かかる酸素濃度検出装置においては、酸素ポンプ素子に
過剰の電流を供給すると、固体電解質材から酸素を奪う
ブラックニング現象が発生する。
In such an oxygen concentration detection device, when an excessive current is supplied to the oxygen pump element, a blackening phenomenon occurs in which oxygen is taken away from the solid electrolyte material.

例えば、固体電解質材としてZr0z  (二酸化ジル
コニウム)が用いられた場合、酸素ポンプ素子への過剰
電流供給によりZr0zから酸素02が奪われてジルコ
ニウムZrが析出される。このブラックニング現象は酸
素ポンプ素子の劣化を急速に進め酸素濃度検出器として
の性能を悪化させる原因となる。
For example, when Zr0z (zirconium dioxide) is used as the solid electrolyte material, oxygen 02 is taken away from Zr0z by excessive current supply to the oxygen pump element, and zirconium Zr is precipitated. This blackening phenomenon causes rapid deterioration of the oxygen pump element and deteriorates its performance as an oxygen concentration detector.

第1図は電池素子に発生する電圧Vsをパラメータとし
て酸素濃度と酸素ポンプ素子への供給電流値Ipとの関
係特性及びブラックニング現象発生領域を示しており、
ブラックニング現象発生領域との境界線は電圧Vsをパ
ラメータとした関係特性と同様に1次関数的特性である
。ブラックニング現象を防止するためには酸素ポンプ索
子への供給電流をブラックニング発生領域の値より小さ
くしなければならない。
FIG. 1 shows the relationship between the oxygen concentration and the current value Ip supplied to the oxygen pump element and the area where the blackening phenomenon occurs, using the voltage Vs generated in the battery element as a parameter.
The boundary line with the blackening phenomenon occurrence area is a linear function characteristic similar to the relationship characteristic using the voltage Vs as a parameter. In order to prevent the blackning phenomenon, the current supplied to the oxygen pump cord must be made smaller than the value in the blackening occurrence region.

ところが、このような酸素濃度検出装置を空燃比制御装
置用に適用すると、エンジンに供給する混合気の空燃比
が理論空燃比(14,7)付近の目標空燃比に制御され
る場合に電圧Vsが激しく上下に2動して非常に不安定
となることが分った。
However, when such an oxygen concentration detection device is applied to an air-fuel ratio control device, when the air-fuel ratio of the air-fuel mixture supplied to the engine is controlled to a target air-fuel ratio near the stoichiometric air-fuel ratio (14,7), the voltage Vs It was found that it moved violently up and down and became extremely unstable.

これにより電圧Vsを一定値に制御するために酸素ポン
プ素子への供給電流値も変動し、その供給電流値がら空
燃比を正確に判別できなくなり、該判別結果に応じて供
給混合気の空燃比を制御すると運転性が悪化するのであ
る。
As a result, in order to control the voltage Vs to a constant value, the supply current value to the oxygen pump element also fluctuates, making it impossible to accurately determine the air-fuel ratio from the supply current value, and depending on the determination result, the air-fuel ratio of the supplied mixture is changed. Controlling this will result in poor drivability.

1且り見I そこで、本発明の目的は空燃比が理論空燃比(=1近の
値に制御される場合の運転性の向上を図った空燃比制御
装置を提供することである。
1 and View I Therefore, an object of the present invention is to provide an air-fuel ratio control device that improves drivability when the air-fuel ratio is controlled to a value close to the stoichiometric air-fuel ratio (=1).

本発明の空燃比制御装置は目標空燃比が所定値以下に設
定されたときには酸素ポンプ素子への電流供給を停止し
て誤った空燃比判別を防止することを特徴としている。
The air-fuel ratio control device of the present invention is characterized in that when the target air-fuel ratio is set below a predetermined value, the current supply to the oxygen pump element is stopped to prevent incorrect air-fuel ratio determination.

友−亙−1 以下、本発明の実施例を図面を参照しつつ説明する。Tomo-Ki-1 Embodiments of the present invention will be described below with reference to the drawings.

