JPS6255280B2 - - Google Patents

Info

Publication number
JPS6255280B2
JPS6255280B2 JP12059178A JP12059178A JPS6255280B2 JP S6255280 B2 JPS6255280 B2 JP S6255280B2 JP 12059178 A JP12059178 A JP 12059178A JP 12059178 A JP12059178 A JP 12059178A JP S6255280 B2 JPS6255280 B2 JP S6255280B2
Authority
JP
Japan
Prior art keywords
fluorescent light
switching
fluorescent
transistor
turned
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12059178A
Other languages
Japanese (ja)
Other versions
JPS5546442A (en
Inventor
Hideki Fukazawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MINI PAIRO DENKI KK
Original Assignee
MINI PAIRO DENKI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MINI PAIRO DENKI KK filed Critical MINI PAIRO DENKI KK
Priority to JP12059178A priority Critical patent/JPS5546442A/en
Publication of JPS5546442A publication Critical patent/JPS5546442A/en
Publication of JPS6255280B2 publication Critical patent/JPS6255280B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Discharge-Lamp Control Circuits And Pulse- Feed Circuits (AREA)

Description

【発明の詳細な説明】 本発明は、螢光照明装置、更に詳しくは、常態
(平常即ちノーマルの状態)に於て点燈している
螢光燈が寿命等によつて障害が発生した際に即座
に、その障害の起きた螢光燈に代つて補助の螢光
燈が点燈する螢光照明装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a fluorescent illumination device, more specifically, a fluorescent light that is illuminated under normal conditions (ordinary or normal state) when a failure occurs due to the end of its lifespan or the like. The present invention relates to a fluorescent lighting system in which an auxiliary fluorescent light immediately replaces the failed fluorescent light.

螢光燈は優れた照明器具として今日広く使用さ
れているが、螢光放電管の寿命到来時には、周知
の如く、電球と異なり放電維持電圧が電源電圧に
極めて近付くか又は電源電圧以上となり、放電が
継続できずに消燈する。ところが、予熱型始動方
式の器具にあつては直ちにグローランプが放電を
開始し、螢光放電管の陰極ヒータを予熱して管の
放電を促すが、放電は維持できずに再び消燈す
る。従つて、グローランプによる予熱、管放電、
消燈、グローランプ放電、予熱と交代に繰返すこ
とになり、非常に見苦しく且つ人をして神経をい
ら立てることが多い。
Fluorescent lamps are widely used today as excellent lighting equipment, but as is well known, when a fluorescent discharge tube reaches the end of its life, unlike a light bulb, the discharge sustaining voltage approaches or exceeds the power supply voltage, and the discharge stops. cannot continue and the light goes out. However, in the case of a preheating type starting device, the glow lamp immediately starts discharging and preheats the cathode heater of the fluorescent discharge tube to encourage discharge of the tube, but the discharge cannot be maintained and the light goes out again. Therefore, preheating with a glow lamp, tube discharge,
Turning off the light, discharging the glow lamp, and preheating must be repeated repeatedly, which is very unsightly and often irritates people's nerves.

螢光燈はその長寿命の利点を利用して容易に管
の交換ができない場所の照明に使用されること
が、何らかの障害が発生した場合、又は、何時か
寿命到来ともなれば、前記現象は避けられない。
Fluorescent lights are used for lighting in places where tubes cannot be easily replaced due to their long lifespan, but if some kind of failure occurs or the end of their lifespan is reached, the above phenomenon will not occur. Inevitable.

本発明は従来の上記事情に鑑みてなされたもの
であり、従つて本発明の目的は、上記照明器具の
主螢光燈に寿命到来、その他の障害の発生と同時
に予備螢光燈に切換えることにより、照明を常時
安定に継続させることができる新規な螢光照明装
置を提供することにある。
The present invention has been made in view of the above-mentioned conventional circumstances, and therefore, an object of the present invention is to switch to a backup fluorescent light at the same time as the main fluorescent light of the above-mentioned lighting equipment reaches the end of its life or other trouble occurs. The object of the present invention is to provide a novel fluorescent lighting device that can stably continue lighting at all times.

