JPS6254986A - Light amplifying element - Google Patents

Light amplifying element

Info

Publication number
JPS6254986A
JPS6254986A JP19543685A JP19543685A JPS6254986A JP S6254986 A JPS6254986 A JP S6254986A JP 19543685 A JP19543685 A JP 19543685A JP 19543685 A JP19543685 A JP 19543685A JP S6254986 A JPS6254986 A JP S6254986A
Authority
JP
Japan
Prior art keywords
light
core
fiber
diameter
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19543685A
Other languages
Japanese (ja)
Inventor
Takao Shioda
塩田 孝夫
Hiromi Hidaka
日高 啓視
Takeru Fukuda
福田 長
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP19543685A priority Critical patent/JPS6254986A/en
Publication of JPS6254986A publication Critical patent/JPS6254986A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/0915Processes or apparatus for excitation, e.g. pumping using optical pumping by incoherent light
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06754Fibre amplifiers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06708Constructional details of the fibre, e.g. compositions, cross-section, shape or tapering
    • H01S3/06729Peculiar transverse fibre profile
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094003Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light the pumped medium being a fibre
    • H01S3/094007Cladding pumping, i.e. pump light propagating in a clad surrounding the active core
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094049Guiding of the pump light
    • H01S3/094053Fibre coupled pump, e.g. delivering pump light using a fibre or a fibre bundle

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To reduce the size and to raise an integration by forming a clad unit around a core for guiding an outer pumping light, and arranging a plurality of light emitting units in the clad unit. CONSTITUTION:A pumping light fiber 6 is connected to guide pumping light to the end face having no reflecting film of a core unit 1. The fiber 6 uses mainly a large bore quartz optical fiber having 100-200mum of core diameter to guide the high power light. The core unit 1 of a light amplifier is not provided, is formed in a hollow shape in this portion, the core of the fiber 6 can be inserted without gap, and the core at the end of the fiber 6 is used also as the core unit 1 of the light amplifier. One ends of input single mode optical fibers 7... for guiding an input light are connected with the end face formed with high reflecting films 4 of the light emitting units 3..., and the other end is connected with an input light source. Thus, a plurality of lights can be simultaneously amplified and integrated to reduce the size.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、光増幅素子に係り、特に小型で集積化が可
能なファイバ屋の光増幅素子に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to an optical amplification device, and particularly to an optical amplification device for a fiber shop that is compact and can be integrated.

〔従来技術とその問題点〕[Prior art and its problems]

光増幅としては、従来よりガラスレーザ、ガスレーザな
どの外部ボンピングによるレーザ発振装置や注入をレー
ザである半導体レーザ等が利用されている。
For optical amplification, laser oscillation devices using external pumping such as glass lasers and gas lasers, semiconductor lasers using injection lasers, and the like have been used.

しかしながら、ガラスレーザ、ガスレーザ等では、その
装置を小型化することが困難であり、また多数の光を同
時に増幅するための集積化も難しい欠点がある。また、
半導体レーザでは出力が小さく光ファイバとの結合が潰
しいと云う欠点がある。
However, glass lasers, gas lasers, and the like have drawbacks in that it is difficult to miniaturize the device, and it is also difficult to integrate them to amplify a large number of lights at the same time. Also,
Semiconductor lasers have the disadvantage that their output is small and coupling with optical fibers is poor.

〔問題点を解決するための手段〕[Means for solving problems]

そこで、この発明では外部ボンピング光を導波するコア
体の周囲にクラッドSt設け、クラッド体中に複数の発
光体を配設することにより、小型化、集積化が可能で、
出力も大きく、かつ光ファイバとの結合も容易に行える
ようにした。
Therefore, in this invention, by providing a cladding St around a core body that guides external bombing light and arranging a plurality of light emitters in the cladding body, miniaturization and integration are possible.
It has a large output and can be easily connected to optical fiber.

第1図は、この発明の光増幅素子の一例を示すもので1
図中符号1はコア体である。このコア体1は外部光源か
らのポンピング元を導波するためのもので、ここでは径
100〜200μrn、長さ0.5〜10116度の円
柱体となっている。コア体1は、周囲のクラッド体2よ
りも高屈折率の多成分系ガラスや石英ガラスなどから作
られている。このコア体1の周囲には円筒状のクラッド
体2がこれと一体に設けられている。
FIG. 1 shows an example of the optical amplifying element of the present invention.
Reference numeral 1 in the figure is a core body. This core body 1 is for guiding a pumping source from an external light source, and here it is a cylindrical body with a diameter of 100 to 200 μrn and a length of 0.5 to 10116 degrees. The core body 1 is made of multicomponent glass, quartz glass, or the like, which has a higher refractive index than the surrounding cladding body 2 . A cylindrical cladding body 2 is integrally provided around the core body 1.

