JPS6255088B2 - - Google Patents

Info

Publication number
JPS6255088B2
JPS6255088B2 JP8647780A JP8647780A JPS6255088B2 JP S6255088 B2 JPS6255088 B2 JP S6255088B2 JP 8647780 A JP8647780 A JP 8647780A JP 8647780 A JP8647780 A JP 8647780A JP S6255088 B2 JPS6255088 B2 JP S6255088B2
Authority
JP
Japan
Prior art keywords
temperature
thermistor
linear
resistance
changes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8647780A
Other languages
Japanese (ja)
Other versions
JPS5712332A (en
Inventor
Kenji Tsucha
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ISHIZUKA DENSHI KK
Original Assignee
ISHIZUKA DENSHI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ISHIZUKA DENSHI KK filed Critical ISHIZUKA DENSHI KK
Priority to JP8647780A priority Critical patent/JPS5712332A/en
Publication of JPS5712332A publication Critical patent/JPS5712332A/en
Publication of JPS6255088B2 publication Critical patent/JPS6255088B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/16Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
    • G01K7/22Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a non-linear resistance, e.g. thermistor
    • G01K7/24Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a non-linear resistance, e.g. thermistor in a specially-adapted circuit, e.g. bridge circuit

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はリニアな出力特性を有する温度センサ
ーに関するものである。 金属酸化物を主原料とする負の温度係数をもつ
サーミスタは、温度制御や温度測定に広く用いら
れている。そしてこのサーミスタの特性を表わす
式は、(1)式のように近似される。 R1=R2expB(1/T1−1/T2) ………(1) ここでR1,R2は任意の温度T1(°K)および
T2(°K)におけるサーミスタの抵抗値であ
る。 Bはサーミスタ定数と呼ばれるもので、
The present invention relates to a temperature sensor having linear output characteristics. Thermistors, which are mainly made of metal oxides and have a negative temperature coefficient, are widely used for temperature control and temperature measurement. The equation representing the characteristics of this thermistor is approximated as shown in equation (1). R 1 = R 2 expB (1/T 1 −1/T 2 ) ………(1) Here, R 1 and R 2 are arbitrary temperature T 1 (°K) and
It is the resistance value of the thermistor at T 2 (°K). B is called the thermistor constant,