本発明の上記目的は、常態に於て点燈する第1
の螢光燈と、該第1の螢光燈の障害時に点燈する
第2の螢光燈と、前記第1の螢光燈のヒータドロ
ツプ電圧を監視して前記第1の螢光燈の障害を検
出する障害検出手段と、該障害検出手段の出力に
より作動させられて前記第1の螢光燈から第2の
螢光燈に電源を切換える切換手段を駆動する切換
駆動手段と、該切換駆動手段の駆動状態を維持す
る保持手段とを具備した螢光照明装置、によつて
達成される。
The above-mentioned object of the present invention is to
a second fluorescent light that turns on when the first fluorescent light fails; and a heater drop voltage of the first fluorescent light is monitored to detect a failure of the first fluorescent light. a fault detection means for detecting a fault detection means; a switching drive means for driving a switching means actuated by the output of the fault detection means to switch the power source from the first fluorescent light to the second fluorescent light; and the switching drive This is achieved by a fluorescent illumination device comprising a holding means for maintaining the driving state of the means.

本発明によれば、主螢光燈の寿命到来時に自動
的に一旦予備螢光燈に切換えておき、その予備螢
光燈の寿命到来までの間に主螢光燈を新しいもの
と交換整備しておけば、該照明を安定に連続させ
ることができる。
According to the present invention, when the main fluorescent light reaches the end of its lifespan, it is automatically switched to the backup fluorescent light, and the main fluorescent light can be replaced with a new one until the end of the lifespan of the backup fluorescent light. By doing so, the illumination can be stably and continuously provided.

ここで、実施例の説明の前に本発明の原理につ
いて若干説明しよう。白熱電球であれば寿命到来
はヒラメントの断線であり、その電気的変化は当
該電球の要していた電流がその時より零となるか
ら事は極めて簡単であるが、螢光燈の場合には、
予熱型始動方式の場合寿命到来によつて管放電が
停止し消燈しても一瞬の内にグローランプの放電
が始まり、暫時してグローランプの電極タツチに
より管陰極ヒータの予熱が始まり、グローランプ
放電は中止され、管放電に移るが継続できずに消
燈し、再びグローランプの放電と繰返えす。しか
るに、この間電源より流入する電流は零となるこ
とはなく、小さく大きく時には強いインパルス性
の過渡現象も上乗りしていて一様ではない。この
ように寿命到来による電気的変化は電源回路の電
流変化及び螢光管端子、ヒータ端子、グローラン
プ端子、安定器端子等のドロツプや誘起電圧変化
として各所に各様に現れる。本発明では、常態つ
まり正常点燈時と障害発生時つまり異常点燈時と
の差が最も大きく、感知部として適当な信号が得
られる螢光管ヒータのドロツプ電圧に着目し、そ
のドロツプ電圧を有効に利用している。即ち、こ
の電圧は、グローランプによる予熱時にはヒータ
電流によるドロツプが相当大きく、又起動が終り
螢光管が正常放電に移つたあとは放電電流の一部
による僅かの電圧降下があるだけなので、障害時
には螢光管が放電を維持できずに異常点滅をグロ
ーランプと交代に繰返えす結果ヒータの予熱も間
断なく繰返らされるので、そのドロツプ電圧は大
きく或いは小さくと変化を繰返す、従つて、障害
時の検出信号として最適である。
Here, before explaining the embodiments, the principle of the present invention will be briefly explained. In the case of an incandescent light bulb, the end of its life is due to a disconnection of the filament, and the electrical change is quite simple as the current required by the light bulb becomes zero from that point on, but in the case of a fluorescent light,
In the case of the preheating type starting method, even if the tube discharge stops and the light is turned off at the end of its service life, the glow lamp starts discharging within a moment, and after a while the tube cathode heater starts preheating by touching the glow lamp electrode, and the glow starts. The lamp discharge is stopped and the discharge shifts to tube discharge, but it cannot continue and the light goes out, and the discharge of the glow lamp is repeated again. However, during this time, the current flowing from the power supply does not become zero, and is not uniform because small, large, and sometimes strong impulse-like transient phenomena also occur on top of it. As described above, electrical changes due to the end of life appear in various places as changes in current in the power supply circuit, drops in fluorescent tube terminals, heater terminals, glow lamp terminals, ballast terminals, etc., and changes in induced voltage. In the present invention, we focus on the drop voltage of the fluorescent tube heater, which has the largest difference between the normal state, that is, normal lighting, and the fault occurrence, that is, abnormal lighting, and that provides an appropriate signal as a sensing part, and calculates the drop voltage. It is being used effectively. In other words, this voltage has a considerable drop due to the heater current during preheating with a glow lamp, and after startup has finished and the fluorescent tube has transitioned to normal discharge, there is only a small voltage drop due to a portion of the discharge current, so it is not a problem. Sometimes, the fluorescent tube cannot maintain its discharge and repeats abnormal blinking in turn with the glow lamp, and as a result, the heater preheating is repeated without interruption, so the drop voltage repeatedly changes from large to small. It is ideal as a detection signal in the event of a failure.