第2図は本発明による酸素濃度検出装置を用いた空燃比
制御装置を示している。本装置において、互いに平行な
一対の平板状素子の酸素ポンプ素子1及び電池素子2か
らなる酸素濃度検出器は排気管(図示せず)内に配設さ
れる。酸素ポンプ素子1及び電池素子2の主体は酸素イ
オン伝導性固体電解質材からなり、その一端部間には間
隙部3が形成され、他端部はスペーサ4を介して互いに
結合されている。また酸素ポンプ素子1及び電池素子2
の一端部の表裏面に多孔質の耐熱金属からなる方形状の
電極板5ないし8が設けられ、他端部面には電極板5な
いし8の引き出し線5aないし8aが形成されている。
FIG. 2 shows an air-fuel ratio control device using an oxygen concentration detection device according to the present invention. In this device, an oxygen concentration detector consisting of a pair of planar elements parallel to each other, an oxygen pump element 1 and a battery element 2, is disposed within an exhaust pipe (not shown). The main body of the oxygen pump element 1 and the battery element 2 is made of an oxygen ion conductive solid electrolyte material, and a gap 3 is formed between one end thereof, and the other end thereof is connected to each other via a spacer 4. Also, oxygen pump element 1 and battery element 2
Rectangular electrode plates 5 to 8 made of porous heat-resistant metal are provided on the front and back surfaces of one end, and lead lines 5a to 8a of the electrode plates 5 to 8 are formed on the other end.

酸素ポンプ素子1の電極板5.6間には電流供給回路1
1よって電流が供給される。電流供給回路11はオペア
ンプ12.NPNトランジスタ13及び抵抗14.15
からなる。オペアンプ12の出力端は抵抗14を介して
トランジスタ13のベースに接続されている。またトラ
ンジスタ13のエミッタは抵抗15を介してアースされ
ている。
A current supply circuit 1 is connected between the electrode plates 5 and 6 of the oxygen pump element 1.
1, current is supplied. The current supply circuit 11 includes an operational amplifier 12. NPN transistor 13 and resistor 14.15
Consisting of The output end of the operational amplifier 12 is connected to the base of a transistor 13 via a resistor 14. Further, the emitter of the transistor 13 is grounded via a resistor 15.

抵抗15′は酸素ポンプ素子1の電極板5.6間に流れ
るポンプ電流値1pを検出するために設けられており、
その端子電圧がポンプ電流値1pとして制御回路31の
Ip入力端に供給される。トランジスタ13のコレクタ
は酸素ポンプ索子1の内側電極板6に引き出し線6aを
介して接続され、外側電極板5には電圧v8が引き出し
線5aを介して供給されるようになっている。
The resistor 15' is provided to detect the pump current value 1p flowing between the electrode plates 5 and 6 of the oxygen pump element 1,
The terminal voltage is supplied to the Ip input terminal of the control circuit 31 as a pump current value 1p. The collector of the transistor 13 is connected to the inner electrode plate 6 of the oxygen pump cord 1 via a lead wire 6a, and a voltage v8 is supplied to the outer electrode plate 5 via the lead wire 5a.

一方、電池素子2の内側電極板7は引き出し線7aを介
してアースされ、外側電極板8は引き出し線8aを介し
てフィルタ回路19に接続されている。フィルタ回路1
9は抵抗20.コンデンサ21からなり、電池素子2の
電極板7,8間に発生した電圧信号のノイズ成分を除去
するようになっている。フィルタ回路19の出力端には
オペアンプ26.抵抗27ないし29からなる非反転増
幅器30を介してAベアンプ12の反転入力端に接続さ
れている。制御回路31のIc制御出力端にはD/A変
換器32が接続され、D/A変換器32は制御回路31
のIc制御出力端から出力されるディジタル信号に応じ
た電圧を発生する。D/A変換器32の出力端はオペア
ンプからなる電圧ホロワ回路33、そして抵抗34を介
してオペアンプ12の非反転入力端に接続されている。
On the other hand, the inner electrode plate 7 of the battery element 2 is grounded via a lead wire 7a, and the outer electrode plate 8 is connected to a filter circuit 19 via a lead wire 8a. Filter circuit 1
9 is the resistance 20. It consists of a capacitor 21 and is designed to remove noise components of the voltage signal generated between the electrode plates 7 and 8 of the battery element 2. An operational amplifier 26. is connected to the output end of the filter circuit 19. It is connected to the inverting input terminal of the A bare amplifier 12 via a non-inverting amplifier 30 consisting of resistors 27 to 29. A D/A converter 32 is connected to the Ic control output terminal of the control circuit 31.
It generates a voltage according to the digital signal output from the Ic control output terminal of. The output terminal of the D/A converter 32 is connected to the non-inverting input terminal of the operational amplifier 12 via a voltage follower circuit 33 consisting of an operational amplifier and a resistor 34.

