JPS6255100B2 - - Google Patents

Info

Publication number
JPS6255100B2
JPS6255100B2 JP55179300A JP17930080A JPS6255100B2 JP S6255100 B2 JPS6255100 B2 JP S6255100B2 JP 55179300 A JP55179300 A JP 55179300A JP 17930080 A JP17930080 A JP 17930080A JP S6255100 B2 JPS6255100 B2 JP S6255100B2
Authority
JP
Japan
Prior art keywords
electrode
fixed part
rotating
part side
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55179300A
Other languages
Japanese (ja)
Other versions
JPS57103048A (en
Inventor
Koji Sekiguchi
Koichi Ozawa
Hiromitsu Watanabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Keiki Inc
Original Assignee
Tokyo Keiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Keiki Co Ltd filed Critical Tokyo Keiki Co Ltd
Priority to JP55179300A priority Critical patent/JPS57103048A/en
Publication of JPS57103048A publication Critical patent/JPS57103048A/en
Publication of JPS6255100B2 publication Critical patent/JPS6255100B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/26Arrangements for orientation or scanning by relative movement of the head and the sensor
    • G01N29/265Arrangements for orientation or scanning by relative movement of the head and the sensor by moving the sensor relative to a stationary material

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Description

【発明の詳細な説明】 本発明は超音波、あるいは渦流などの探触子を
被検材の外周に沿つて回転させながら探傷するい
わゆる探触子回転型探傷機において、固定部と回
転部との間の信号送受装置に関する発明である。
なお、本発明は超音波探傷の信号送受のみでな
く、渦流探傷などの信号送受にも実施することが
できるが、以下説明を簡略にするために超音波探
傷を例示して説明する。
Detailed Description of the Invention The present invention relates to a so-called rotating probe type flaw detector that detects flaws while rotating an ultrasonic or eddy current probe along the outer periphery of a test material. This invention relates to a signal transmitting/receiving device between.
Note that the present invention can be implemented not only for signal transmission and reception of ultrasonic flaw detection, but also for signal transmission and reception of eddy current flaw detection, etc.; however, in order to simplify the explanation below, ultrasonic flaw detection will be exemplified and explained.

パイプ、あるいは丸棒のような円形断面を持つ
長尺の圧延製品の超音波探傷を行なうために、探
触子を被検材の外周に沿つて高速回転させなが
ら、被検材を軸方向に推進させ、被検材外周にス
パイラル状の探触子走査を行なわせ、全面全長を
探傷する、いわゆる探触子回転型探傷機が、製鉄
圧延工場で多用されている。この探傷機は、多チ
ヤンネルの探触子を装着した回転探触子ホルダを
高速で被検材外周を回転させるので、探傷速度が
早く、極めて高能率で検査できることから、鋼管
製造工場、丸棒鋼製造工場などで重要な非破壊検
査機器として用いられている。
In order to perform ultrasonic flaw detection on long rolled products with a circular cross section, such as pipes or round bars, the probe is rotated at high speed along the outer periphery of the material to be tested, while the material is axially rotated. So-called rotating probe type flaw detectors, which detect flaws over the entire length of the test material by propelling it forward and scanning the outer circumference of the test material in a spiral manner, are often used in steel mills and rolling mills. This flaw detector uses a rotary probe holder equipped with a multi-channel probe to rotate around the outer circumference of the material being tested at high speed, allowing for fast flaw detection and extremely high-efficiency inspection. It is used as an important non-destructive testing device in manufacturing factories.

このように高能率探傷に適した探傷機である
が、回転部の探触子ホルダに装着された探触子と
固定部との間で探傷信号を送受する信号伝達装置
を介在させる必要があり、この信号伝達装置の機
能、性能によつて探触子回転型探傷機の総合性能
が左右されると云つても過言ではない。
Although this flaw detector is suitable for high-efficiency flaw detection, it requires a signal transmission device to transmit and receive flaw detection signals between the probe attached to the probe holder on the rotating part and the fixed part. It is no exaggeration to say that the overall performance of a rotating probe type flaw detector is influenced by the function and performance of this signal transmission device.

従来の探触子回転型探傷機で初期の探傷機から
現在に到るまで、最も広く用いられてきた信号伝
達装置はスリツプリング、ブラシによるものであ
るが、回転部と固定部との間の信号伝達の問題を
考える際には、このスリツプリング、ブラシによ
る装置が最も初歩的且つ基本的なものであり、本
発明を理解するためにもスリツプリング、ブラシ
信号伝達装置について略述しておくことが必要と
考える。
In conventional rotary probe flaw detectors, the most widely used signal transmission devices from the earliest flaw detectors to the present are slip rings and brushes. When considering the problem of signal transmission, devices using slip rings and brushes are the most elementary and basic devices, and in order to understand the present invention, we will briefly explain the slip rings and brush signal transmission devices. I think it is necessary.