しかしながら、上記電圧降下の大小により直ち
に予備螢光燈に切換えるのは問題があり、即ち、
最初に主螢光燈が正常点燈に移る場合にもグロー
ランプによるヒータの予熱が行われるので、この
場合には誤つて切換えないように遅延回路が必要
である。本発明に於てはこれに複雑な方法を用い
ずに螢光管ヒータの電圧降下による信号電圧の波
高及び波形を積分、蓄積し、一定量に達したら切
換動作をさせることで上記目的を達成している。
これはまた本発明の大きな特徴の一つでもある。
However, depending on the magnitude of the voltage drop, there is a problem in immediately switching to the standby fluorescent light.
Since the heater is preheated by the glow lamp even when the main fluorescent light is switched to the normal lighting for the first time, a delay circuit is required in this case to prevent erroneous switching. In the present invention, the above object is achieved by integrating and accumulating the wave height and waveform of the signal voltage due to the voltage drop of the fluorescent tube heater, and performing a switching operation when a certain amount is reached, without using any complicated method. are doing.
This is also one of the major features of the present invention.

次に本発明をその良好な一実施例について添附
図面を参照しながら具体的に説明する。
Next, a preferred embodiment of the present invention will be specifically described with reference to the accompanying drawings.

第1図は本発明に係る螢光照明装置の一実施例
を示す回路構成図である。図に於て、参照符号
GL1はグロランプ、FL1は主螢光燈、FL2は
予備螢光燈、ST1は安定器を夫々示す。螢光燈
のヒータ電流による電圧降下の大きさを監視して
その螢光燈の障害発生を検知する障害検出回路1
1は抵抗器R1、ダイオードD1及びコンデンサ
C2より成る時定数回路により構成されている。
参照番号12は、主螢光燈FL1に障害が発生し
た際に予備螢光燈FL2に電源を切換える切換回
路を示し、リレーRY1、リレーRY1の接点ry1
により構成されている。障害検出回路11の検出
出力により作動させられて切換回路12を駆動す
る切換駆動回路13は例えばトランジスタQ1及
びツエナダイオードZD1によつて構成されてい
る。切換駆動回路13の駆動状態を維持する保持
回路14はトランジスタQ2、抵抗器R3等によ
り構成されている。前記各回路11,12,1
3,14の各構成は一実施例に過ぎず、これ以外
にも種々の変形が容易に想起される。ダイオード
D2、抵抗器R6及びコンデンサC3によつて構
成される回路15は整流回路を示す。尚、第1図
の点線で囲まれた部分は本装置の本体の部分であ
り、それ以外の部分は主螢光燈FL1、予備螢光
燈FL2への接続を示す、また、リレー接点ry1
の接点位置は常態(正常状態)に於て図示の如く
端子M側にあるものとする。
FIG. 1 is a circuit diagram showing an embodiment of a fluorescent lighting device according to the present invention. In the figures, reference symbols
GL1 is a glow lamp, FL1 is a main fluorescent light, FL2 is a backup fluorescent light, and ST1 is a ballast. Fault detection circuit 1 that monitors the magnitude of the voltage drop due to the heater current of the fluorescent light and detects the occurrence of a fault in the fluorescent light.
1 is constituted by a time constant circuit consisting of a resistor R1, a diode D1, and a capacitor C2.
Reference number 12 indicates a switching circuit that switches the power to the backup fluorescent light FL2 when a failure occurs in the main fluorescent light FL1, and connects relay RY1 and contact ry1 of relay RY1.
It is made up of. A switching drive circuit 13 that is activated by the detection output of the fault detection circuit 11 to drive the switching circuit 12 is constituted by, for example, a transistor Q1 and a Zener diode ZD1. A holding circuit 14 that maintains the driving state of the switching drive circuit 13 includes a transistor Q2, a resistor R3, and the like. Each of the circuits 11, 12, 1
The configurations No. 3 and 14 are merely examples, and various other modifications are easily conceivable. A circuit 15 constituted by a diode D2, a resistor R6 and a capacitor C3 represents a rectifier circuit. The part surrounded by the dotted line in Fig. 1 is the main body of the device, and the other parts show the connections to the main fluorescent light FL1 and the backup fluorescent light FL2, and the relay contact ry1.
The contact position is assumed to be on the terminal M side as shown in the figure in the normal state (normal state).

