JPS6255501A - Laser length measuring apparatus - Google Patents

Laser length measuring apparatus

Info

Publication number
JPS6255501A
JPS6255501A JP19388285A JP19388285A JPS6255501A JP S6255501 A JPS6255501 A JP S6255501A JP 19388285 A JP19388285 A JP 19388285A JP 19388285 A JP19388285 A JP 19388285A JP S6255501 A JPS6255501 A JP S6255501A
Authority
JP
Japan
Prior art keywords
mirror
measured
plate
half mirror
laser beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19388285A
Other languages
Japanese (ja)
Inventor
Masaru Otsuka
勝 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP19388285A priority Critical patent/JPS6255501A/en
Publication of JPS6255501A publication Critical patent/JPS6255501A/en
Pending legal-status Critical Current

Links

Landscapes

  • Instruments For Measurement Of Length By Optical Means (AREA)

Abstract

PURPOSE:To make it possible to measure the displacement quantities of a plurality of articles to be measured by the same apparatus, by changing over a plurality of light paths by a PLZT element and a reflective mirror. CONSTITUTION:A PLZT element 9 is set to a beam blocking state and a PLZT element 9a is set to a beam transmitting state. Whereupon, the beam A emitted from laser 1 enters an interferrometer 2 and is separated into two directions by a half mirror 3. The beam A1 enters a beam receiving apparatus 5 through a route consisting of a half mirror 3a, the element 9a, a corner cube 4, the element 9a and mirrors 3a, 3 while the beam A2 enters an apparatus 5 through a route consisting of a lambda/4 plate 6, a flat mirror 8, a plate 6, the mirror 3, a corner cube 4a, the mirror 3, the plate 6, the mirror 8, the plate 6 and the mirror 3. The apparatus 5 counts the interference due to the beams A1, A2 to make it possible to measure the displacement quantity of an article 7 to be measured. Next, the element 9 is set to a beam transmitting state and the element 9a to a beam blocking state. Whereupon, the beam A is separated into beams A1, A2 to enter the apparatus 5 through the predetermined routes. In this case, the relative displacement quantity of articles 7, 7a to be measured can be measured from the number of interference fringes counted by the apparatus 5.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、測長装置、特に光の干渉を利用して被測定物
の変位量を測定するレーザ測長装置に関するものである
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a length measuring device, and particularly to a laser length measuring device that measures the amount of displacement of an object to be measured using optical interference.

(従来の技術) 従来、この種の装置としては、第5図に示す構成から成
るレーザ測長装置が公知である。ここで、1は可干渉光
束を出射するレーザ、2は干渉計、3はハーフミラ−1
4,4&はコーナキューブ、5は受光装置、6は174
波長板(以下λ/4板と記す。)、7は被測定物、8は
平面鏡、A 1人、。
(Prior Art) Conventionally, as this type of device, a laser length measuring device having a configuration shown in FIG. 5 is known. Here, 1 is a laser that emits a coherent beam, 2 is an interferometer, and 3 is a half mirror 1.
4, 4& is a corner cube, 5 is a light receiving device, 6 is 174
Wave plate (hereinafter referred to as λ/4 plate), 7 is the object to be measured, 8 is a plane mirror, A 1 person.

A2はレーザ光線を示す。レーザ1から出射したレーザ
光線人は干渉計2に入射し、この干渉計2の略々中央部
にレーザ光線Aに対して約45°傾けて設けたハーフミ
ラ−3によシ2方向に分離される。ハーフミラ−3によ
シ紙面上方に反射されたレーザ光線A1は干渉計2の上
面に取付けたコーナキューブ4によシ反射され、入射方
向とは逆方向に出射して再度ノ・−7ミラー3で反射さ
れて受光装置5に入射する。一方、ノ・−フミラー3を
透過し紙面右方向に出射したレーザ光線A8はλ/4板
6を介して被測定物7に取付けた平面鏡8に入射する。
A2 indicates a laser beam. The laser beam emitted from the laser 1 enters an interferometer 2, and is separated into two directions by a half mirror 3 installed approximately at the center of the interferometer 2 at an angle of about 45 degrees with respect to the laser beam A. Ru. The laser beam A1 reflected upward from the plane of the paper by the half mirror 3 is reflected by the corner cube 4 attached to the top surface of the interferometer 2, and is emitted in the opposite direction to the direction of incidence and is reflected again by the half mirror 3. The light is reflected by the beam and enters the light receiving device 5. On the other hand, the laser beam A8 transmitted through the nof mirror 3 and emitted in the right direction in the drawing is incident on the plane mirror 8 attached to the object to be measured 7 via the λ/4 plate 6.