制御回路31は好ましくはマイクロコンピュータからな
り、上記したIc出力端、Ip入力端の他にA/F駆動
端を有し、A/F駆動端には2次空気供給調整用の電磁
弁44に接続されている。
The control circuit 31 is preferably composed of a microcomputer, and has an A/F drive end in addition to the above-mentioned Ic output end and Ip input end, and the A/F drive end is connected to a solenoid valve 44 for adjusting secondary air supply. It is connected.

電磁弁44はエンジンの気化器絞り弁下流の吸気通路に
連通する吸気2次空気供給通路に設けられている。
The solenoid valve 44 is provided in a secondary intake air supply passage that communicates with the intake passage downstream of the carburetor throttle valve of the engine.

かかる構成においては、制御回路31のIc出力端から
ディジタル信号がD/A変換器32に出力されると、D
/A変換器32によってディジタル信号が電圧に変換さ
れ、そして電圧ホロワ回路33に供給される。電圧ホロ
ワ回路33の出力電圧は基準電圧Vr”+ とじて抵抗
34を介してオペアンプ12の非反転入力端に供給され
る。このとき、オペアンプ12の反転入力端の電圧レベ
ルは基準電圧Vr+より小であるのでオペアンプ12の
出力レベルは高レベルとなりトランジスタ13がオンと
なる。トランジスタ13のオンにより酸素ポンプ素子1
の電極板5,6間にポンプ電流が流れる。
In this configuration, when a digital signal is output from the Ic output terminal of the control circuit 31 to the D/A converter 32, the D
The digital signal is converted into a voltage by the /A converter 32 and supplied to the voltage follower circuit 33. The output voltage of the voltage follower circuit 33 is supplied to the non-inverting input terminal of the operational amplifier 12 via the resistor 34 as the reference voltage Vr''+.At this time, the voltage level at the inverting input terminal of the operational amplifier 12 is lower than the reference voltage Vr+. Therefore, the output level of the operational amplifier 12 becomes high level, and the transistor 13 is turned on.By turning on the transistor 13, the oxygen pump element 1 is turned on.
A pump current flows between the electrode plates 5 and 6.

ポンプ電流が流れると、電池素子2の電極板7゜8間に
は電圧Vsが発生し、電圧vsはフィルタ回路19を介
して非反転増幅器30に供給される。
When the pump current flows, a voltage Vs is generated between the electrode plates 7 and 8 of the battery element 2, and the voltage Vs is supplied to the non-inverting amplifier 30 via the filter circuit 19.

非反転増幅器30はフィルタ回路1つの出力電圧を電圧
増幅してオペアンプ12の反転入力端に供給する。電圧
Vsが上昇すると、非反転増幅器30の出力電圧Vs−
も上昇する。出力電圧Vs−が基準電圧Vr+を越える
とオペアンプ12の出力レベルが低レベルに反転し、ト
ランジスタ13がオフとなる。トランジスタ13のオフ
によりポンプ電流が減少するので電池素子2の電極板7
゜8間の発生電圧Vsが低下し、非反転増幅器30から
オペアンプ12の反転入力端に供給される電圧Vs−も
低下する。電圧V S −が基準電圧Vr1を下回ると
再びオペアンプ12の出力レベルが高レベルとなり、ポ
ンプ電流を増加せしめる。この動作が高速にて繰り返さ
れるので電圧Vsは一定値に制御されると共にディジタ
ル制御信号が表わす値に応じた電圧となる。
The non-inverting amplifier 30 amplifies the output voltage of one filter circuit and supplies it to the inverting input terminal of the operational amplifier 12. When the voltage Vs increases, the output voltage Vs- of the non-inverting amplifier 30 increases.
will also rise. When the output voltage Vs- exceeds the reference voltage Vr+, the output level of the operational amplifier 12 is inverted to a low level, and the transistor 13 is turned off. Since the pump current decreases by turning off the transistor 13, the electrode plate 7 of the battery element 2
The generated voltage Vs between .degree. When the voltage V S - falls below the reference voltage Vr1, the output level of the operational amplifier 12 becomes high again, causing the pump current to increase. Since this operation is repeated at high speed, the voltage Vs is controlled to a constant value and becomes a voltage corresponding to the value indicated by the digital control signal.