以下本実施例の動作について説明する。今、電
源側に商用電圧100VACが印加されると、リレー
接点ry1及び端子Mを経由して主螢光燈FL1は
グローランプGL1による陰極予熱を経て放電を
開始し、所謂点燈する。一方、装置内電子回路に
も電源電圧が供給され、―間には前記整流回
路15によつて約110VDCが得られ、切換駆動手
段13及び駆動状態保持手段14を構成する中心
要素となる2個のトランジスタQ1及びQ2のコ
レクタに夫々リレーRY1及び抵抗器R4を通し
て印加されている。しかして、トランジスタQ2
は抵抗器R3,R5によりそのベースが順方向に
バイアスされるので導通して“オン”状態になる
が、リレー駆動用のトランジスタQ1はそのエミ
ツタ―アース間にツエナダイオードZD1が接続
されているので、ベース電位がアースに対して所
定の閾値レベルに達して順方向にバイアスされな
いうちはコレクタ電流は流れない(本実施例では
ツエナダイオードZD1として3、3Vのものを使
用し、トランジスタQ1としてC780AGYを使用
しているので、トランジスタQ1が導通するには
そのベース電位がアースに対して約+4Vになる
ことが必要である)。
The operation of this embodiment will be explained below. Now, when a commercial voltage of 100 VAC is applied to the power supply side, the main fluorescent light FL1 starts discharging via the relay contact ry1 and the terminal M through cathode preheating by the glow lamp GL1, and is turned on. On the other hand, the power supply voltage is also supplied to the electronic circuits in the device, and approximately 110 VDC is obtained between the rectifying circuit 15 and the two central elements constituting the switching drive means 13 and the drive state holding means 14. is applied to the collectors of transistors Q1 and Q2 through relay RY1 and resistor R4, respectively. However, transistor Q2
The base of the transistor Q1 is forward biased by the resistors R3 and R5, so it becomes conductive and turns on. However, the relay driving transistor Q1 has a Zener diode ZD1 connected between its emitter and ground. , the collector current does not flow until the base potential reaches a predetermined threshold level with respect to ground and becomes forward biased (in this example, a 3.3V Zener diode ZD1 is used, and a C780AGY is used as the transistor Q1. (For transistor Q1 to conduct, its base potential must be about +4V with respect to ground).

さらに、実施例では整流回路15は単相半波整
流回路であるが、ダイオードD2によつて半波整
流された電流はコンデンサC3に充電されるの
で、逆半サイクル時にはこのコンデンサC3に充
電された電流がリレーRY1やトランジスタQ
1、及びQ2へ供給されることになる。
Further, in the embodiment, the rectifier circuit 15 is a single-phase half-wave rectifier circuit, but since the current half-wave rectified by the diode D2 is charged to the capacitor C3, the capacitor C3 is charged during the reverse half cycle. Current flows through relay RY1 and transistor Q
1 and Q2.