ここで反射されたレーザ光線A、は再度λ/4板6を通
過して干渉計2に入射し、ノ・−7ミラー3で反射され
た後干渉計2の下面に取付けたコーナキューブ4aによ
シ反射され、入射方向とは逆方向に出射して干渉計2に
入射する。このレーザ光線A、は干渉計2内のハーフミ
ラ−3で反射され(紙面右方向に)、λ/4板6を通過
し被測定物7に取付けた平面鏡8に再び入射する。ここ
で反射されたレーザ光線A、は再度λ/4板6を通過し
て干渉計2に入射し、ハーフミラ−3を通過して受光装
置5に達する。即ち、2つの異なる経路を通ったレーザ
光線A□及びA2が重なシ合うことで干渉が生じる。こ
こで、レーザ光線A、は被測定物7の紙面左右方向の変
位に依存したド。
The laser beam A reflected here passes through the λ/4 plate 6 again, enters the interferometer 2, is reflected by the No.-7 mirror 3, and then hits the corner cube 4a attached to the bottom surface of the interferometer 2. The light is reflected by the beam, exits in a direction opposite to the direction of incidence, and enters the interferometer 2. This laser beam A is reflected by a half mirror 3 in the interferometer 2 (to the right in the drawing), passes through a λ/4 plate 6, and enters a plane mirror 8 attached to an object to be measured 7 again. The laser beam A reflected here passes through the λ/4 plate 6 again, enters the interferometer 2, passes through the half mirror 3, and reaches the light receiving device 5. That is, interference occurs when the laser beams A□ and A2 that have passed through two different paths overlap. Here, the laser beam A is a beam that depends on the displacement of the object to be measured 7 in the horizontal direction on the plane of the drawing.

プラー効果を受ける為、レーザ光線A2の微小なる波長
変化が生じる。従って、受光装置5によシ入射光線A1
及びA、の干渉で生じた干渉縞を計数することによシ被
測定物7の変位量を測定出来る。
Due to the puller effect, a slight change in the wavelength of the laser beam A2 occurs. Therefore, the light beam A1 incident on the light receiving device 5
By counting the interference fringes caused by the interference of A and A, the amount of displacement of the object to be measured 7 can be measured.

(発明が解決しようとする問題点) しかしながら、前述の如き従来の測長装置では、干渉計
2、ハーフミラ−3、コーナキューブ4゜4apλ/4
板6等の光学素子から成る光学系を用い、単一の被測定
物を測定することしか出来ず、同一の装置で複数の被測
定物を測定することは不可能であった。
(Problems to be Solved by the Invention) However, in the conventional length measuring device as described above, the interferometer 2, the half mirror 3, the corner cube 4°4apλ/4
It was only possible to measure a single object to be measured using an optical system consisting of optical elements such as the plate 6, and it was impossible to measure multiple objects to be measured with the same device.

本発明は、上記従来の問題点を解決する目的でなされ、
同一装置で複数の被測定物の変位量を測定可能なレーザ
測長装置を提供しようとするものである。
The present invention was made for the purpose of solving the above conventional problems,
The present invention aims to provide a laser length measuring device that is capable of measuring displacement amounts of a plurality of objects to be measured using the same device.

(問題点を解決するための手段) 前記問題点を解決する為の手段として、本発明に係るレ
ーザ測長装置は、可干渉光源と、該光源から出射した1
部の光束を被測定物に照射し該被測定物で反射された光
束と該光源から出射し異なる光路を経た光束とを干渉さ
せる光学系と、該光学系を介して得られる干渉光束を検
出する手段と、複数の被測定物の夫々に対応した複数の
光路と、該複数の光路の内任意の光路を選択する光路変
換手段とを有することを特徴とする。
(Means for Solving the Problems) As a means for solving the problems, a laser length measuring device according to the present invention includes a coherent light source and a laser beam emitted from the light source.
an optical system that irradiates the object to be measured with a beam of light from the center of the object and causes interference between the beam reflected by the object and the beam that is emitted from the light source and passes through a different optical path, and detects the interference beam obtained through the optical system. A plurality of optical paths corresponding to each of the plurality of objects to be measured, and an optical path converting means for selecting an arbitrary optical path among the plurality of optical paths.