【式】 で表わされる。 この特性はサーミスタの抵抗値をRとし、この
時のサーミスタの温度をTとすると、第1図に示
す如くlogRをY軸、1/TをX軸にとれば、直線関
係で表わされるが、実際は温度によつてBがいく
ぶん変化し、特性は湾曲する場合が多く、B値を
示すのに温度範囲を指定して表わす。したがつ
て、直線グラフに表わすと第2図のようになり、
RとTの関係は湾曲した関係となる。したがつ
て、温度コントロールを行なう場合には制御温度
を種々可変する場合が多く、サーミスタの抵抗を
温度設定する基準抵抗と比較し制御する一般の方
法においては、制御温度と温度設定の目盛とは上
述の理由から直線関係にはならない。もし直線関
係にするには非直線的な変化をする可変抵抗器を
用いなければならず技術的に困難である。そして
温度測定においては、サーミスタの抵抗値を測定
し直接的にその抵抗値を温度として知ることは不
可能で、(1)と(2)式より演算をしなければならな
いという欠点があつた。 また一般に温度測定をするには、ホイートスト
ンブリツジを用い、ブリツジの一辺にサーミスタ
を接続して指数関数であるサーミスタの抵抗変化
をブリツジを介して電圧変化に変換して測定す
る。そしてこの方法によれば、条件を選んでブリ
ツジ各辺の抵抗値を決定すれば直線性のよい温度
目盛曲線をうることができる。 そしてこの方法によれば、体温計のように測定
範囲が35〜45℃程度と測定範囲が狭まれば、許容
誤差内で直線的な変化とみなすことができるが、
しかし、測定範囲が広がつたりディジタル表示を
する温度計の場合には、ブリツジ出力の直線性の
ズレがそのまま指示誤差となり上記方法では充分
とはいえず、さらに直線化の補正回路、いわゆる
リニアライザを必要とし、回路が複雑なものとな
つた。 本発明は上記した欠点を是正せんとするもの
で、その目的とするところは、サーミスタに電界
効果トランジスタを接続することにより容易に出
力特性を直線化することができるので、回路構成
が簡単となり、かつ温度変化を電流変化としてと
り出すことができる温度センサーを提供するにあ
る。 次に本発明の実施例を図面と共に説明する。 本発明は第3図に示した電界効果トランジスタ
(以下単にFETと称する)1のドレイン電流ID
がソース抵抗2の値により第4図の如く変化する
特性に着目し、ソース抵抗3に代えてサーミスタ
3を使用するものである。ここで第2図と第4図
のグラフ直線は近似しており、従つてソース抵抗
3に代えて第5図に示す如くサーミスタを接続す
ると、サーミスタの抵抗値の変化が温度に対して
非直線的な変化をするので、結果的にサーミスタ
温度TとFET1のドレイン電流IDは第6図に示
す如く直線的な対応を取る。従つて負荷抵抗4に
はサーミスタ温度Tに対して直線的な電圧が発生
する。なお5は直流電源である。 ここで第5図で示した回路で得られたデータの
一例を下表で示す。
Represented by [Formula]. This characteristic can be expressed as a linear relationship if the resistance value of the thermistor is R and the temperature of the thermistor at this time is T, and if logR is plotted on the Y axis and 1/T is plotted on the X axis as shown in Figure 1, In reality, B changes somewhat depending on temperature, and the characteristics often curve, so a temperature range is specified to indicate the B value. Therefore, when expressed as a straight line graph, it looks like Figure 2,
The relationship between R and T is a curved relationship. Therefore, when performing temperature control, the control temperature is often varied, and in the general method of controlling by comparing the thermistor resistance with a reference resistance for setting the temperature, the control temperature and temperature setting scale are For the reasons mentioned above, there is no linear relationship. If a linear relationship is to be achieved, a variable resistor that changes non-linearly must be used, which is technically difficult. In temperature measurement, it is impossible to measure the resistance value of a thermistor and directly determine the resistance value as temperature, and there is a drawback that calculations must be performed using equations (1) and (2). Generally, temperature is measured by using a Wheatstone bridge, connecting a thermistor to one side of the bridge, and converting the exponential resistance change of the thermistor into a voltage change via the bridge. According to this method, a temperature scale curve with good linearity can be obtained by selecting conditions and determining the resistance value on each side of the bridge. According to this method, if the measurement range is narrow to about 35 to 45 degrees Celsius, such as with a thermometer, it can be considered a linear change within the tolerance.
However, in the case of thermometers with expanded measurement ranges or digital displays, deviations in the linearity of the bridge output directly result in indication errors, and the above method is not sufficient. , and the circuit became complicated. The present invention aims to rectify the above-mentioned drawbacks, and its purpose is that the output characteristics can be easily linearized by connecting a field effect transistor to the thermistor, so that the circuit configuration can be simplified. Another object of the present invention is to provide a temperature sensor that can detect temperature changes as current changes. Next, embodiments of the present invention will be described with reference to the drawings. The present invention relates to a drain current I D of a field effect transistor (hereinafter simply referred to as FET) 1 shown in FIG.
Focusing on the characteristic that changes as shown in FIG. 4 depending on the value of the source resistance 2, a thermistor 3 is used in place of the source resistance 3. Here, the graph lines in Figures 2 and 4 are approximate, so if a thermistor is connected as shown in Figure 5 instead of the source resistor 3, the change in the resistance value of the thermistor will be non-linear with respect to temperature. As a result, the thermistor temperature T and the drain current I D of the FET 1 have a linear relationship as shown in FIG. Therefore, a voltage linear with respect to the thermistor temperature T is generated in the load resistor 4. Note that 5 is a DC power supply. Here, an example of data obtained with the circuit shown in FIG. 5 is shown in the table below.