そこで、螢光燈FL1が起動時の陰極予熱によ
る陰性ヒータのドロツプ電圧は、きれいな正弦波
ではないが、ゼロツーピーク約20Vの交流として
発生し、この電圧は信号として端子Pに出力さ
れ、抵抗器R1に入力される。この抵抗器R1に
入力した約20Vの不整交流電圧は、コンデンサC
1で有害ノイズを減少させられた後に、ダイオー
ドD1で検波されて直流化され、コンデンサC2
に印加される。しかして、コンデンサC2はこの
電圧により、電荷を蓄積するが、正常な螢光燈が
起動する為の陰極予熱の時間はおよそ1秒以内で
完了するために、螢光燈FL1が正常であるうち
はトランジスタQ1のベース電位、即ちコンデン
サC2の端子電圧は抵抗器R1との時定数が数秒
に設定されているために、所定の閾値レベル(本
実施側では約4V)以上に達せず、従つてトラン
ジスタQ1は“オン”状態にはなれずにコレクタ
電流は流れないから、リレーRY1は動作しな
い。
Therefore, the drop voltage of the negative heater due to cathode preheating when the fluorescent light FL1 is started is not a pure sine wave, but it is generated as a zero-to-peak alternating current of approximately 20V, and this voltage is output as a signal to terminal P, and is connected to the resistor. It is input to R1. The irregular AC voltage of about 20V input to this resistor R1 is connected to the capacitor C.
After the harmful noise is reduced by the diode D1, the wave is detected by the diode D1 and converted to direct current, and the capacitor C2
is applied to Therefore, the capacitor C2 accumulates charge due to this voltage, but since the cathode preheating time for a normal fluorescent lamp to start is completed within about 1 second, the fluorescent lamp FL1 is normally activated. The base potential of the transistor Q1, that is, the terminal voltage of the capacitor C2, does not reach a predetermined threshold level (approximately 4 V in this implementation) or higher because the time constant with the resistor R1 is set to several seconds. Since transistor Q1 cannot turn on and no collector current flows, relay RY1 does not operate.

このように、端子Pにゼロツーピーク約20Vの
電圧が引込まれて、これが検波DC化され、コン
デンサC2に充電され始めても、抵抗器R1とに
よる時定数のために、コンデンサ端子電圧は端子
Pへの信号電圧が或る時間累積しないと規定され
た閾値レベル、即ちここでは約4V以上に達しな
いことになり、従つて抵抗器R1とコンデンサC
2とにより構成される時定数回路は、本発明に於
ては遅延回路として機能していることになり、こ
のことは本発明の大きな特徴の一つである。
In this way, even if a zero-to-peak voltage of about 20V is drawn into the terminal P, and this is detected and converted to DC, and the capacitor C2 begins to be charged, the capacitor terminal voltage will not reach the terminal P due to the time constant due to the resistor R1. If the signal voltage does not accumulate for a certain period of time, it will not reach the specified threshold level, i.e., approximately 4 V here, and therefore resistor R1 and capacitor C
In the present invention, the time constant circuit constituted by 2 and 2 functions as a delay circuit, and this is one of the major features of the present invention.

また、螢光燈FL1が正常に点燈した後、端子
Pに現れる信号電圧は螢光燈の放電電流による僅
かなドロツプによるゼロツーピークで2〜3V程
度であるが、この程度の電圧が連続的に印加され
てもコンデンサC2の端子電圧は永久に4V以上
にはなり得ないから、リレーRY1は作動せずに
ノーマル状態を続け、従つて、螢光燈FL1は点
燈を続ける。
In addition, after the fluorescent light FL1 lights up normally, the signal voltage appearing at terminal P is about 2 to 3 V from zero to peak due to a slight drop due to the discharge current of the fluorescent light, but this level of voltage is continuous. Since the terminal voltage of the capacitor C2 cannot permanently exceed 4V even if the voltage is applied to the capacitor C2, the relay RY1 remains in the normal state without operating, and therefore the fluorescent light FL1 continues to be lit.