クラッド体2は、コア体1よりも低屈折率であリ、ルビ
ー、YAG、アレクサンドライトなどの酸化物結晶材料
やアルカリ金属、アルカリ土類金属、アルミニウム、ホ
ウ素などの酸化物を含む多成分系ガラスなどから作られ
、その長さはコア体1の長さと同一とされている。
The cladding body 2 has a refractive index lower than that of the core body 1 and is a multicomponent material containing oxide crystal materials such as ruby, YAG, and alexandrite, and oxides such as alkali metals, alkaline earth metals, aluminum, and boron. It is made of glass or the like, and its length is the same as that of the core body 1.

さらに、クラッド体2には、細径の円柱状の発光体3・
・・か複数(ここでは4個)円周上等間隔の位置に、そ
の中心軸がコア体lの軸方向と平行となるように埋設さ
れている。発光体3・・・の径は、2〜10μm程度と
され、これに接続されて入出力光を導びくシングルモー
ド光ファイバのコア径と合致する径が選択される。才た
。その長さはコア体1およびクラッド体2と同一とされ
ている。
Furthermore, the cladding body 2 includes a small diameter cylindrical light emitting body 3.
A plurality (four in this case) are buried at equally spaced positions on the circumference so that their central axes are parallel to the axial direction of the core body l. The diameter of the light emitters 3 is about 2 to 10 μm, and the diameter is selected to match the core diameter of the single mode optical fiber connected to the light emitters 3 to guide input and output light. Talented. Its length is the same as that of the core body 1 and the cladding body 2.

この発光体3は、Cr−ルビー、Nd−YAG、Nd−
YIG、Nd−LiNb0.、Nd−LiTa0.など
の結晶性材料やNd−4成分系ガラスなどの反転分布可
能なレーザ媒質よりなるもので、クラツド材2よりも高
屈折率のものが用いられる。
This luminous body 3 is made of Cr-ruby, Nd-YAG, Nd-
YIG, Nd-LiNb0. , Nd-LiTa0. The material is made of a laser medium capable of population inversion, such as a crystalline material such as Nd-4 component glass, and a material having a higher refractive index than the cladding material 2 is used.

そして、コア体1.クラッド体2および発光体3・・・
とから構成される円柱状の集合体の一方の端面には、反
射率が98〜99%程度の金蒸着膜などからなる高反射
膜4が形成され、他方の端面1こは反射率かこれよりも
低い95%程度の金蒸着膜など力1らなる低反射Bj8
5が形成されている。これら2つの反射I!*4,5は
互に平行と1よっている。
And core body 1. Cladding body 2 and luminous body 3...
A high reflection film 4 made of a gold evaporated film or the like having a reflectance of about 98 to 99% is formed on one end face of a cylindrical aggregate composed of Low reflection Bj8 consisting of a force of 1, such as a gold evaporated film of about 95% lower than
5 is formed. These two reflections I! *4 and 5 are parallel to each other and 1.

なお、コア体1のボンピング光入力側の肩面には反射膜
は設けられない。
Note that no reflective film is provided on the shoulder surface of the core body 1 on the side where the pumping light is input.

次に、このような光増幅素子の使用方法を第2図を参照
して説明する。
Next, a method of using such an optical amplifying element will be explained with reference to FIG. 2.

まず、コア体10反射膜のない万の基面にボンピング光
を導波するためのポンピング用光フアイバ6を接続する
。ボンピング用光ファイバ6としては、ハイパワー光が
導波できるように、コア径100〜200μmの大口径
石英光ファイバが主に使用される。また、光増$4素子
のコア体lを設けずにこの部分を中空としておき、この
中空部分にポンピング用光フアイバ6のコアを隙間なく
挿入するこ七もでき、この場合はポンピング用光ファイ
バ6の端部のコアが光層rll!累子のコア体1を兼ね
ることになる。
First, the pumping optical fiber 6 for guiding the pumping light is connected to the base surface of the core body 10 having no reflective film. As the optical fiber 6 for bombing, a large-diameter quartz optical fiber with a core diameter of 100 to 200 μm is mainly used so that high-power light can be guided. Alternatively, it is also possible to leave this part hollow without providing the core body l of the optical amplification element 4, and insert the core of the pumping optical fiber 6 into this hollow part without leaving a gap. The core at the end of 6 is the light layer rll! It will also serve as Yuko's core body 1.