第1図に信号伝達装置としてスリツプリング、
ブラシを用いた探触子回転型探傷機の構造概要を
示す。1は被検材鋼管でガイド2に案内されて探
触子回転型探傷機を貫通して矢印の方向に搬送さ
れる。探触子回転型探傷機のロータ3はロータ両
端部において軸受4a,4bによつて軸受され、
ロータ軸端に嵌着されたタイミングプーリー5
と、これに噛み合うタイミングベルト6を介して
駆動モータ7に係合し、高速回転する。ロータ3
の他の端部においてロータ3の端面のフエースプ
レート8に探触子ホルダ9が装着され、探触子ホ
ルダ9には要素に複数の探触子10a,10b…
が装着される。この探触子からの同軸ケーブル1
1a,11b…はフエースプレート8の同心円上
に配置されたコネクタ12a,12b…にて接続
される。一方ロータ3内に穿孔して布設された同
軸ケーブル13a,13b…によつてフエースプ
レート8のコネクタ12a,12b…とロータ3
円筒部外周に配設されたスリツプリング14a1
14a2,14b1,14b2,14c1,14c2…とが
接続される。ここでスリツプリング14a2は同軸
ケーブルのシールドに、14a1は中心導体に接続
され、すなわち探触子10aはスリツプリング1
4a1,14a2に、同様に探触子10bはスリツプ
リング14b1,14b2に、以下同様に探触子10
cはスリツプリング14c1,14c2……と接続さ
れる。
Figure 1 shows a slip ring as a signal transmission device.
An overview of the structure of a rotating probe type flaw detector using a brush is shown below. 1 is a steel pipe to be inspected and is guided by a guide 2 and transported in the direction of the arrow through a rotating probe type flaw detector. The rotor 3 of the probe rotating type flaw detector is supported by bearings 4a and 4b at both ends of the rotor.
Timing pulley 5 fitted to the end of the rotor shaft
The drive motor 7 is engaged with the drive motor 7 via the timing belt 6 that meshes with the timing belt 6, and rotates at high speed. rotor 3
A probe holder 9 is attached to the face plate 8 on the end surface of the rotor 3 at the other end of the rotor 3, and the probe holder 9 has a plurality of probes 10a, 10b, .
is installed. Coaxial cable 1 from this probe
1a, 11b, . . . are connected by connectors 12a, 12b, . On the other hand, the connectors 12a, 12b... of the face plate 8 and the rotor 3
A slip ring 14a 1 arranged on the outer periphery of the cylindrical part,
14a 2 , 14b 1 , 14b 2 , 14c 1 , 14c 2 . . . are connected. Here, the slip ring 14a2 is connected to the shield of the coaxial cable, and the slip ring 14a1 is connected to the center conductor, that is, the probe 10a is connected to the slip ring 1.
4a 1 and 14a 2 , the probe 10b is similarly attached to the slip rings 14b 1 and 14b 2, and the probe 10b is similarly attached to the slip rings 14b 1 and 14b 2 .
c is connected to slip rings 14c 1 , 14c 2 . . . .

第2図はブラシ部の搬送で、ブラシ15はブラ
シホルダ16に遊嵌して保持されコイルバネ17
でスリツプリングに圧着される。キヤツプ18に
よつてコイルバネ17を圧縮する。キヤツプ18
の中心に設けた穴を通してブラシ15からのリー
ド線19を引出す構造である。
FIG. 2 shows the transportation of the brush part, where the brush 15 is loosely fitted into the brush holder 16 and held by the coil spring 17.
is crimped onto the slip ring. The coil spring 17 is compressed by the cap 18. cap 18
The lead wire 19 from the brush 15 is drawn out through a hole provided in the center of the brush 15.

以上説明した従来のスリツプリング、ブラシに
よる信号伝達装置では本質的にスリツプリングと
ブラシの摺動接触による伝達であるために接触ノ
イズ、摩耗が不可避であること、また、ブラシ材
質によつて最大周速に制限があり、使用条件によ
つて材質選定が必要なこと隣接チヤンネル同志が
静電容量による静電結合してチヤンネル間のクロ
ス・トークがあることおよびスリツプリングの汚
れによつてブラシの接触状態が不安定になるため
スリツプリング、ブラシの高度な保守管理を要す
ることなどの問題があつた。
In the conventional signal transmission device using a slip ring and a brush as described above, transmission is essentially through sliding contact between the slip ring and the brush, so contact noise and wear are unavoidable. The speed is limited, and material selection is required depending on the conditions of use.Adjacent channels are electrostatically coupled due to capacitance, resulting in cross talk between channels.Dirty slip rings may cause brush contact. There were problems such as the need for sophisticated maintenance of slip rings and brushes due to unstable conditions.

これらの問題を解決する信号伝達手段として非
接触で信号を伝達する電磁結合信号伝達装置が実
用されている。この装置の実施例としてその構造
を第3図に示す。第3図は第1図のスリツプリン
グ、ブラシの部分が電磁結合信号伝達装置に置換
されたものであるので、第1図と同一の内容につ
いては説明を省略する。
As a signal transmission means to solve these problems, an electromagnetic coupling signal transmission device that transmits signals in a non-contact manner has been put into practical use. As an example of this device, its structure is shown in FIG. In FIG. 3, the slip ring and brush portions of FIG. 1 are replaced with an electromagnetic coupling signal transmission device, so explanations of the same contents as in FIG. 1 will be omitted.