【表】 この表によればサーミスタ温度120℃〜180℃の
領域において、1℃の温度変化に対し略190μA
の一様な電流増加が行なわれていることがわか
る。すなわちドレイン電流IDとサーミスタ温度
の関係が60degの範囲で直線であることを示して
いる。 第7図は従来の方法である第5図における
FET1に代えてサーミスタと負荷抵抗との直列
回路による該負荷抵抗両端の電圧出力特性ロと、
第5図における負荷抵抗2の両端の電圧出力特性
イとを比効したものである。 なおサーミスタ3の初期抵抗値を変えることに
より直線領域を低温より高温まで変化させること
が可能である。 第8図は温度計に応用した実施例を示し、6は
ゼロレベル調整用可変抵抗、7はフルスケール調
整用可変抵抗、8は電流計、9は電流計感度調整
用抵抗、10はゼロレベル調整用FET、11は
ツエナーダイオードである。ここで可変抵抗6,
7を調整して電流計8のゼロレベルとフルスケー
ルを最低と最高温度になるように設定して、電流
計8の目盛には最低と最高温度まで均等目盛を与
えれば良く、従来のように不平等目盛となること
はないので、測定温度の全範囲に亘つて測定が正
確に行なえる。そして温度に対して直線的出力が
得られることにより、温度制御においては温度設
定の目盛を直接摂氏温度等で書き表わすことがで
き、従つて設定性、操作性は向上する。また温度
測定においても、サーミスタ3のもつ温度変化に
対する高感度な出力特性を損うことなく電圧計や
電流計により温度を直読できる測定装置を製作す
ることが可能となる。 本発明は上記したように、電界効果トランジス
タのソース、ゲート間にサーミスタを接続するこ
とにより、ドレインまたはソース電流が温度変化
に対し直線的に変化し、従つて温度測定用の回路
が簡単となり、また温度変化が直線電流変化とし
て表われるので、より回路を簡略化できる等の効
果を有するものである。
[Table] According to this table, in the thermistor temperature range of 120°C to 180°C, approximately 190μA per 1°C temperature change.
It can be seen that the current increases uniformly. That is, it shows that the relationship between the drain current I D and the thermistor temperature is linear within a range of 60 degrees. FIG. 7 shows voltage output characteristics across the load resistor using a series circuit of a thermistor and a load resistor instead of FET 1 in FIG. 5, which is a conventional method;
This is a comparison of the voltage output characteristic A across the load resistor 2 in FIG. 5. Note that by changing the initial resistance value of the thermistor 3, it is possible to change the linear range from low temperature to high temperature. Figure 8 shows an example applied to a thermometer, where 6 is a variable resistor for zero level adjustment, 7 is a variable resistor for full scale adjustment, 8 is an ammeter, 9 is a resistor for ammeter sensitivity adjustment, and 10 is zero level. The adjustment FET 11 is a Zener diode. Here variable resistor 6,
7, set the zero level and full scale of ammeter 8 to the minimum and maximum temperature, and give the scale of ammeter 8 a uniform scale from the minimum to the maximum temperature, just like the conventional method. Since there is no uneven scale, measurements can be made accurately over the entire measurement temperature range. Since a linear output is obtained with respect to temperature, the temperature setting scale can be directly expressed in degrees Celsius, etc. in temperature control, and therefore setting and operability are improved. Also, in temperature measurement, it is possible to manufacture a measuring device that can directly read the temperature using a voltmeter or ammeter without impairing the highly sensitive output characteristics of the thermistor 3 to temperature changes. As described above, in the present invention, by connecting a thermistor between the source and gate of a field effect transistor, the drain or source current changes linearly with respect to temperature changes, and therefore the temperature measurement circuit becomes simple. Furthermore, since temperature changes appear as linear current changes, the circuit can be further simplified.

