JPS6254973B2 - - Google Patents

Info

Publication number
JPS6254973B2
JPS6254973B2 JP54070184A JP7018479A JPS6254973B2 JP S6254973 B2 JPS6254973 B2 JP S6254973B2 JP 54070184 A JP54070184 A JP 54070184A JP 7018479 A JP7018479 A JP 7018479A JP S6254973 B2 JPS6254973 B2 JP S6254973B2
Authority
JP
Japan
Prior art keywords
air
fuel ratio
output
delay time
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54070184A
Other languages
Japanese (ja)
Other versions
JPS55161934A (en
Inventor
Yukihide Niimi
Seietsu Yoshida
Yoshihiko Kondo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, NipponDenso Co Ltd filed Critical Toyota Motor Corp
Priority to JP7018479A priority Critical patent/JPS55161934A/en
Publication of JPS55161934A publication Critical patent/JPS55161934A/en
Publication of JPS6254973B2 publication Critical patent/JPS6254973B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

【発明の詳細な説明】 本発明はエンジンの排気ガス成分例えば酸素濃
度によつて、空燃比を検出し、この空燃比が所定
空燃比になるように、帰還制御する空燃比制御装
置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an air-fuel ratio control device that detects an air-fuel ratio based on engine exhaust gas components, such as oxygen concentration, and performs feedback control so that the air-fuel ratio becomes a predetermined air-fuel ratio.

自動車の内燃機関からの排気ガス(特にCO,
HC,NOx)を浄化するために三元触媒が使用さ
れており、この三元触媒は空燃比が理論空燃比付
近または排気系における空気過剰率λ=1付近に
あるとき各々有害成分CO,HC,NOxに対し高い
浄化率を呈する。従つて三元触媒を内燃機関の排
気ガス浄化に用いる場合、空燃比を理論空燃比付
近又は空気過剰率λ=1付近に精度よく制御する
必要がある。
Exhaust gas from automobile internal combustion engines (especially CO,
A three-way catalyst is used to purify harmful components CO, NO Exhibits high purification efficiency for HC and NO x . Therefore, when a three-way catalyst is used to purify the exhaust gas of an internal combustion engine, it is necessary to accurately control the air-fuel ratio to around the stoichiometric air-fuel ratio or around the excess air ratio λ=1.

その為に、空燃比制御装置が使用される。従来
のこの種の装置は、排気ガス中の酸素濃度を検出
する酸素濃度検出器と、この検出器の出力と所定
空燃比に対応する設定基準値とを比較する比較回
路とを備えている。この比較回路にて、空燃比が
設定空燃比より大きい(以下リーンと称する)、
或いは小さい(以下リツチと称する)を判別し、
判別出力によつて電磁弁をオン、オフさせて、気
化器等の補正用の燃料の量、或いは気化器をバイ
パスする補正用の空気の量を制御し空燃比を所定
空燃比に制御している。さらに比較回路にてリツ
チと判定している間は排気系に2次空気を供給
し、リーンと判定すれば2次空気をカツトする2
次空気供給装置を備えた空燃比制御方式がある。
For this purpose, an air-fuel ratio control device is used. A conventional device of this type includes an oxygen concentration detector that detects the oxygen concentration in exhaust gas, and a comparison circuit that compares the output of this detector with a set reference value corresponding to a predetermined air-fuel ratio. In this comparison circuit, the air-fuel ratio is larger than the set air-fuel ratio (hereinafter referred to as lean),
or small (hereinafter referred to as rich),
The solenoid valve is turned on and off based on the discrimination output to control the amount of correction fuel for the carburetor, etc., or the amount of correction air that bypasses the carburetor, and controls the air-fuel ratio to a predetermined air-fuel ratio. There is. Furthermore, while the comparison circuit determines that the exhaust system is rich, secondary air is supplied to the exhaust system, and when it is determined that the exhaust system is lean, the secondary air is cut off.
There is an air-fuel ratio control system equipped with a secondary air supply device.