ロータ3の円筒部外周にグラスフアイバーエポ
キシ基板の電磁結合用コイルの円板20をチヤン
ネル数に見合う数だけ配設する。円板20には第
4図に示すように円環状の形状をなし、円板20
の外縁に沿つて1本の導線21が1ターン・コイ
ルとして刻設され、1ターン・コイルの両端は2
2a,22bに示すように円環の内縁に引き出
す。円板20上の導線21、および両端引出し2
2a,22bは銅箔付のグラスフアイバーエポキ
シ基板から上記パターンをエツチングによつて作
製する。1ターンコイルの導体21を包むように
フエライトコア23を配置する。フエライトコア
23は1部にスリツト24を加工し、スリツト2
4で円板20を挟むようにして挿入される。フエ
ライトコア23には数ターンのコイル25を捲い
てある。更に図示しないが各円板間に電磁シール
ド板を挿入することにより隣接チヤンネル間のク
ロストークを防除するように構成する。
On the outer periphery of the cylindrical portion of the rotor 3, disks 20 of electromagnetic coupling coils made of glass fiber epoxy substrates are arranged in a number corresponding to the number of channels. The disk 20 has an annular shape as shown in FIG.
A single conductor 21 is carved as a 1-turn coil along the outer edge of the 1-turn coil.
Pull it out to the inner edge of the ring as shown in 2a and 22b. Conductive wire 21 on disk 20 and both end drawers 2
2a and 22b are fabricated by etching the above-mentioned patterns from a glass fiber epoxy substrate with copper foil attached. A ferrite core 23 is arranged so as to surround a conductor 21 of a one-turn coil. A slit 24 is machined in one part of the ferrite core 23, and a slit 2
4 are inserted so that the disc 20 is sandwiched therebetween. A coil 25 of several turns is wound around the ferrite core 23. Further, although not shown, an electromagnetic shield plate is inserted between each disc to prevent crosstalk between adjacent channels.

以上の構成でコイル25に探傷器26のパル
サ・レシーバを接続すれば送信の際にパルサから
の励信パルスによりフエライトを介して1ターン
コイルにパルスが誘起され、このパルスによつて
探触子10を駆動する。受信の場合は探触子から
の受信信号により送信とは逆に1ターンコイルか
らフエライトを介してコイル25に受信信号を伝
達し探傷器のレシーバーに伝える。
If the pulser/receiver of the flaw detector 26 is connected to the coil 25 with the above configuration, a pulse is induced in the one-turn coil via the ferrite by the excitation pulse from the pulser during transmission, and this pulse causes the probe to Drive 10. In the case of reception, the reception signal from the probe is transmitted from the one-turn coil to the coil 25 via the ferrite, contrary to the transmission, and is transmitted to the receiver of the flaw detector.

上述した電磁結合方式の信号伝達装置は非接触
で回転部と固定部間に有効に探傷信号を送受する
ことができ、スリツプリングおよびブラシによる
信号伝達において問題であつたノイズ、摩耗、最
大周速制限がなく、保守管理の問題を解決する優
れた伝達装置であつて後述するような問題点が支
障とならない用途においては効果的に実用されて
いる。
The above-mentioned electromagnetic coupling type signal transmission device can effectively transmit and receive flaw detection signals between rotating parts and fixed parts without contact, and eliminates the problems of noise, wear, and maximum circumferential speed that were problems in signal transmission using slip rings and brushes. It is an excellent transmission device that has no limitations and solves maintenance management problems, and is effectively put into practical use in applications where the problems described below do not pose a problem.

この電磁結合方式の信号伝達装置は1ターンコ
イルの結合であるため結合損失が大きく、設計上
の条件にもよるが、円板径400mm程度の寸法で2M
Hzあるいは5MHzで探触子を探傷器に直接接続し
て送受信した場合に比較して約30dB程度減衰が
あること、この減衰を補償するために探触子に共
振コイルを持たせる必要があることなどから探傷
波形が直接接続に比べてブロードになること、お
よび、2MHz、5MHzでは以上の諸問題はあるにし
ても実用可能であるが、更に高い周波数、例えば
10MHzでは減衰が大きく40dB以上になるために
高い周波数領域では実用できないという問題があ
る。
This electromagnetic coupling type signal transmission device has a large coupling loss because it is a one-turn coil coupling, and although it depends on the design conditions, a disk with a diameter of about 400 mm has a diameter of 2M.
There is about 30 dB attenuation compared to when transmitting and receiving by connecting the probe directly to the flaw detector at Hz or 5 MHz, and it is necessary to equip the probe with a resonant coil to compensate for this attenuation. Due to these reasons, the flaw detection waveform is broader than that of direct connection, and although it is practical at 2MHz and 5MHz, even though there are the above problems, at higher frequencies, such as
At 10MHz, the attenuation is large and exceeds 40dB, making it impractical in high frequency ranges.