3・・・が収容されることになる孔を穿設する。ついで
発光体3となる柱状のガラス母材を発光体3・・・が収
容されるべき孔に挿入したのち、加熱下にて圧延し、所
定の径のロッドとし、これを所定長さに切断し、端面を
光学研摩したのち、反射膜を設け、最後にコア体1が収
められるべき空胴にボンピング用光ファイバのコアを挿
入してやれば、光増幅素子が得られる。
Drill a hole in which 3... will be accommodated. Next, the columnar glass base material that will become the luminous body 3 is inserted into the hole in which the luminous body 3 is to be accommodated, and then rolled under heat to form a rod of a predetermined diameter, which is then cut into a predetermined length. However, after optically polishing the end face, a reflective film is provided, and finally, the core of the bombing optical fiber is inserted into the cavity in which the core body 1 is to be accommodated, to obtain an optical amplifying element.

このような光層@素子lこあっては、クラッド体2中に
複数の発光体3・・・を配したことにより同時に複数の
波長の異る光を増幅することが可能であり、いわゆる集
積化が可能であり、かつその形状も小型とすることがで
きる。また、入力、出力用光ファイバ7・・・、8・・
・との接続も接合面が大きく。
In such a light layer @ element, by arranging a plurality of light emitting bodies 3 in the cladding body 2, it is possible to amplify a plurality of lights of different wavelengths at the same time, so-called integrated integration. It is also possible to make the shape smaller. In addition, input and output optical fibers 7..., 8...
・The connection surface is also large.

平坦であることから容易に行え、その結合効率も良好で
ある。さらに、ポンピング光の入力を増加してやれば容
易に高出力を得ることができる。
Since it is flat, it can be easily carried out, and the coupling efficiency is also good. Furthermore, high output can be easily obtained by increasing the input of pumping light.

〔実施例〕〔Example〕

(実施例1) モリブデン襄ダイスを用いEFG法により、第3図に示
すような端間形状のクラッド体となるサファイヤのファ
イバを生長させた。発光体が収容される孔tこは水平ブ
リッヂマン法によってNd −YAG単結晶を生長させ
た。このファイバを長さ10朋に切断し、端面を平行に
研磨し、一方の端面に反射率95%の低反射膜を、他方
の端面に反射率98チの高反射膜を金(Au)の蒸71
ilこより形成した。中心部のコア体が収められる空胴
部にボンピング用のファイバ径250μm 、 コアg
=200μm、Δ=1.5%のステップフインデックス
型光ファイバのコアを露出させて挿入し、光増幅素子と
した。
(Example 1) A sapphire fiber that becomes a cladding body having an end-to-end shape as shown in FIG. 3 was grown by the EFG method using a molybdenum sash die. A Nd-YAG single crystal was grown in the hole in which the light emitter was accommodated by the horizontal Bridgeman method. This fiber was cut into lengths of 10 cm, the end faces were polished parallel to each other, and one end face was coated with a low reflective film with a reflectance of 95%, and the other end face was coated with a high reflective film with a reflectance of 98 cm. Steam 71
It was formed from il. A fiber diameter of 250 μm for bombing is placed in the cavity where the core body is placed in the center, and a core g
The core of a Stepf index optical fiber with =200 μm and Δ=1.5% was exposed and inserted to form an optical amplification element.

この光増幅素子のそれぞれの発光体の両端面に、コア径
6μm、ファイバ径125μmのシングルモード光ファ
イバをそれぞれ6本づつ接続した。
Six single mode optical fibers each having a core diameter of 6 μm and a fiber diameter of 125 μm were connected to both end faces of each light emitting body of this optical amplification element.