基準電圧V r +のオペアンプ12への供給時に酸素
ポンプ素子1の電極板5.6間を流れるポンプ電流II
ρは抵抗15の端子電圧Vρによって検出され、その端
子電圧Vρは制御回路31のIP入力端に供給される。
The pump current II flowing between the electrode plates 5.6 of the oxygen pump element 1 when supplying the reference voltage V r + to the operational amplifier 12
ρ is detected by the terminal voltage Vρ of the resistor 15, and the terminal voltage Vρ is supplied to the IP input terminal of the control circuit 31.

制御回路31はエンジン回転に同期して次の如く動作す
る。第3図に示すように先ず、制御回路31はエンジン
の運転状態に応じて供給混合気の空燃比をどのような値
に制御すべきか目標空燃比D  を設定する(ステップ
51)。目標空燃比A/F D  は例えば、エンジン回転数及びエンジン吸A/F 気管内圧力から設定され、制御回路31内のROM等に
予め記憶されたデータマツプから検索される。目標空燃
比D  の設定後、その目標空燃比A/F DA/Fが所定値1)rより大であるか否かを判別する
(ステップ52)。所定1lrJDrは理論空燃比より
若干大なる値である。D  ≦[)rならば、目^/F 標空燃比が理論空燃比付近又はそれよりリッチに設定さ
れたどしてポンプ電流からは正確な空燃比判別ができな
いのでポンプ電流の供給を停止すべく基準電圧Vr+を
0〔V〕にするようにIc制御出力端から出力されるデ
ィジタル信号の内容が°゛O“に、例えば、4ビットの
ディジタル信号の場合、“o o o o ”に変更さ
れる(ステップ53)。基準電圧Vr+を0(V)にす
るとオペアンプ12の出力レベルが低レベルとなるので
1〜ランジスタ13がオフになり、酸素ポンプ素子1の
電極板5.6間にポンプ電流が流れなくなる。制御回路
31はステップ53の実行後、2次空気のエンジンへの
供給を停止するために電磁弁440開弁駆動を停止する
(ステップ54)、一方、DA/’F>[)rならば、
目標空燃比が理論空燃比付近よりリーンに設定されたと
してポンプ電流を供給するだめにIc制御出力端から出
力するディジタル信号を予め定められた酸素濃度検出用
の値にする(ステップ55)。その後、ポンプ電流値1
pとして端子電圧Vpを読み込み(ステップ56)、読
み込んだポンプ電流値Iρが目標空燃比DA7Fに対応
する基準電流値1r+ より小であるが否かを判別する
(ステップ57)。Ip < I r+ならば、エンジ
ンに供給された混合気の空燃比がリッチであるとして制
御回路31は電磁弁44を開弁駆動して2次空気をエン
ジンに供給せしめる(ステップ58)。Ip≧Tr+な
らば、供給混合気の空燃比がリーンであるとしてステッ
プ54を実行して2次空気のエンジンへの供給を停止さ
せるのである。
The control circuit 31 operates as follows in synchronization with engine rotation. As shown in FIG. 3, first, the control circuit 31 sets a target air-fuel ratio D to which value the air-fuel ratio of the supplied air-fuel mixture should be controlled according to the operating state of the engine (step 51). The target air-fuel ratio A/F D is set, for example, from the engine speed and the engine suction A/F tracheal pressure, and is retrieved from a data map stored in advance in a ROM or the like in the control circuit 31. After setting the target air-fuel ratio D, it is determined whether the target air-fuel ratio A/F DA/F is greater than a predetermined value 1)r (step 52). The predetermined 1lrJDr is a value slightly larger than the stoichiometric air-fuel ratio. If D ≦ [)r, then the target air-fuel ratio is set near the stoichiometric air-fuel ratio or richer than it, and the air-fuel ratio cannot be accurately determined from the pump current, so the supply of pump current is stopped. In order to set the reference voltage Vr+ to 0 [V], the content of the digital signal output from the Ic control output terminal is changed to °゛O'', for example, in the case of a 4-bit digital signal, to ``o o o o''. (Step 53). When the reference voltage Vr+ is set to 0 (V), the output level of the operational amplifier 12 becomes a low level, so transistors 1 to 13 are turned off, and the pump is applied between the electrode plates 5 and 6 of the oxygen pump element 1. No current flows. After executing step 53, the control circuit 31 stops driving the solenoid valve 440 to open in order to stop supplying secondary air to the engine (step 54), while DA/'F>[ ) r, then
Assuming that the target air-fuel ratio is set leaner than near the stoichiometric air-fuel ratio, the digital signal output from the Ic control output terminal is set to a predetermined oxygen concentration detection value in order to supply the pump current (step 55). After that, pump current value 1
The terminal voltage Vp is read as p (step 56), and it is determined whether the read pump current value Iρ is smaller than the reference current value 1r+ corresponding to the target air-fuel ratio DA7F (step 57). If Ip<Ir+, the air-fuel ratio of the air-fuel mixture supplied to the engine is rich, and the control circuit 31 opens the solenoid valve 44 to supply secondary air to the engine (step 58). If Ip≧Tr+, it is assumed that the air-fuel ratio of the supplied air-fuel mixture is lean, and step 54 is executed to stop the supply of secondary air to the engine.