(実施例) 以下、本発明を実施例を用いて詳細に説明する。(Example) Hereinafter, the present invention will be explained in detail using Examples.

尚、第5図に示した従来例と同一部材には同一符号を付
してその説明を省略する。
Incidentally, the same members as those in the conventional example shown in FIG. 5 are given the same reference numerals, and their explanations will be omitted.

第1図は、本発明の一実施例を示すレーザ測長装置の概
略構成図である。ここで、3aはハーフミラ−14bは
コーナキューブ、7mは第2の被測定物、9及び9aは
PLZT素子、1oは反射鏡を示す。レーザ1から出射
するレーザ光線Aの同軸線上には、偏光子11と45°
に傾斜させたハーフミラ−3を内蔵した干渉計2とλ/
4板6、及び平面鏡8を取付けた被測定物7が配置され
ている。
FIG. 1 is a schematic diagram of a laser length measuring device showing an embodiment of the present invention. Here, 3a is a half mirror, 14b is a corner cube, 7m is a second object to be measured, 9 and 9a are PLZT elements, and 1o is a reflecting mirror. On the coaxial line of the laser beam A emitted from the laser 1, there is a 45° angle with the polarizer 11.
Interferometer 2 with built-in half mirror 3 tilted to λ/
A measured object 7 to which four plates 6 and a plane mirror 8 are attached is arranged.

干渉計2の上面には45°の角度で配置したハーフミラ
−3aが干渉計2の下面にはレーザ光を入射方向に対し
て逆方向に反射するコーナキー−ブ4aが取付けられて
いる。PLZT素子9,9aは印加する電圧のオン、オ
フによって光を透過又は遮断する機能を持つ素子であシ
、ハーフミラ−3&の上部及び左側に配置されている。
A half mirror 3a arranged at an angle of 45 DEG is attached to the upper surface of the interferometer 2, and a corner key 4a is attached to the lower surface of the interferometer 2 to reflect the laser beam in a direction opposite to the direction of incidence. The PLZT elements 9 and 9a are elements that have the function of transmitting or blocking light by turning on or off an applied voltage, and are arranged above and on the left side of the half mirror 3&.

更にPLZT素子9aと対向する様にコーナキューブ4
が配置されている。又、反射鏡10はPLZT素子9の
上方に光路に対し45°の角度で配置されておシ、反射
鏡10の右方向にはコーナキューブ4bを取付けた第2
の被測定物7aが配置されている。
Furthermore, the corner cube 4 is placed so as to face the PLZT element 9a.
is located. Further, the reflecting mirror 10 is arranged above the PLZT element 9 at an angle of 45° with respect to the optical path, and a second corner cube 4b is attached to the right side of the reflecting mirror 10.
Objects to be measured 7a are arranged.

本レーザ測長装置は上述の様に構成されておシ、まず、
被測定物7の変位量を測定する際は、PLZT素子9を
光遮断状態にセ、) L、PLZT素子9aを光透過状
態にセットする。この時、レーザ1から出射したレーザ
光fa人は干渉計2に入射し、干渉計2内に45°の角
度で取付けたハーフミラ−3によりて2方向に分離され
る。ハーフミラ−3によって上方に反射されたレーザ光
線A□は、干渉計2の上面に取付けたハーフミラ−3a
で反射され、PLZT素子9龜を通過してコーナキュー
ブ4に入射する。ここで、レーザ光線A1は光路を18
0°曲げられ、再度P!、ZT素子9&を通過してハー
フミラ−3m及び3で反射されて受光装置5に入射する
This laser length measurement device is configured as described above.
When measuring the amount of displacement of the object to be measured 7, the PLZT element 9 is set to a light blocking state, and the PLZT element 9a is set to a light transmitting state. At this time, the laser beam emitted from the laser 1 enters the interferometer 2, and is separated into two directions by a half mirror 3 installed within the interferometer 2 at an angle of 45 degrees. The laser beam A□ reflected upward by the half mirror 3 is reflected by the half mirror 3a attached to the top surface of the interferometer 2.
The light is reflected by the beam, passes through the PLZT element 9, and enters the corner cube 4. Here, the laser beam A1 has an optical path of 18
Bent 0 degrees and P again! , passes through the ZT element 9&, is reflected by the half mirrors 3m and 3, and enters the light receiving device 5.