次に、螢光燈FL1が寿命到来等の障害によつ
て正常の点燈を維持できずに消灯した場合には、
この種器具の機構上直ちにグローランプが放電を
始め、続いてグローの電極タツチ、陰極予熱の経
過を辿ることは前述の通りである。寿命到来時の
陰極予熱は繰返し行われるのが特徴であり、本装
置はこの大きな特徴をとらえて動作することにな
る。即ち、端子Pにゼロツーピークで約20Vの信
号が繰返して入力される際には、その信号電圧は
ダイオードD1により検波DC化され、コンデン
サC2を充電し、従つて、その端子電圧は連続し
た電荷の蓄積により10秒乃至30秒で本実施例の閾
値レベルである4Vを突破するようになる。トラ
ンジスタQ1のベース電位がこのような状態に上
昇すると始めてベース電流が流れ始めるようにな
り、従つてトランジスタQ1が“オン”状態にな
り、コレクタ電流も流れ始めるようになる。これ
はリレー巻線抵抗の存在とDC電源回路の高イン
ピーダンス(3.3キロオーム)と相俟つて点の
電位が急降下することになる。点の電位の降下
は抵抗器R3を通してトランジスタQ2に伝達さ
れ、その結果、そのベース電圧が降下してトラン
ジスタQ2が“オフ”状態になつてそのコレクタ
電位の上昇を招きトランジスタQ2のコレクタよ
り抵抗器R2を経てトランジスタQ1のベース電
流の供給へとつながる。しかして、トランジスタ
Q1のコレクタ電流によりリレーRY1は動作
し、その接点ry1は端子MからSに切換えられ、
螢光燈FL1に代つてFL2に電源電圧が供給さ
れ、螢光燈FL2が点燈するようになる。このよ
うに、ポジテイブフイードバツク回路を形成する
2個の半導体素子グループにより、端子Pからの
信号で一旦リレーRY1が動作すると、たとえ端
子Pからの信号が消えてもリレーは動作を続ける
ことになり、電源が切られるまではリレーの切換
えは保持される。
Next, if the fluorescent light FL1 cannot maintain normal lighting due to a failure such as reaching the end of its life and goes out,
As described above, due to the mechanism of this type of device, the glow lamp immediately starts discharging, and then the glow electrode is touched and the cathode is preheated. A characteristic of the cathode is that preheating of the cathode at the end of its life is repeated, and this device operates based on this major characteristic. That is, when a zero-to-peak signal of about 20V is repeatedly input to the terminal P, the signal voltage is detected by the diode D1 and charged to the capacitor C2, so that the terminal voltage becomes a continuous charge. As the voltage accumulates, the voltage exceeds 4V, which is the threshold level of this embodiment, in 10 to 30 seconds. Only when the base potential of the transistor Q1 rises to such a state does the base current begin to flow, so that the transistor Q1 becomes "on" and the collector current also begins to flow. This, combined with the presence of the relay winding resistance and the high impedance (3.3 kilohms) of the DC power circuit, results in a sudden drop in the potential at the point. The drop in potential at the point is transmitted to transistor Q2 through resistor R3, resulting in a drop in its base voltage, turning transistor Q2 into an "off" state and causing a rise in its collector potential, which causes the collector of transistor Q2 to pass through resistor Q2. It is connected to supplying the base current of transistor Q1 via R2. Relay RY1 is operated by the collector current of transistor Q1, and its contact ry1 is switched from terminal M to S.
The power supply voltage is supplied to FL2 instead of the fluorescent light FL1, and the fluorescent light FL2 comes to light up. In this way, with the two semiconductor element groups forming the positive feedback circuit, once the relay RY1 is activated by the signal from the terminal P, the relay will continue to operate even if the signal from the terminal P disappears. The relay will remain switched until the power is turned off.

ところで、上述したように、整流回路15のダ
イオードD2は、半波整流であるため逆半サイク
ル時においては、電流はダイオードD2を通じて
は流れないが、順方向時に流れた電流がコンデン
サC3に充電されているので、この逆半サイクル
時においてはこのコンデンサC3に充電されてい
る電流がリレーRY1へ供給されることになる。
By the way, as mentioned above, since the diode D2 of the rectifier circuit 15 is a half-wave rectifier, no current flows through the diode D2 during the reverse half cycle, but the current that flows during the forward direction charges the capacitor C3. Therefore, during this reverse half cycle, the current charged in capacitor C3 is supplied to relay RY1.

尚、使用されるリレーは直流用の成可く高電圧
(但し100V以下)の小電流型が望ましい。本回路
にて実測した結果、本回路は電源電圧85V〜
115V、周囲温度―25℃〜+63℃及びそれ等のど
んな組合せた状態でも安定に動作することが確認
された。又、第1図で示す如く、螢光燈への接続
には予備螢光燈用としての安定器及びグローラン
プは省略して接続しても実用上何等の差支えはな
い。
It is preferable that the relay used be a DC type with high voltage (however, 100V or less) and low current. As a result of actual measurements with this circuit, this circuit has a power supply voltage of 85V~
It was confirmed that it operates stably at 115V, ambient temperature -25℃ to +63℃, and any combination of these conditions. Furthermore, as shown in FIG. 1, there is no practical problem in connecting to a fluorescent light even if the ballast and glow lamp for the backup fluorescent light are omitted.