なお、上記した本発明の実施例においては、目標空燃比
DA/Fが所定値Drより小のときにはディジタル信号
の内容を変更することによりポンプ電流の供給が停止さ
れるが、これに限らず、例えばオペアンプ12の非反転
入力端の電圧を強制的に0(V)にするようにしてもよ
いのである。また目標空燃比DA/Fがポンプ電流レベ
ルで制御回路31内のメモリから検索されるならば、検
索された目標空燃比DA/Fをそのまま基準電流値1r
1として用いることができる。
Note that in the embodiment of the present invention described above, when the target air-fuel ratio DA/F is smaller than the predetermined value Dr, the supply of pump current is stopped by changing the content of the digital signal, but the present invention is not limited to this. For example, the voltage at the non-inverting input terminal of the operational amplifier 12 may be forced to 0 (V). Further, if the target air-fuel ratio DA/F is retrieved from the memory in the control circuit 31 at the pump current level, the retrieved target air-fuel ratio DA/F is used as it is at the reference current value 1r.
It can be used as 1.

1匪立l] 以上の如く、本発明の内燃エンジンの空燃比制御装置に
おいては、酸素濃度検出装置の出力が不安定となる理論
空燃比付近の値に目標空燃比が設定された場合には酸素
ポンプ素子への電流供給を停止するのでブラックニング
現象の発生が回避され、酸素ボンフ素子の急速な劣化を
防止することができる。またポンプ電流値に応じて誤っ
た空燃比判別をすることが防止される。よって、空燃比
が理論空燃比付近にある場合のエンジンの運転性の向上
を図ることができるのである。
As described above, in the air-fuel ratio control device for an internal combustion engine of the present invention, when the target air-fuel ratio is set to a value near the stoichiometric air-fuel ratio at which the output of the oxygen concentration detection device becomes unstable, Since the current supply to the oxygen pump element is stopped, the blackening phenomenon can be avoided, and rapid deterioration of the oxygen pump element can be prevented. In addition, incorrect air-fuel ratio determination based on the pump current value is prevented. Therefore, it is possible to improve the drivability of the engine when the air-fuel ratio is around the stoichiometric air-fuel ratio.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はl!2素濃度−ポンプ電流特性及びブラックニ
ング現像発生領域を示す図、第2図は本発明による空燃
比制御装置を示す回路図、第3図は第2図の装置中の制
御回路の動作を示すフロー図である。 主要部分の符号の説明 1・・・・・・酸素ポンプ素子 2・・・・・・電池素子 3・・・・・・間隙部 4・・・・・・スペーサ 5ないし8・・・・・・電極板 11・・・・・・電流供給回路 30・・・・・・非反転増幅器
Figure 1 is l! FIG. 2 is a circuit diagram showing the air-fuel ratio control device according to the present invention, and FIG. 3 is a diagram showing the operation of the control circuit in the device shown in FIG. 2. It is a flow diagram. Explanation of symbols of main parts 1...Oxygen pump element 2...Battery element 3...Gap portion 4...Spacer 5 to 8...・Electrode plate 11...Current supply circuit 30...Non-inverting amplifier

Claims (1)