一方、ハーフミラ−3を透過したレーザ光線A2は従来
例同様λ/4板6、平面鏡8、λ/4板6、ノー−7ミ
シー3、コーナキューブ4a、ノ1−7ミラー3、λ/
4板6、平面鏡8、λ/4板6、ノー−7ミシー3とい
う経路で受光装置5に入射する。従って1干渉計2、ノ
・−7ミラ一3m3m)コーナキー−プ4#4a、λ/
4板6、及びPLZT索子9aから成る光学系によって
生じるレーザ光線A1及びA、の干渉による干渉縞を受
光装置5で計数することによシ被測定物7の変位量を測
定する事が出来る。
On the other hand, the laser beam A2 transmitted through the half mirror 3 is transmitted through the λ/4 plate 6, the plane mirror 8, the λ/4 plate 6, the corner cube 4a, the 1-7 mirror 3, the λ/4 plate 6, the plane mirror 8, the λ/4 plate 6, the corner cube 4a, the 1-7 mirror 3, and the λ/4 plate 6, as in the conventional example.
The light enters the light receiving device 5 through the path of the 4th plate 6, the plane mirror 8, the λ/4 plate 6, and the no-7 Missy 3. Therefore, 1 interferometer 2, No.-7 Mira-3m3m) Corner keep 4#4a, λ/
The amount of displacement of the object to be measured 7 can be measured by counting the interference fringes caused by the interference of the laser beams A1 and A generated by the optical system consisting of the four plates 6 and the PLZT cable 9a using the light receiving device 5. .

次に、PLZT素子9を光透過状態にセットし、PLZ
T素子9&を光遮断状態にセットする。この時、レーザ
1から出射したレーザ光線人は干渉計2に入射し、干渉
計2内に45°の角度で取付は九ノ1−7ミラー3によ
って2方向に分離される。ハーフミラ−3によって上方
に反射されたレーザ光線A1は、ハーフミラ−3亀を透
過してPLZT索子9を通過し、レーザ光線A1の光路
に対し45°傾けて配置した反射鏡10で反射され被測
定物7aに取付けたコーナ午ユーブ4bに入射する。こ
のコーナキューブ4bによって180’光路を曲げられ
光の光路に沿って逆方向に進むレーザ光fsA工は再度
反射鏡10で反射されPLZT素子9を通)、ハーフミ
ラ−3aを通過してハーフミラ−3で反射されて受光装
置5に入射する。一方、ハーフミラ−3を透過したレー
ザ光線A、は前述のPLZT素子9がオフ、PLZT素
子9aがONの状態と同様に、λ/4板、平面鏡8、λ
/4板6、ハーフミラ−3、コーナキューブ4m、ハー
フミラ−3、λ/4板6、平面鏡8、λ/4板6、ハー
フミラ−3という経路で受光装置5に入射する。従って
、この場合レシーバ5で計数される干渉縞数から被測定
物7及び7aの相対変位量を測定出来る。
Next, the PLZT element 9 is set to a light transmitting state, and the PLZT element 9 is
Set the T element 9& to a light blocking state. At this time, the laser beam emitted from the laser 1 enters the interferometer 2, and is mounted in the interferometer 2 at an angle of 45° and separated into two directions by the nine-point 1-7 mirror 3. The laser beam A1 reflected upward by the half mirror 3 passes through the half mirror 3, passes through the PLZT cable 9, and is reflected by the reflecting mirror 10 arranged at an angle of 45 degrees with respect to the optical path of the laser beam A1. The light enters the corner tube 4b attached to the object 7a. The laser beam fsA whose 180' optical path is bent by this corner cube 4b and travels in the opposite direction along the optical path of the light is reflected again by the reflecting mirror 10, passes through the PLZT element 9), passes through the half mirror 3a, and then returns to the half mirror 3. The light is reflected by the beam and enters the light receiving device 5. On the other hand, the laser beam A transmitted through the half mirror 3 passes through the λ/4 plate, the plane mirror 8, and the λ
The light enters the light receiving device 5 through a path of /4 plate 6, half mirror 3, corner cube 4m, half mirror 3, λ/4 plate 6, plane mirror 8, λ/4 plate 6, and half mirror 3. Therefore, in this case, the amount of relative displacement between the objects to be measured 7 and 7a can be measured from the number of interference fringes counted by the receiver 5.