上記の問題点は探触子回転型探傷機で鋼管の超
音波探傷を行なう場合、通常の鋼管の超音波探傷
では管軸方向の内外面欠陥、周方向の内外面欠陥
の探傷には斜角探傷2MHz、あるいは5MHzが常用
されるので、これらの探傷には電磁結合方式の信
号伝達装置を使用して全く問題ないが、特にシー
ムレス管や特殊な仕様の鋼管探傷では、上記した
管軸方向、管周方向の斜角欠陥探傷に併せて管肉
厚を超音波測定する要求が多い。超音波による管
肉厚測定は超音波を肉厚方向に垂直に入射させ、
管の内外面で生ずる多重反射のエコー間の超音波
伝搬時間を計測することにより肉厚を測定するた
め、エコー分離が問題となり10MHz以上の高い周
波数を使用することと、信号伝達系で波形がブロ
ードになるのを避けることが絶対的な必要条件で
ある。この理由から上述した電磁結合方式の信号
伝達装置は超音波による管肉厚測定には使用でき
ないことが判る。
The above problem is that when performing ultrasonic flaw detection of steel pipes using a rotating probe type flaw detector, in normal ultrasonic flaw detection of steel pipes, flaws on the inner and outer surfaces in the axial direction of the pipe, and flaws on the inner and outer surfaces in the circumferential direction are detected using oblique angles. Since 2MHz or 5MHz is commonly used for flaw detection, there is no problem in using an electromagnetic coupling signal transmission device for flaw detection. There are many requests for ultrasonic measurement of pipe wall thickness in conjunction with oblique defect detection in the pipe circumferential direction. To measure pipe wall thickness using ultrasonic waves, ultrasonic waves are incident perpendicularly to the wall thickness direction.
The wall thickness is measured by measuring the ultrasonic propagation time between echoes of multiple reflections occurring on the inner and outer surfaces of the pipe, so echo separation becomes a problem, requiring the use of a high frequency of 10 MHz or more, and the waveform in the signal transmission system. Avoiding broadness is an absolute necessity. For this reason, it can be seen that the above-mentioned electromagnetic coupling type signal transmission device cannot be used for measuring pipe wall thickness using ultrasonic waves.

本発明は上述した電磁結合方式による信号伝達
装置では使用できない超音波による管肉厚測定の
領域で使用可能な信号伝達装置を提供するもの
で、多チヤンネルの探傷系統のうち斜角探傷系に
は電磁結合方式を、管肉厚測定系には本発明によ
る信号伝達装置を組合わせて実施することが望ま
しい。
The present invention provides a signal transmission device that can be used in the area of pipe wall thickness measurement using ultrasonic waves, which cannot be used with the signal transmission device using the electromagnetic coupling method described above. It is desirable to implement the electromagnetic coupling method in combination with the signal transmission device according to the present invention in the pipe wall thickness measurement system.

本発明の信号伝達装置は静電結合によるもので
あるが、かかる静電結合による方式は本発明の構
成によつて実施可能となつた。第5図は、超音波
探傷器26の端子26a,26bと探触子10間
とを直接接続するかわりに両者間の伝送路として
静電容量を介在させて伝送特性を検るために静電
容量と探傷感度との関係を実験したときの接続図
である。すなわち鋼管1を水浸で探触子10によ
り垂直探傷する。探触子10の同軸ケーブル28
と外部接続用同軸ケーブル29との間に静電容量
27a,27bを接続する。27aは同軸ケーブ
ルの中心導体用、27bはシールド用である。外
部接続用同軸ケーブル29は探傷器26の送・受
信部の端子26a,26bに接続される。
The signal transmission device of the present invention uses electrostatic coupling, and the structure of the present invention makes it possible to implement such a system using electrostatic coupling. In Fig. 5, instead of directly connecting the terminals 26a, 26b of the ultrasonic flaw detector 26 and the probe 10, a capacitance is used as a transmission path between the two to detect the transmission characteristics. It is a connection diagram when experimenting the relationship between capacitance and flaw detection sensitivity. That is, the steel pipe 1 is vertically inspected by the probe 10 while immersed in water. Coaxial cable 28 of probe 10
Capacitors 27a and 27b are connected between the external connection coaxial cable 29 and the external connection coaxial cable 29. 27a is for the center conductor of the coaxial cable, and 27b is for the shield. The external connection coaxial cable 29 is connected to terminals 26a and 26b of the transmitting/receiving section of the flaw detector 26.

上記の接続で25MHz、10MHzの場合の直接接続
に対する静電容量を接続したときの減衰値を種々
の静電容量値毎に測定したデータを第6図に示
す。
FIG. 6 shows data obtained by measuring attenuation values for various capacitance values when connecting capacitance with respect to direct connection in the case of 25 MHz and 10 MHz in the above connection.