【特許請求の範囲】[Claims] 内燃エンジンの排気ガス中に配設される一対の酸素イオ
ン伝導性固体電解質材を有しその各固体電解質材に一対
の電極が形成されかつ前記一対の固体電解質材が所定の
間隙部を介して対向するように配置され前記一対の固体
電解質材の一方が酸素ポンプ素子として他方が酸素濃度
比測定用電池素子として各々作用する酸素濃度検出器と
、前記酸素ポンプ素子の電極間に電流を供給し前記電池
素子の電極間に発生した電圧を一定値にするように供給
電流値を変化させる電流供給手段と、前記酸素ポンプ素
子の電極間に流れる電流値に応じてエンジンに供給され
た混合気の空燃比を判別する判別手段と、供給混合気の
空燃比の目標空燃比を設定し前記判別手段の判別結果に
応じて供給混合気の空燃比を目標空燃比に調整する空燃
比調整手段とを含み、前記電流供給手段は目標空燃比が
所定値以下のときは前記酸素ポンプ素子への電流供給を
停止することを特徴とする空燃比制御装置。
A pair of oxygen ion conductive solid electrolyte materials disposed in the exhaust gas of an internal combustion engine, a pair of electrodes formed on each of the solid electrolyte materials, and the pair of solid electrolyte materials are connected to each other through a predetermined gap. A current is supplied between an electrode of the oxygen pump element and an oxygen concentration detector which is arranged to face each other and one of the pair of solid electrolyte materials acts as an oxygen pump element and the other acts as a battery element for measuring oxygen concentration ratio. A current supply means for changing the supplied current value so as to maintain the voltage generated between the electrodes of the battery element at a constant value; a discriminating means for discriminating the air-fuel ratio; and an air-fuel ratio adjusting means for setting a target air-fuel ratio of the air-fuel ratio of the supplied air-fuel mixture and adjusting the air-fuel ratio of the supplied air-fuel mixture to the target air-fuel ratio according to the determination result of the discriminating means. An air-fuel ratio control device, wherein the current supply means stops supplying current to the oxygen pump element when the target air-fuel ratio is below a predetermined value.
JP60195591A 1985-09-03 1985-09-03 Air/fuel ratio controller for internal combustion engine Pending JPS6255554A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60195591A JPS6255554A (en) 1985-09-03 1985-09-03 Air/fuel ratio controller for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60195591A JPS6255554A (en) 1985-09-03 1985-09-03 Air/fuel ratio controller for internal combustion engine

Publications (1)

Publication Number Publication Date
JPS6255554A true JPS6255554A (en) 1987-03-11

Family

ID=16343691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60195591A Pending JPS6255554A (en) 1985-09-03 1985-09-03 Air/fuel ratio controller for internal combustion engine

Country Status (1)

Country Link
JP (1) JPS6255554A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6153689A (en) * 1996-08-19 2000-11-28 Dow Corning Asia, Ltd. Curable polymethylsiloxane composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6153689A (en) * 1996-08-19 2000-11-28 Dow Corning Asia, Ltd. Curable polymethylsiloxane composition

Similar Documents

Publication Publication Date Title
JPS62218858A (en) Oxygen concentration detector
JPH0727391Y2 (en) Air-fuel ratio controller for internal combustion engine
JPS62218859A (en) Oxygen concentration detector
US4698209A (en) Device for sensing an oxygen concentration in gaseous body with a source of pump current for an oxygen pump element
JPS6255554A (en) Air/fuel ratio controller for internal combustion engine
JPS6276446A (en) Method for controlling oxygen concentration sensor
JPS61294355A (en) Oxygen concentration detector
JPH0612357B2 (en) Oxygen concentration detector
JPH0580618B2 (en)
JP2596537B2 (en) Oxygen concentration detector
JPS61292051A (en) Oxygen concentration detector
JPS6276449A (en) Method for controlling oxygen concentration sensor
JPS6255555A (en) Air/fuel ratio controller for internal combustion engine
JPS61294359A (en) Oxygen concentration detector
JPH0580617B2 (en)
JPH0580616B2 (en)
JPS6276450A (en) Oxygen concentration detector
JPS6271849A (en) Air-fuel ratio controller for internal combustion engine
JPS62182647A (en) Apparatus for controlling air/fuel ratio of internal combustion engine
JPH0580619B2 (en)
JPS62218854A (en) Oxygen concentration detector
JPH0713616B2 (en) Oxygen concentration detector
JPS6255553A (en) Oxygen concentration detector
JPS61294360A (en) Oxygen concentration detector
JPH0713619B2 (en) Oxygen concentration detector