【図面の簡単な説明】[Brief explanation of the drawing]

第1,2図はサーミスタ抵抗に対するサーミス
タ温度を示す線図、第3図は本発明の原理説明の
ための回路図、第4図は電界効果トランジスタの
ドレイン電流に対するソース抵抗を示す線図、第
5図は本発明の一実施例を示す温度センサーの回
路図、第6図は同上による出力電流特性を示す線
図、第7図は従来のサーミスタによる出力電圧特
性と本発明の温度センサーによる出力電圧特性を
示す線図、第8図は温度計に使用した場合の回路
図である。 1……電界効果トランジスタ、3……サーミス
タ。
Figures 1 and 2 are diagrams showing thermistor temperature versus thermistor resistance, Figure 3 is a circuit diagram for explaining the principle of the present invention, Figure 4 is a diagram showing the source resistance versus drain current of a field effect transistor, and Figure 4 is a diagram showing the thermistor temperature versus thermistor resistance. Figure 5 is a circuit diagram of a temperature sensor showing an embodiment of the present invention, Figure 6 is a diagram showing output current characteristics according to the above, and Figure 7 is a diagram showing output voltage characteristics of a conventional thermistor and output of a temperature sensor of the present invention. A diagram showing voltage characteristics, and FIG. 8 is a circuit diagram when used in a thermometer. 1... Field effect transistor, 3... Thermistor.

Claims (1)

【特許請求の範囲】[Claims] 1 電界効果トランジスタのゲート、ソース間に
サーミスタを接続し、該トランジスタのドレイ
ン、ソース間を引出し端とした温度センサー。
1. A temperature sensor in which a thermistor is connected between the gate and source of a field effect transistor, and the lead-out end is between the drain and source of the transistor.
JP8647780A 1980-06-27 1980-06-27 Temperature sensor Granted JPS5712332A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8647780A JPS5712332A (en) 1980-06-27 1980-06-27 Temperature sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8647780A JPS5712332A (en) 1980-06-27 1980-06-27 Temperature sensor

Publications (2)

Publication Number Publication Date
JPS5712332A JPS5712332A (en) 1982-01-22
JPS6255088B2 true JPS6255088B2 (en) 1987-11-18

Family

ID=13888045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8647780A Granted JPS5712332A (en) 1980-06-27 1980-06-27 Temperature sensor

Country Status (1)

Country Link
JP (1) JPS5712332A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10061299A1 (en) * 2000-12-08 2002-06-27 Siemens Ag Device for determining and / or forwarding at least one environmental influence, production method and use thereof
EP2565608B1 (en) * 2011-08-31 2017-04-26 Siemens Aktiengesellschaft Semiconductor component in chip design

Also Published As

Publication number Publication date
JPS5712332A (en) 1982-01-22

Similar Documents

Publication Publication Date Title
US3688581A (en) Device for correcting the non-linear variation of a signal as a function of a measured magnitude
EP2128579B1 (en) Arrangement for linearizing a non-linear sensor
US6905242B2 (en) Sensor temperature control in a thermal anemometer
Ferrari et al. Oscillator-based interface for measurand-plus-temperature readout from resistive bridge sensors
JPH02136754A (en) Method and apparatus for measuring fine electrical signal
US3052124A (en) Linearizing circuit for resistance thermometer
US4148220A (en) Linearization means and method for a thermistor temperature sensing system
US6609824B1 (en) Radiation thermometer
US4448078A (en) Three-wire static strain gage apparatus
US4196382A (en) Physical quantities electric transducers temperature compensation circuit
US3319155A (en) Electrical calibration device for strain gage bridges
JPS6255088B2 (en)
US6107861A (en) Circuit for self compensation of silicon strain gauge pressure transmitters
GB2191292A (en) Measuring equipment
JP3084579B2 (en) Temperature sensor linearization processing method
US3068410A (en) Expanded scale electrical measuring system having high temperature stability
JP2973048B2 (en) Temperature sensor linearization processing method
US3073164A (en) Thermocouple measuring circuit
JP3184941B2 (en) Temperature detector
RU2732838C1 (en) Method for temperature error compensation of thermistors, device for method implementation
JP2001183106A (en) Gap detecting device with temperature compensation
RU2738198C1 (en) Method of reducing measurement error of temperature with electric bridge and measuring axle of wheatstone-kapinos
SU892234A1 (en) Temperature to digital code converter
SU1177688A1 (en) Digital thermometer
SU705279A1 (en) Temperature measuring device