第6図のデータから10MHzにおいては第5図の
27a,27bの静電容量値はそれぞれ2000pF
以上あれば静電容量値が多少変動しても探傷感度
の変動が極めて小さいことが判る。なお実験によ
れば探触子を直接結合した場合と比較し200pF以
上では波形の変化は全く認められなかった。一般
に、平行平面電極間の静電容量C(F)と電極面
積A(m2)および電極間距離d(m)の関係は次
式で与えられる。
From the data in Figure 6, at 10MHz, the capacitance values of 27a and 27b in Figure 5 are each 2000pF.
If it is above, it can be seen that even if the capacitance value changes somewhat, the fluctuation in flaw detection sensitivity is extremely small. According to experiments, no change in waveform was observed at 200 pF or more compared to when the probe was directly coupled. Generally, the relationship between the capacitance C (F) between parallel plane electrodes, the electrode area A (m 2 ), and the inter-electrode distance d (m) is given by the following equation.

C=8.854×10-2×A/d ………(1) 通常の探触子回転型探傷機のロータ径は適用被
検材の最大径により変化するが、例えば3″外径
76.2mmを対象とすれほぼ250mm程度となり、第
7図に示したようなドーナツ状の電極を考えると
電極円板の内径D1はほぼ250mm程度が考えられ
る。電極の幅W50mm、有効径DE300mmとすると、
電極面積は471cm2となる。静電容量2000pFとして
上式(1)の面積に471cm2を入れて、電極間距離dを
求めるとd=0.2×10-3m=0.2mmが得られる。
C=8.854×10 -2 ×A/d……(1) The rotor diameter of a normal probe rotating type flaw detector varies depending on the maximum diameter of the applicable test material, but for example, the rotor diameter is 3″ outer diameter.
76.2 mm, it becomes approximately 250 mm, and considering a doughnut-shaped electrode as shown in FIG. 7, the inner diameter D 1 of the electrode disk is considered to be approximately 250 mm. Assuming the electrode width W50mm and effective diameter DE300mm,
The electrode area is 471 cm 2 . Assuming a capacitance of 2000 pF and inserting 471 cm 2 into the area of the above equation (1) to find the distance d between the electrodes, d = 0.2 x 10 -3 m = 0.2 mm is obtained.

上記計算で求められた電極の極板間距離0.2mm
を具体化して回転円環電極と固定側電極の空隙を
0.2mmに保持することは固定側電極を空間的に固
定することでは不可能であるが、本発明では固定
側電極を回転円環電極に空圧を用いて微小空隙を
作り、非接触状態で保持し得るように構成した。
以下本発明の構成、作用について詳述する。
The distance between the electrode plates determined by the above calculation is 0.2 mm
The gap between the rotating annular electrode and the stationary electrode is
It is impossible to maintain the fixed electrode at 0.2 mm by spatially fixing the fixed electrode, but in the present invention, a micro gap is created using air pressure between the fixed electrode and the rotating annular electrode, so that the fixed electrode can be held in a non-contact state. It was constructed so that it could be maintained.
The structure and operation of the present invention will be explained in detail below.

第8図は本発明の一実施例の要旨を説明する図
である。回転円環電極31は絶縁板30を介して
ロータ3に取付けられ第9図矢示の方向に回転す
る。回転円環電極31に対向して固定部側電極3
2が配設されるが、固定部側電極32は第9図に
示すように固定部側電極32の円周上に等配した
板バネ33a,33b,33c,33d……によ
つて固定板35に保持され回転円環電極31にバ
ネ圧着される。また板バネ33a,33b,33
c,33d……の各配置位置の中間に空気孔ニツ
プル34a,34b,34c,34d……を有
し、空気孔ニツプルには図示せずも可撓性のビニ
ール管、ゴム管によつて空圧を供給する。
FIG. 8 is a diagram explaining the gist of an embodiment of the present invention. The rotating annular electrode 31 is attached to the rotor 3 via an insulating plate 30 and rotates in the direction indicated by the arrow in FIG. The fixed part side electrode 3 faces the rotating annular electrode 31.
As shown in FIG. 9, the fixed part side electrode 32 is secured to a fixed plate by plate springs 33a, 33b, 33c, 33d... equally distributed on the circumference of the fixed part side electrode 32. 35 and is spring-pressed to the rotating annular electrode 31. In addition, leaf springs 33a, 33b, 33
There are air hole nipples 34a, 34b, 34c, 34d... in the middle of each arrangement position of c, 33d..., and the air hole nipples are emptied by flexible vinyl pipes or rubber pipes (not shown). supply pressure.