第2図は、本発明の他の実施例を示し、10aは反射鏡
である。前述の第1図に示した実施例では、PLZT素
子9,9aによって干渉計2、ハーフミラ−3、3m、
  コーナキューブ4 、4 m、λ/4板6から成る
光学系に入射するレーザ光mAtの光路を切換え被測定
物7,7aの相対変位量を測定する構成を有していた。
FIG. 2 shows another embodiment of the present invention, in which 10a is a reflecting mirror. In the embodiment shown in FIG. 1, the interferometer 2, half mirror 3, 3m,
It had a configuration in which the optical path of the laser beam mAt incident on an optical system consisting of corner cubes 4, 4 m and a λ/4 plate 6 was changed to measure the amount of relative displacement of the objects to be measured 7, 7a.

しかしながら、本実施例では第2図に示すようにハーフ
ミラ−3aを反射鏡tOaに代え、且つ反射鏡10鳳を
可動可能にする事によってレーザ光線A1の光路を切換
える事が出来る。尚、他の構成は第1図に示す実施例と
同様である。即ち、反射鏡10mを45°に傾斜させた
時(実線で示す。)は、被測定物7の変位量を測定する
ことが出来、立て走時(点線で示す。)は、被測定物7
,7&の相対変位量を測定する事が可能となる。
However, in this embodiment, as shown in FIG. 2, the optical path of the laser beam A1 can be switched by replacing the half mirror 3a with a reflecting mirror tOa and by making the reflecting mirror 10 movable. Note that the other configurations are the same as the embodiment shown in FIG. That is, when the reflecting mirror 10m is tilted at 45 degrees (indicated by a solid line), the displacement amount of the object 7 to be measured can be measured;
, 7 & can be measured.

第3図は、本発明の更人る実施例を示すものである。本
実施例では、第5図に示した従来例とほぼ同様に構成し
たレーザ測長装置に於て、λ/4板6と被測定物7に取
付けた平面鏡8の間に光路に対し45°に傾斜させたハ
ーフミラ−3bとPLZT素子9aが配置されている。
FIG. 3 shows a further embodiment of the invention. In this embodiment, in a laser length measuring device configured almost the same as the conventional example shown in FIG. A half mirror 3b and a PLZT element 9a are arranged.

そして、ハーフミラ−3bの上方にはPLZT素子9と
光路に対し45°に傾斜させた反射鏡10を配置してい
る。更に反射鏡10の右方向には平面鏡8aを取付けた
測定物体7&が配置されている。従って、PLZT素子
9を光遮断状態にセットし、PLZT素子9aを光透過
状態にセットした時は、第5図に示した従来例と全く同
じ構成となり、前述した様に受光装置5で干渉縞を計数
する事によシ、被測定物7の変位量を測定する事が出来
る。
A PLZT element 9 and a reflecting mirror 10 inclined at 45 degrees with respect to the optical path are arranged above the half mirror 3b. Further, to the right of the reflecting mirror 10, a measurement object 7& to which a plane mirror 8a is attached is arranged. Therefore, when the PLZT element 9 is set to the light blocking state and the PLZT element 9a is set to the light transmitting state, the configuration is exactly the same as the conventional example shown in FIG. By counting , the amount of displacement of the object to be measured 7 can be measured.