本発明は、以上説明した如く、主螢光燈が正常
点燈の場合の陰性ヒータのドロツプ電圧と、起動
時予熱のヒータドロツプ電圧の差及び寿命到来等
の障害時の起動予熱は繰返し行われるために予熱
のヒータドロツプ電圧の累積が可能であることを
応用し、その累積されたドロツプ電圧を検出して
主螢光燈の障害又は不良を判断し、予備螢光燈に
切換え、その状態を維持するものである。従つ
て、本発明によれば、障害の発生した主螢光燈を
的確に検出、判断し、即座にその主螢光燈を予備
螢光燈に切換制御し、その状態を確実に維持で
き、前記した従来の欠点がすべて解消される。
As explained above, the present invention is characterized by the difference between the drop voltage of the negative heater when the main fluorescent light is normally on and the heater drop voltage for preheating at startup, and because startup preheating is performed repeatedly in the event of a failure such as the end of service life. Applying the fact that preheating heater drop voltage can be accumulated, the accumulated drop voltage is detected to determine if the main fluorescent light is faulty or defective, and the standby fluorescent light is switched to and maintained in that state. It is something. Therefore, according to the present invention, it is possible to accurately detect and judge the main fluorescent light in which a fault has occurred, immediately control the switching of the main fluorescent light to the backup fluorescent light, and reliably maintain that state. All of the conventional drawbacks mentioned above are eliminated.

以上、本発明はその良好な一実施例について説
明されたが、それは単なる例示的なものであり、
ここで説明された実施例のみならず、本発明は
種々の変形を含むものである。例えば、スイツチ
ング素子として本実施例ではバイポーラ型トラン
ジスタが使用されているが、代りに、電界効果型
トランジスタ、又はサイリスタ等の半導体素子も
若干回路定数を変更することにより使用可能であ
るし、更にはリレーの代りに半導体スイツチング
素子を使用することも可能である。
Although the present invention has been described above with respect to one preferred embodiment thereof, this is merely an example;
In addition to the embodiments described herein, the present invention includes various modifications. For example, although a bipolar transistor is used as the switching element in this embodiment, a field effect transistor or a semiconductor element such as a thyristor can be used instead by slightly changing the circuit constants. It is also possible to use semiconductor switching elements instead of relays.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る螢光照明装置の一実施例
を示す回路構成図である。 FL1……主螢光燈、FL2……予備螢光燈、
GL1……グローランプ、ST1……安定器、RY
1……リレー、ry1……リレーry1の接点、11
……障害検出回路、12……切換回路、13……
切換駆動回路、14……駆動状態保持回路、15
……整流回路。
FIG. 1 is a circuit diagram showing an embodiment of a fluorescent lighting device according to the present invention. FL1...Main fluorescent light, FL2...Backup fluorescent light,
GL1... Glow lamp, ST1... Ballast, RY
1... Relay, ry1... Contact of relay ry1, 11
...Fault detection circuit, 12...Switching circuit, 13...
Switching drive circuit, 14... Drive state holding circuit, 15
... Rectifier circuit.

Claims (1)