以上の構成による本実施例においては固定側電
極32は回転円環電極31にバネ圧着されるが、
空気孔ニツプル34a,34b,34c,34d
より供給される空圧が固定側電極32、回転円環
電極31の接面間に開口して噴出し固定側電極3
2をスラスト空気軸受と同様にフローテイング状
態で保持する。なお固定側電極32、回転円環電
極31の両対向面はいずれも0.05mm程度の平面度
に仕上げることが必要であり、同時に対向面のい
ずれか一方に薄い絶縁樹脂加工例えば四ふつ化エ
チレン樹脂のような弗素樹脂被膜処理を施すこと
により万一部分的な接触を生じても両電極の直接
接触を妨げかつ耐摩耗潤滑膜により両電極の接触
による過大な摩耗の発生を防ぐようにすることが
望ましい。なお電極間の空隙は供給する空圧を調
節することにより調整することができる。
In this embodiment with the above configuration, the fixed side electrode 32 is spring-pressed to the rotating annular electrode 31.
Air hole nipples 34a, 34b, 34c, 34d
Air pressure supplied from the fixed side electrode 32 opens between the contact surfaces of the rotating annular electrode 31 and blows out to the fixed side electrode 3.
2 is held in a floating state similar to a thrust air bearing. Both opposing surfaces of the stationary electrode 32 and rotating annular electrode 31 must be finished with a flatness of approximately 0.05 mm, and at the same time, one of the opposing surfaces must be coated with a thin insulating resin, such as tetrafluoroethylene resin. By applying a fluororesin coating treatment, even if partial contact occurs, it is possible to prevent direct contact between the two electrodes, and a wear-resistant lubricant film can prevent excessive wear due to contact between the two electrodes. desirable. Note that the gap between the electrodes can be adjusted by adjusting the supplied air pressure.

上記した実施例では外部より固定側電極に空圧
を供給する方法を示したが、探触子回転型探傷機
はその性能上、極めて高いロータ回転速度例えば
3000rpmで常用されるので、ロータの回転、その
ものによつて回転に伴つて自動的に空圧を発生さ
せ、この空圧によつて前記した実施例と同一の効
果を得るようにすることもできる。
In the above embodiment, a method of supplying air pressure to the stationary electrode from the outside was shown, but the rotor rotation speed of the rotating probe type flaw detector is extremely high due to its performance, e.g.
Since it is normally used at 3000 rpm, it is also possible to automatically generate air pressure as the rotor rotates, and use this air pressure to obtain the same effect as in the above embodiment. .

すなわち第10図,第11図にその自動空圧発
生を行なわせる回転円環電極の構成を示す。図に
おいて回転円環電極31は矢示の方向に高速回転
する。回転円環電極31は全周の等配位置に複数
のエアフイン36a,36b,36c,36d…
を設けてある。エアフイン36a,36b,36
c,36d……は第10図に矢示の回転方向と高
速回転するとタービン送風機のブレードとして働
き第10図に示す回転円環電極31の表側から裏
側に向けて空気を圧送する働きを生ずる。すなわ
ち第10図のエアフイン36aの円周に沿つた断
面図を第11図に示す。実線矢示のようにエアフ
イン36aが高速で移動するとき点線矢示の空気
流を生ずるから回転円環電極31に裏側に接近し
て固定側電極があると両対向面側に空圧を生じ前
記した実施例と同一の空圧効果を生ずる。この場
合両電極の空隙に空圧を自動供給するのは回転円
環電極31であるから固定側電極は第9図の空圧
ニツプル34a,34b……を除いた第12図の
32に示すような構成となる。なおロータの起
動、停止時の過度的なロータの低回転速度のとき
は両電極の対向面は必ず摺動するので、前記の実
施例と同様に対向面のいずれか一方に四ふつ化エ
チレン樹脂皮膜加工を必ず行なう必要があり、ま
た、固定側電極に加えるバネ圧着力を加減して電
極間距離を調節する。
That is, FIGS. 10 and 11 show the structure of a rotating annular electrode for automatically generating air pressure. In the figure, the rotating annular electrode 31 rotates at high speed in the direction of the arrow. The rotating annular electrode 31 has a plurality of air fins 36a, 36b, 36c, 36d... arranged at equal positions around the entire circumference.
is provided. Air fins 36a, 36b, 36
When rotated at high speed in the direction of rotation shown by the arrow in FIG. 10, the blades c, 36d, . That is, FIG. 11 shows a sectional view along the circumference of the air fin 36a of FIG. 10. When the air fin 36a moves at high speed as indicated by the solid line arrow, it generates an air flow as indicated by the dotted line arrow, so if there is a stationary electrode close to the back side of the rotating annular electrode 31, air pressure is generated on both opposing surfaces. This produces the same pneumatic effect as the embodiment described above. In this case, since it is the rotating annular electrode 31 that automatically supplies air pressure to the gap between both electrodes, the stationary side electrode is as shown at 32 in FIG. 12, excluding the pneumatic nipples 34a, 34b, etc. in FIG. 9. The structure is as follows. Note that the opposing surfaces of both electrodes always slide when the rotor is at excessively low rotational speed when starting or stopping the rotor, so as in the previous example, one of the opposing surfaces is coated with tetrafluoroethylene resin. It is necessary to perform film processing, and the distance between the electrodes is adjusted by adjusting the spring pressure applied to the fixed electrode.