次に、PK、ZT素子9&を光遮断状態にセットし、P
LZT素子9を光透過状態にセ、トシた時は、ま玄レー
ザ1から出射したレーザ光線Aの内、干渉計2内のハー
フミラ−3によう【上方に反射されたレーザ光線A1は
、第5図に示した従来例と同様コーナキューf4、ハー
フミラ−3を経由して受光装置5に入射する。一方、ハ
ーフミラ−3を透過したレーザ光線A、は、λ/4を通
過しハーフミラ−31で反射される。そしてPLZT素
子9を通過し反射鏡10で反射され被測定物7mに取付
けた平面鏡8aに入射する。そして、平面鏡8&で逆方
向に反射されたレーザ光線A2は、反射鏡10で再び反
射されPLZT素子9を通過してハーフミラ−3&で反
射されて、λ/4板6を通ジノ・−7ミラー3で反射さ
れる。ハーフミラ−3で反射されたレーザ光線A、はコ
ーナキューブ4で光路を180゜曲げられてハーフミラ
−3で再び反射され、λ/4板6を通ってハーフミラ−
3aで反射され、PLZT素子9を通過する。その後反
射鏡工0で反射さへ再度被測定物7aに取付けた平面鏡
8aに入射する0そして、再度平面鏡8aで逆方向に反
射されたレーザ光線人、は、反射鏡10で反射されて、
PLZT素子9を通過し、ノ’−7ミラー3aで反射さ
れてλ/4板6、干渉計2内のハーフミラ−3を介して
受光装置5に入射する。従って、干渉計2、ハーフミラ
−3及び3m、コーナキューf4及び4&、λ/4板6
、反射鏡10及びPLZT素子9゜9aから成る光学系
を介しレーザ光線人□とレーザ光線人、の干渉による干
渉縞を受光装置5で計数することにより、被測定物7龜
の変位量を測定することができる。
Next, set the PK and ZT elements 9& to the light blocking state, and
When the LZT element 9 is set to a light transmitting state, part of the laser beam A emitted from the solid laser 1 is reflected by the half mirror 3 in the interferometer 2. Similar to the conventional example shown in FIG. 5, the light enters the light receiving device 5 via the corner cue f4 and the half mirror 3. On the other hand, the laser beam A that has passed through the half mirror 3 passes through λ/4 and is reflected by the half mirror 31. The light then passes through the PLZT element 9, is reflected by the reflecting mirror 10, and enters the plane mirror 8a attached to the object to be measured 7m. The laser beam A2 reflected in the opposite direction by the plane mirror 8& is reflected again by the reflecting mirror 10, passes through the PLZT element 9, is reflected by the half mirror 3&, passes through the λ/4 plate 6, and passes through the Zino-7 mirror. It is reflected at 3. The laser beam A reflected by the half mirror 3 bends its optical path by 180 degrees at the corner cube 4, is reflected again by the half mirror 3, passes through the λ/4 plate 6, and returns to the half mirror.
3a and passes through the PLZT element 9. Thereafter, the laser beam is reflected by the reflecting mirror 0, and is again incident on the plane mirror 8a attached to the object to be measured 7a.
The light passes through the PLZT element 9, is reflected by the No'-7 mirror 3a, and enters the light receiving device 5 via the λ/4 plate 6 and the half mirror 3 in the interferometer 2. Therefore, interferometer 2, half mirrors 3 and 3m, corner cues f4 and 4&, λ/4 plate 6
, the amount of displacement of the object to be measured 7 is measured by counting the interference fringes caused by the interference between the laser beam person □ and the laser beam person through an optical system consisting of a reflecting mirror 10 and a PLZT element 9°9a. can do.

本実施例では、λ/4板6と平面鏡8を取付けた被測定
物70間に配置した、ハーフミラ−3a。
In this embodiment, a half mirror 3a is placed between a measured object 70 to which a λ/4 plate 6 and a plane mirror 8 are attached.

PLZT素子9 m + 9、反射鏡10によシ、レー
ザ光線A、の光路を切換えて被測定物7及び7aの絶対
変位量を測定する構成を有していた。ここで更に第4図
に示す様に複数個(第4図では3個)の測定物体7 =
 7 a t 7 b・・・を配置した場合も同様の手
段で実施する事が出来る。即ち、λ/4板6と被測定物
7に取付けた平面鏡8の間には、前記第3図で示した実
施例と同様に構成され九ノ・−フミ’:y −3s 、
 PLZT素子9a、9を配置する。そして、その上方
にも同様にハーフミラ−3b、3c、PLZT素子9 
b e 9 e 、9 d 、9 eを被測定物711
7bに取付けた平面鏡8a、3bと対向するようにして
構成する。そして、各PLZT素子9,9a。
It had a configuration in which the optical path of the laser beam A was switched using the PLZT element 9 m + 9 and the reflecting mirror 10 to measure the absolute displacement amount of the objects to be measured 7 and 7a. Here, as shown in Fig. 4, a plurality of (three in Fig. 4) measurement objects 7 =
7 a t 7 b... can be implemented by the same means. That is, between the λ/4 plate 6 and the plane mirror 8 attached to the object to be measured 7, the structure is similar to that of the embodiment shown in FIG.
PLZT elements 9a and 9 are arranged. Similarly, half mirrors 3b, 3c and PLZT element 9 are placed above them.
b e 9 e , 9 d , 9 e as the object to be measured 711
It is configured to face plane mirrors 8a and 3b attached to mirror 7b. And each PLZT element 9, 9a.