入力用元ファイバを注入型InGaAsレーザ(波長1
.06μm、出力39mW)が6i1!集積された乗積
化半導体レーザの出力端に接続し、ボンピング用光ファ
イバをNe−Haガスレーザ(波長0.633μm)に
接続し、コア体にポンピング光を入力するようにした。
The original input fiber is connected to an injection-type InGaAs laser (wavelength 1
.. 06μm, output 39mW) is 6i1! It was connected to the output end of the integrated multiplication semiconductor laser, and the pumping optical fiber was connected to a Ne-Ha gas laser (wavelength: 0.633 μm), so that pumping light was input into the core body.

そして、Ne−)1eガスレーザの出力を数Wまで上げ
て発光体を励起状態とし、この状態で、集積化半導体レ
ーザからレーザ光をパルス入力すると、発光体力)ら波
長1.06μm、出力950mWのパルス光が出力され
た。
Then, the output of the Ne-)1e gas laser is increased to several W to excite the light emitting body, and in this state, when a pulse of laser light is input from the integrated semiconductor laser, the light emitter has a wavelength of 1.06 μm and an output of 950 mW. Pulsed light was output.

(実施例2) 直径40mのカルシウムアルミネイトガラスカ)らなる
円柱状の母材の中心部に径20111の孔を、周辺部に
径0.5 tn孔を8個それぞれ研磨により穿設した。
(Example 2) A hole with a diameter of 20,111 mm was drilled in the center of a cylindrical base material made of calcium aluminate glass (diameter 40 m), and eight holes with a diameter of 0.5 tn were bored in the peripheral area by polishing.

径20龍の孔にはΔ= O,S Sのグレイデッドイン
デックス型分布を有するガラス母材を収容し、径0.5
朋の孔には、Δ冨0.3チでNd−カルシウムアルミネ
イトガラスからなるガラス母材を収容し、これを圧延し
、第4図に示すような端面構造を有するファイバとした
。ついで、このファイバを長さ30關に切断し、両端面
を光学研磨し、実施例1と同様に反射膜を形成したのち
、発光体の両端面の同様の入出力用光ファイバを接続し
た。
The diameter 20 dragon hole accommodates a glass base material with a graded index type distribution of Δ=O, S S, and the diameter 0.5
A glass base material made of Nd-calcium aluminate glass with a Δ-thickness of 0.3 was housed in the hole, and this was rolled to form a fiber having an end face structure as shown in FIG. Next, this fiber was cut to a length of 30 mm, both end faces were optically polished, a reflective film was formed in the same manner as in Example 1, and similar input/output optical fibers were connected to both end faces of the light emitter.

入力用光ファイバを、8連の集積化半導体レーザ(波長
0.86μm、出力100mW)に接続し、コア体にフ
ァイバ径250μm、コア径200μmの大口径多成分
系光ファイバを接続し、キセノンランプからのポンピン
グ光を導波し1発光体を励起状態とした。集積化半導体
レーザからのパルス光を入力すると発撮し、波長0.8
6μm、出力1.5Wのパルス光が出力された。
The input optical fiber was connected to eight integrated semiconductor lasers (wavelength 0.86 μm, output 100 mW), and the core body was connected to a large-diameter multicomponent optical fiber with a fiber diameter of 250 μm and a core diameter of 200 μm, and a xenon lamp was connected. Pumping light was guided to bring one light emitter into an excited state. When pulsed light from an integrated semiconductor laser is input, an image is fired and the wavelength is 0.8.
Pulsed light with a diameter of 6 μm and an output of 1.5 W was output.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、この発明の光増幅素子は、ポンピ
ング光を導波する柱状のコア体の周囲に筒状のクラッド
体を設け、このクラッド体に複数の発光体を配したもの
であるので、同時に複数の光を増幅することが可能で、
集積化が可能であり、かつ小型化を計ることができる。
As explained above, the optical amplifying element of the present invention has a cylindrical cladding body provided around a columnar core body that guides pumping light, and a plurality of light emitters arranged on this cladding body. , it is possible to amplify multiple lights at the same time,
Integration is possible and miniaturization can be achieved.

また、入出力用光ファイバとの接続も容易で、結合効率
も良好である。さらに、小型にもかかわらず高出力を得
ることができる。
Furthermore, connection with input/output optical fibers is easy, and the coupling efficiency is good. Furthermore, high output can be obtained despite the small size.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の光層1′@素子の一例を示す斜視図
、第2図はこの発明の光増幅素子の使用方法を示す説明
図、第3図および第4図はいずれも実施例1,2で得ら
れた光増幅素子の寸法、形状を示す正面図である。 1・・・・・・コア体、2・・・・・・クラッド体、3
・川・・発光体。
FIG. 1 is a perspective view showing an example of the optical layer 1'@device of the present invention, FIG. 2 is an explanatory diagram showing how to use the optical amplification device of the present invention, and FIGS. 3 and 4 are examples of the present invention. FIG. 2 is a front view showing the dimensions and shape of the optical amplification elements obtained in Examples 1 and 2. 1... Core body, 2... Clad body, 3
・River: Luminous body.