【特許請求の範囲】 1 常態に於いて点燈する第1の蛍光燈と、該第
1の蛍光燈の障害発生時に点燈する第2の蛍光燈
と、前記第1の蛍光燈のヒータドロツプ電圧を監
視して前記第1の蛍光燈の障害発生を検出する、
ダイオードを介して直列に接続された抵抗器とコ
ンデンサから成る時定数回路で構成した障害検出
手段と、この障害検出手段の出力により作動させ
られて前記第1の蛍光燈から第2の蛍光燈に電源
を切換える切換手段を駆動する切換駆動手段と、
この切換駆動手段の駆動状態を維持する保持手段
と、前記切換手段、切換駆動手段、並びに保持手
段に直流を安定的に供給する整流手段とを有し、
これらの各手段により前記第1の蛍光燈に障害が
発生した際自動的に前記第2の蛍光燈に切換えて
点燈させることを特徴とする、蛍光照明装置。 2 前記切換手段が、リレーであることを特徴と
する、特許請求の範囲第1項記載の蛍光照明装
置。 3 前記切換駆動手段が、前記障害検出手段のコ
ンデンサに蓄積された電荷によつてオンするトラ
ンジスタにより構成されていることを特徴とす
る、特許請求の範囲1項記載の蛍光照明装置。 4 前記保持手段が、前記トランジスタがオフの
ときにはオンとなり、かつ、オンのときにはオフ
となつて前記トランジスタのオン状態を維持する
ように前記トランジスタのベースに電荷を供給す
るもう一方のトランジスタと抵抗器により構成さ
れていることを特徴とする、特許請求の範囲第1
項記載の蛍光照明装置。
[Scope of Claims] 1. A first fluorescent light that is turned on under normal conditions, a second fluorescent light that is turned on when a failure occurs in the first fluorescent light, and a heater drop voltage of the first fluorescent light. monitoring to detect occurrence of a failure in the first fluorescent light;
fault detection means constituted by a time constant circuit consisting of a resistor and a capacitor connected in series via a diode; and a fault detection means actuated by the output of the fault detection means to switch the first fluorescent light to the second fluorescent light. a switching drive means for driving a switching means for switching the power source;
It has a holding means for maintaining the driving state of the switching driving means, and a rectifying means for stably supplying direct current to the switching means, the switching driving means, and the holding means,
A fluorescent lighting device characterized in that, by each of these means, when a failure occurs in the first fluorescent light, the second fluorescent light is automatically switched on and turned on. 2. The fluorescent lighting device according to claim 1, wherein the switching means is a relay. 3. The fluorescent lighting device according to claim 1, wherein the switching drive means is constituted by a transistor that is turned on by the charge accumulated in the capacitor of the failure detection means. 4. The holding means is turned on when the transistor is off, and turned off when it is on, thereby supplying a charge to the base of the transistor so as to maintain the on state of the transistor, and a resistor. Claim 1 characterized in that it consists of
Fluorescent illumination device as described in section.
JP12059178A 1978-09-30 1978-09-30 Fluorescent illuminator Granted JPS5546442A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12059178A JPS5546442A (en) 1978-09-30 1978-09-30 Fluorescent illuminator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12059178A JPS5546442A (en) 1978-09-30 1978-09-30 Fluorescent illuminator

Publications (2)

Publication Number Publication Date
JPS5546442A JPS5546442A (en) 1980-04-01
JPS6255280B2 true JPS6255280B2 (en) 1987-11-19

Family

ID=14790048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12059178A Granted JPS5546442A (en) 1978-09-30 1978-09-30 Fluorescent illuminator

Country Status (1)

Country Link
JP (1) JPS5546442A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6387644A (en) * 1986-10-01 1988-04-18 Pioneer Electronic Corp Disk holder
JPH0276374U (en) * 1988-11-29 1990-06-12

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS597599U (en) * 1982-07-07 1984-01-18 株式会社日立製作所 fluorescent lighting device
JPS60155612A (en) * 1984-01-25 1985-08-15 Nippon Kokan Kk <Nkk> Refining method in converter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6387644A (en) * 1986-10-01 1988-04-18 Pioneer Electronic Corp Disk holder
JPH0276374U (en) * 1988-11-29 1990-06-12

Also Published As

Publication number Publication date
JPS5546442A (en) 1980-04-01

Similar Documents

Publication Publication Date Title
US7247998B2 (en) Transient detection of end of lamp life condition apparatus and method
JPS6255280B2 (en)
JP3607428B2 (en) Fluorescent lamp lighting device
JP4325184B2 (en) Discharge lamp lighting device
JPH02197441A (en) Lamp lighting circuit for vehicle
US20060103326A1 (en) Variable frequency half bridge driver
JP2506966B2 (en) Discharge lamp lighting device
JPH09223591A (en) Discharge lamp lighting circuit
JP3834939B2 (en) Lighting device
JP2818595B2 (en) Discharge lamp lighting device
JP2562816B2 (en) Discharge lamp lighting device
JP3763837B2 (en) Fluorescent lamp lighting device
JP4442241B2 (en) Discharge lamp lighting device and lighting apparatus using the same
KR870000658Y1 (en) Power circuit
JP4925286B2 (en) Discharge lamp lighting device and lighting fixture
JP2754576B2 (en) Discharge lamp lighting device
JP3511661B2 (en) Power supply for low voltage bulb
JPS5942440B2 (en) discharge lamp lighting device
JP3669088B2 (en) Discharge lamp lighting device
JPH11111476A (en) Discharge lamp lighting device and lighting system
JP3382302B2 (en) Discharge lamp lighting device
JP5628658B2 (en) Discharge lamp lighting device and lighting apparatus using the same
KR840002908Y1 (en) Emergency induction light
JP3829342B2 (en) Discharge lamp lighting device
JPH0150297B2 (en)