9b、9e、9d、9・を、適宜光透過又は光遮断状態
にセットしてレーザ光線A、の光路を切換え、各被測゛
宝物7,7m、7bの絶対変位量を測定する事が出来る
9b, 9e, 9d, and 9. are set to transmit light or block light as appropriate to switch the optical path of laser beam A, and the absolute displacement of each treasure 7, 7m, and 7b to be measured can be measured. .

又、前記第1〜4図で示した実施例においては、PLZ
T素子9〜9・又は可動反射鏡10aがレーザ光線A、
、A、を透過又は遮断する光路変換手段としての働きを
したが、メカニカルなシャッター又は液晶を使用したシ
ャッター等によって、レーザ光線A1eA*を透過又は
遮断してレーザ光線の光路を切換えることも可能である
In addition, in the embodiments shown in FIGS. 1 to 4 above, PLZ
T elements 9 to 9 or movable reflecting mirror 10a are laser beams A,
, A, but it is also possible to change the optical path of the laser beam by transmitting or blocking the laser beam A1eA* using a mechanical shutter or a shutter using a liquid crystal. be.

以上の実施例に示した構成は本発明の一形態であシ、2
光束を干渉させる為の光学系や光路変換手段には各種構
成が存在し、本発明の思想に於て様々な形態の装置を得
ることが出来る。
The configuration shown in the above embodiment is one form of the present invention.
There are various configurations of the optical system and optical path converting means for interfering the light beams, and it is possible to obtain various types of devices based on the idea of the present invention.

(発明の効果) 以上説明した様に、本発明に係るレーザ測長装置は、複
数の被測定物に対応した複数の光路を、PLZT素子や
可動可能な反射鏡等によって切換えることが出来、単一
の装置で複数の被測定物の絶対変位量又は各被測定物間
の相対変位量の測定を行うことが可能でちる。
(Effects of the Invention) As explained above, the laser length measuring device according to the present invention can switch a plurality of optical paths corresponding to a plurality of objects to be measured using a PLZT element, a movable reflecting mirror, etc. It is possible to measure the absolute displacement amount of a plurality of objects to be measured or the relative displacement amount between each object to be measured with one device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例に係るレーザ測長装置の概
略構成図、第2〜4図は、いずれも本発明の他の実施例
に係るレーザ測長装置の概略構成図、第5図は、従来例
におけるレーザ測長装置の構成図。 1・・・レーザ、2−・・干渉計、3.3m、3b。 3c・・・ハーフミラ−14,4a、4b・・・コーナ
キューブ、5・・・受光装置、6・・・λ/4板、7 
p 7 ’ r7 b−・・被測定物、B 、 f3 
m 、 8 b−・・平面鏡、9゜9m、9b*9et
9d、9s=PLZT素子、10゜10 a =反射鏡
、11−・・偏光子、A 、A1  + 12・・・レ
ーザ光線。 代理人  弁理士 山 下 積 平 第1図 第3回 q 第5図
FIG. 1 is a schematic diagram of a laser length measuring device according to an embodiment of the present invention, and FIGS. 2 to 4 are schematic diagrams of a laser length measuring device according to another embodiment of the present invention. FIG. 5 is a configuration diagram of a conventional laser length measuring device. 1...Laser, 2-...Interferometer, 3.3m, 3b. 3c... Half mirror 14, 4a, 4b... Corner cube, 5... Light receiving device, 6... λ/4 plate, 7
p7' r7 b--Object to be measured, B, f3
m, 8 b--plane mirror, 9°9m, 9b*9et
9d, 9s=PLZT element, 10°10a=reflector, 11-...polarizer, A, A1+12...laser beam. Agent Patent Attorney Seki Taira Yamashita Figure 1 Part 3 q Figure 5

Claims (3)