Claims (1)

【特許請求の範囲】[Claims] ポンピング光を導波する高屈折率の柱状のコア体の周囲
にこれよりも低屈折率の筒状のクラッド体を設け、この
クラッド体中に複数の柱状の発光体を配したことを特徴
とする光増幅素子。
A cylindrical cladding body having a lower refractive index is provided around a cylindrical cladding body having a lower refractive index around a cylindrical core body having a high refractive index that guides the pumping light, and a plurality of cylindrical light emitters are arranged within this cladding body. optical amplification element.
JP19543685A 1985-09-04 1985-09-04 Light amplifying element Pending JPS6254986A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19543685A JPS6254986A (en) 1985-09-04 1985-09-04 Light amplifying element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19543685A JPS6254986A (en) 1985-09-04 1985-09-04 Light amplifying element

Publications (1)

Publication Number Publication Date
JPS6254986A true JPS6254986A (en) 1987-03-10

Family

ID=16341027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19543685A Pending JPS6254986A (en) 1985-09-04 1985-09-04 Light amplifying element

Country Status (1)

Country Link
JP (1) JPS6254986A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63148691A (en) * 1986-12-12 1988-06-21 Nippon Telegr & Teleph Corp <Ntt> Rod for laser
JPH02135787A (en) * 1988-11-16 1990-05-24 Hamamatsu Photonics Kk Optically-pumped solid state laser
JP2007214487A (en) * 2006-02-13 2007-08-23 Shibuya Kogyo Co Ltd Solid laser oscillating apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6037639A (en) * 1983-07-06 1985-02-27 エヌ・ベー・フイリツプス・フルーイランペンフアブリケン Display unit and method of producing same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6037639A (en) * 1983-07-06 1985-02-27 エヌ・ベー・フイリツプス・フルーイランペンフアブリケン Display unit and method of producing same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63148691A (en) * 1986-12-12 1988-06-21 Nippon Telegr & Teleph Corp <Ntt> Rod for laser
JPH02135787A (en) * 1988-11-16 1990-05-24 Hamamatsu Photonics Kk Optically-pumped solid state laser
JP2007214487A (en) * 2006-02-13 2007-08-23 Shibuya Kogyo Co Ltd Solid laser oscillating apparatus

Similar Documents

Publication Publication Date Title
US4829529A (en) Laser diode pumped fiber lasers with pump cavity
EP0865620B1 (en) Method and apparatus for side pumping an optical fiber
EP0136871B1 (en) Fiber optic amplifier
EP0112090B1 (en) Fiber optic amplifier
US5048026A (en) Fiber optic amplifier
US4764933A (en) Diode pumped low doped Nd 3+ glass laser
US3772611A (en) Waveguide gas laser devices
EP0138411B1 (en) Fiber optic amplifier
CA2023244C (en) Optical amplifier
JPH01260405A (en) Optical fiber
US3456211A (en) Fiber laser structures and the like
US5365538A (en) Slab waveguide pumped channel waveguide laser
US7286575B2 (en) Diode pumped alkali vapor fiber laser
US5303256A (en) Quasi-monolithic saturable optical element
JPH07106671A (en) Device pumping plane-form waveguide path array
JPH0621539A (en) Laser system
US6975792B1 (en) Method and apparatus for coupling light into a waveguide using a slit
US6160934A (en) Hollow lensing duct
Stone et al. Self-contained LED-pumped single-crystal Nd: YAG fiber laser
JP2002528900A (en) Optical amplifier having optically pumped planar waveguide and power laser using the optical amplifier
EP1204182A3 (en) Semiconductor laser pumped solid state laser
JPS6254986A (en) Light amplifying element
CA2004716C (en) Superfluorescent broadband fiber laser source
KR920000158A (en) Optical signal amplifier and its manufacturing method
US5371758A (en) Apparatus for efficient, more uniform high power excitation of a dye media optical amplifier