以上説明した静電結合による信号伝達装置は、
信号伝達に要する静電容量を確保するための電極
間隔を与えることにより技術的解決を成すもので
あり、本発明のような静電結合による信号伝達装
置によつて10MHzの周波数の探傷信号の送受、か
つ、探触子直接接続と異ならない波形伝送を可能
にするもので、技術的効果は著しい。
The signal transmission device using capacitive coupling explained above is
This is a technical solution by providing electrode spacing to ensure the capacitance required for signal transmission, and it is possible to transmit and receive flaw detection signals at a frequency of 10 MHz using a signal transmission device using capacitive coupling as in the present invention. , and enables waveform transmission that is no different from direct probe connection, and the technical effects are significant.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はスリツプリング・ブラシを用いた従来
の探触子回転型探傷機の構造概要図、第2図は前
図のブラシ部の構造図、第3図は第1図のスリツ
プリング・ブラシ部を電磁結合に置換した信号伝
達装置の構造概要図、第4図は第3図の電磁結合
の回転構成を示す図、第5図は本発明による静電
容量結合の回路図、第6図は第5図の回路接続し
たときの超音波伝送波形の接続静電容量に対する
減衰値の測定データ、第7図は本発明による静電
容量結合の円板状の円環電極、第8図は本発明の
一実施例を示す構成図、第9図は本発明の回転円
環電極と固定部側電極の構成図、第10図および
第11図はエアフインを有する回転円環電極の構
成図、第12図はエアフインを有する回転円環電
極と固定部側電極との対向図である。 10……探触子、28,29……同軸ケーブ
ル、31……回転円環電極、32……固定部側電
極、33a,33b,33c,33d……板バ
ネ、34a,34b,34c,34d……空気孔
ニツプル、36a,36b,36c,36d……
エア・フイン。
Figure 1 is a structural diagram of a conventional rotating probe flaw detector using a slip-ring brush, Figure 2 is a structural diagram of the brush section shown in the previous figure, and Figure 3 is the slip-ring brush shown in Figure 1. Fig. 4 is a diagram showing the rotational configuration of the electromagnetic coupling in Fig. 3; Fig. 5 is a circuit diagram of the capacitive coupling according to the present invention; Fig. 6 5 is the measurement data of the attenuation value of the ultrasonic transmission waveform with respect to the connection capacitance when the circuit is connected as shown in FIG. 5, FIG. 7 is the disc-shaped ring electrode of the capacitive coupling according to the present invention, and FIG. A configuration diagram showing an embodiment of the present invention, FIG. 9 is a configuration diagram of a rotating annular electrode and a fixed part side electrode of the invention, FIGS. 10 and 11 are configuration diagrams of a rotating annular electrode having air fins, FIG. 12 is a facing view of a rotating annular electrode having air fins and a fixed part side electrode. 10... Probe, 28, 29... Coaxial cable, 31... Rotating annular electrode, 32... Fixed part side electrode, 33a, 33b, 33c, 33d... Leaf spring, 34a, 34b, 34c, 34d ...Air hole nipple, 36a, 36b, 36c, 36d...
Air Finn.

Claims (1)

【特許請求の範囲】 1 探触子回転型探傷機のロータ側に装着した探
触子と固定部側の送、受信部との信号の送、受を
行なうためにロータに設けた円板状の回転円環電
極に対向する固定部側電極を配設し、該固定部側
電極をバネによつて前記回転円環電極に押圧し両
面を接触させ、該両面のうちの一方もしくは両面
に弗素樹脂被膜処理により両電極間の絶縁を維持
せしめるようになした静電容量結合による探触子
回転型探傷機の信号伝達装置。 2 探触子回転型探傷機のロータ側に装着した探
触子と固定部側の送、受信部との信号の送、受を
行なうためにロータに設けた円板状の回転円環電
極に対向する固定部側電極を配設し、該固定部側
電極をバネによつて前記回転円環電極に押圧し両
面を接触させ、該両面のうちの一方もしくは両面
に弗素樹脂被膜処理により両電極間の絶縁を維持
せしめるようになし、前記固定部側電極の円周位
置に複数の空気孔を設け、外部よりこの空気孔を
通じて前記回転円環電極と前記固定部側電極との
対向する両面に空圧を与えることにより前記両電
極間に所要の電極間隔を与えるようになした静電
容量結合による探触子回転型探傷機の信号伝達装
置。 3 探触子回転型探傷機のロータ側に装着した探
触子と固定部側の送、受信部との信号の送、受を
行なうためにロータに設けた円板状の回転円環電
極に対向する固定部側電極を配設し、該固定部側
電極をバネによつて前記回転円環電極に押圧し両
面を接触させ、該両面のうちの一方もしくは両面
に弗素樹脂被膜処理により両電極間の絶縁を維持
せしめるようになし、前記回転円環電極の円周位
置に複数のエアフインを配設することによりロー
タの高速回転に伴なう空圧を前記回転円環電極と
固定部側電極との対向する面間に導き両電極間に
所定の電極間隔を与えるようになした静電容量結
合による探触子回転型探傷機の信号伝達装置。
[Scope of Claims] 1. A disc-shaped disc provided on the rotor for transmitting and receiving signals between the probe attached to the rotor side of a rotating probe type flaw detector and the fixed part side, and the receiving part. A fixed part side electrode is disposed opposite to the rotating ring electrode, and the fixed part side electrode is pressed against the rotating ring electrode by a spring so that both surfaces are in contact with each other, and one or both of the surfaces is coated with fluorine. A signal transmission device for a rotating probe type flaw detector that uses capacitive coupling to maintain insulation between both electrodes through resin coating treatment. 2. In order to send and receive signals between the probe attached to the rotor side of the rotating probe type flaw detector and the fixed part side, and the receiving part, there is a disc-shaped rotating ring electrode installed on the rotor. Opposing fixed part side electrodes are arranged, the fixed part side electrodes are pressed against the rotating annular electrode by a spring so that both surfaces are in contact with each other, and one or both of the two surfaces are treated with a fluororesin coating to make both electrodes A plurality of air holes are provided at circumferential positions of the electrode on the fixed part side, and a plurality of air holes are provided at circumferential positions of the electrode on the fixed part side. A signal transmission device for a rotating probe type flaw detector using capacitive coupling, which provides a required electrode spacing between the two electrodes by applying air pressure. 3 In order to send and receive signals between the probe attached to the rotor side of the rotating probe type flaw detector and the fixed part side, and the receiving part, there is a disc-shaped rotating ring electrode installed on the rotor. Opposing fixed part side electrodes are disposed, and the fixed part side electrodes are pressed against the rotating annular electrode by a spring so that both surfaces are in contact with each other, and one or both of the two surfaces are treated with a fluororesin coating to make both electrodes By arranging a plurality of air fins at circumferential positions of the rotating annular electrode, the air pressure caused by the high speed rotation of the rotor is transferred between the rotating annular electrode and the fixed part side electrode. A signal transmission device for a rotary probe type flaw detector that uses capacitive coupling to provide a predetermined electrode spacing between the two electrodes.
JP55179300A 1980-12-18 1980-12-18 Signal transmitter of probe revolution type flaw detector Granted JPS57103048A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55179300A JPS57103048A (en) 1980-12-18 1980-12-18 Signal transmitter of probe revolution type flaw detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55179300A JPS57103048A (en) 1980-12-18 1980-12-18 Signal transmitter of probe revolution type flaw detector