【特許請求の範囲】[Claims] (1)可干渉光源と、該光源から出射した1部の光束を
被測定物に照射し該被測定物で反射された光束と該光源
から出射し異なる光路を経た光束とを干渉させる光学系
と、該光学系を介して得られる干渉光束を検出する手段
とを有する装置であって、複数の被測定物の夫々に対応
した複数の光路と、該複数の光路の内任意の光路を選択
する光路変換手段とを有するレーザ測長装置。
(1) A coherent light source and an optical system that irradiates a part of the light beam emitted from the light source onto an object to be measured, and causes interference between the light beam reflected by the object and the light beam that is emitted from the light source and passes through a different optical path. and a means for detecting an interference light beam obtained through the optical system, the apparatus having a plurality of optical paths corresponding to each of the plurality of objects to be measured, and selecting an arbitrary optical path among the plurality of optical paths. A laser length measuring device having an optical path changing means.
(2)該光路変換手段が少なくとも2つの光変調素子を
有することを特徴とする特許請求の範囲第(1)項記載
のレーザ測長装置。
(2) The laser length measuring device according to claim (1), wherein the optical path converting means has at least two light modulation elements.
(3)該光路変換手段が少なくとも1つの可動ミラーか
ら成ることを特徴とする特許請求の範囲第(1)項記載
のレーザ測長装置。
(3) The laser length measuring device according to claim (1), wherein the optical path changing means comprises at least one movable mirror.
JP19388285A 1985-09-04 1985-09-04 Laser length measuring apparatus Pending JPS6255501A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19388285A JPS6255501A (en) 1985-09-04 1985-09-04 Laser length measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19388285A JPS6255501A (en) 1985-09-04 1985-09-04 Laser length measuring apparatus

Publications (1)

Publication Number Publication Date
JPS6255501A true JPS6255501A (en) 1987-03-11

Family

ID=16315304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19388285A Pending JPS6255501A (en) 1985-09-04 1985-09-04 Laser length measuring apparatus

Country Status (1)

Country Link
JP (1) JPS6255501A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08300597A (en) * 1995-05-02 1996-11-19 Mdc Max Daetwyler Bleienbach Ag Engraving intaglio printing cylinder and cutter for engraving intaglio printing plate

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5664604A (en) * 1979-10-12 1981-06-01 Farrand Ind Inc Correction method of and apparatus for optical devices
JPS56130934A (en) * 1980-03-17 1981-10-14 Nec Kyushu Ltd Inspecting device for semiconductor element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5664604A (en) * 1979-10-12 1981-06-01 Farrand Ind Inc Correction method of and apparatus for optical devices
JPS56130934A (en) * 1980-03-17 1981-10-14 Nec Kyushu Ltd Inspecting device for semiconductor element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08300597A (en) * 1995-05-02 1996-11-19 Mdc Max Daetwyler Bleienbach Ag Engraving intaglio printing cylinder and cutter for engraving intaglio printing plate

Similar Documents

Publication Publication Date Title
US4504147A (en) Angular alignment sensor
JPH09325005A (en) Device for measuring deflection
US4717250A (en) Angle measuring interferometer
US7426039B2 (en) Optically balanced instrument for high accuracy measurement of dimensional change
US5715057A (en) Reference interferometer with variable wavelength and folded measurement beam path
CN110514147B (en) Double-frequency laser interferometer capable of simultaneously measuring roll angle and straightness
US3680963A (en) Apparatus for measuring changes in the optical refractive index of fluids
US4105339A (en) Azimuth monitoring system
US5900936A (en) Method and apparatus for detecting relative displacement using a light source
JPS6255501A (en) Laser length measuring apparatus
US4600308A (en) Phase-matching arrayed telescopes with a corner-cube-bridge metering rod
EP0333783B1 (en) Straightness interferometer system
US4866287A (en) Optical surface waviness measuring apparatus
US3419331A (en) Single and double beam interferometer means
US3674371A (en) Temperature compensation of a laser interferometer
US3724950A (en) Optical instrument for determining the distance between two measuring points
RU2069839C1 (en) Device determining lateral displacements
JPH11108614A (en) Light-wave interference measuring instrument
GB2079000A (en) Two-stage interferometer
US2846919A (en) Interferometer
US3614236A (en) Apparatus for measuring length by optical interferometry
JPS61145476A (en) Optical range finder
JPS59136604A (en) Multiple optical path laser interferometer
JPH0961298A (en) Low coherence reflectometer
GB2136117A (en) Interferometer Spectrometer