Publications (2)

Publication Number Publication Date
JPS57103048A JPS57103048A (en) 1982-06-26
JPS6255100B2 true JPS6255100B2 (en) 1987-11-18

Family

ID=16063409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55179300A Granted JPS57103048A (en) 1980-12-18 1980-12-18 Signal transmitter of probe revolution type flaw detector

Country Status (1)

Country Link
JP (1) JPS57103048A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013124891A (en) * 2011-12-14 2013-06-24 Mitsubishi Heavy Ind Ltd Ultrasonic flaw inspection device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62111548U (en) * 1985-12-27 1987-07-16
JPH0646194B2 (en) * 1986-01-16 1994-06-15 株式会社トキメック Signal transmission mechanism of ultrasonic flaw detector
JPH0541U (en) * 1991-06-20 1993-01-08 セイレイ工業株式会社 Undercut thresher removal device
JP5392692B2 (en) * 2007-04-02 2014-01-22 東洋鋼鈑株式会社 Battery exterior case scratch inspection device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013124891A (en) * 2011-12-14 2013-06-24 Mitsubishi Heavy Ind Ltd Ultrasonic flaw inspection device

Also Published As

Publication number Publication date
JPS57103048A (en) 1982-06-26

Similar Documents

Publication Publication Date Title
CA2711894C (en) Pipeline inspection apparatus and method using two different ultrasound wavemodes
EP0175441B1 (en) Ultrasonic wheel probe with acoustic barrier
US4089227A (en) Apparatus for measuring the radial dimensions of a cylindrical tube by ultrasonics
CN108562642B (en) Electromagnetic transduction device of longitudinal mode ultrasonic guided wave, pipeline detection system and method
JP5649199B2 (en) Rotary transformer for rotary ultrasonic flaw detector and rotary ultrasonic flaw detector using the same
CN108181517B (en) Device and method for detecting space charge in high-voltage cable joint
CN109115867B (en) Plane rotation eddy current detection sensor and detection method
JPS6255100B2 (en)
US4320661A (en) Electromagnetic acoustic transducer for tube inspection
CN103278114A (en) Ultrasonic pipe wall thickness measuring device
JPS6333169Y2 (en)
JPS6310523Y2 (en)
CN110907535B (en) Defect positioning guided wave detection method based on rotary scanning
KR101645366B1 (en) Eddy current nondestructive testing device using a non-contact slip ring
US4472974A (en) Roller-type ultrasonic inspection devices
Harrold et al. Ultrasonic sensing of partial discharges within microfarad value AC capacitors
US3714817A (en) Acoustical transducer with rotary pulse coupler
JPS6333170Y2 (en)
JPS6027963Y2 (en) Rotating probe ultrasonic flaw detection device
RU2787644C1 (en) Ultrasonic rolling transducer for non-destructive testing
JPH09145698A (en) Ultrasonic flaw detector for metal rod
JPH0467627B2 (en)
JP2533190B2 (en) Automatic ultrasonic flaw detection method for solid insulators
Zadeh et al. Partial Discharge Detection in High-Voltage Gas Insulated Switchgear Using Fiber Optic Based Acoustic Sensors
KR830002286Y1 (en) Device for detecting defects in metal plate by eddy current