しかしながら、従来は、比較回路の判別出力に
同期して、電磁弁又は2次空気供給装置をオン、
オフ制御していたが、例えば、気化器のベース空
燃比の変動等により、排気ガスベース空燃比が初
期設定よりリツチ、あるいはリーンにずれた場
合、従来のオン、オフ制御では精度のよい制御が
できない。その為に、帰還制御後の空燃比を所定
空燃比に制御できず、結果として、三元触媒コン
バータによる浄化を下げる問題が生じてくる。
However, conventionally, the solenoid valve or secondary air supply device is turned on in synchronization with the discrimination output of the comparison circuit.
However, if the exhaust gas base air-fuel ratio deviates from the initial setting to richer or leaner due to fluctuations in the base air-fuel ratio of the carburetor, for example, the conventional on/off control cannot provide accurate control. Can not. Therefore, the air-fuel ratio after feedback control cannot be controlled to a predetermined air-fuel ratio, resulting in a problem in which the purification by the three-way catalytic converter is reduced.

本発明は上記先行技術における欠点に鑑み成さ
れたものであり、その目的は、気化器のベース空
燃比の変動等を補正し、三元触媒の浄化率を高率
に維持し得る空燃比制御装置を提供することであ
る。
The present invention has been made in view of the shortcomings in the prior art described above, and its purpose is to provide air-fuel ratio control that can correct fluctuations in the base air-fuel ratio of the carburetor and maintain a high purification rate of the three-way catalyst. The purpose is to provide equipment.

本発明の空燃比制御装置は、エンジンの排気ガ
ス成分によつて空燃比を検出する空燃比センサ
と、この空燃比センサからの信号により空燃比状
態を表わす信号を出力する積分手段と、空燃比が
所定空燃比以上か以下かを比較判別する比較手段
と、積分手段から出力される空燃比状態を表わす
信号に基づき、比較手段から出力される信号に対
し空燃比状態に対応して変化する遅延時間をもつ
た信号を出力する遅延時間制御手段とを備えたこ
とを特徴としており、この遅延時間制御手段の出
力信号に応じて、気化器等の補正用の燃料の量、
或いは気化器をバイパスする補正用の空気の量、
若しくは排気系に導く2次空気の量を制御し、気
化器のベース空燃比の変動等を補正し、所定空燃
比に制御する。
The air-fuel ratio control device of the present invention includes: an air-fuel ratio sensor that detects an air-fuel ratio based on engine exhaust gas components; an integrating means that outputs a signal representing an air-fuel ratio state based on a signal from the air-fuel ratio sensor; a comparison means for comparing and determining whether the air-fuel ratio is above or below a predetermined air-fuel ratio, and a delay that changes in accordance with the air-fuel ratio state with respect to the signal output from the comparison means, based on a signal representing the air-fuel ratio state output from the integrating means. It is characterized by comprising a delay time control means that outputs a signal with time, and the amount of fuel for correction of the carburetor etc. is adjusted according to the output signal of the delay time control means.
or the amount of compensation air that bypasses the carburetor;
Alternatively, the amount of secondary air introduced into the exhaust system is controlled, and fluctuations in the base air-fuel ratio of the carburetor are corrected to maintain a predetermined air-fuel ratio.

以下、2次空気供給装置を使用した本発明の空
燃比制御装置の一実施例について説明する。本発
明を適用するシステムを示す第1図に於いて、エ
ンジン10はガソリン、LPGを燃料とする周知の
火花点火式エンジンでその吸気系は気化器11、
吸気マニホールド12から構成されており、一方
排気系は排気マニホールド13、排気管14、排
気ガス浄化用の三元触媒コンバータ16から構成
されている。また二次空気供給装置15は制御ユ
ニツト30からの電気信号によるオン、オフ作動
により排気マニホールド13内に2次空気を供給
する構成となつており、従来と同様図示しないエ
アポンプ、2次空気切換弁、逆止弁などから構成
されている。
An embodiment of the air-fuel ratio control device of the present invention using a secondary air supply device will be described below. In FIG. 1 showing a system to which the present invention is applied, an engine 10 is a well-known spark ignition engine that uses gasoline or LPG as fuel, and its intake system includes a carburetor 11,
It consists of an intake manifold 12, while the exhaust system consists of an exhaust manifold 13, an exhaust pipe 14, and a three-way catalytic converter 16 for purifying exhaust gas. Further, the secondary air supply device 15 is configured to supply secondary air into the exhaust manifold 13 by turning on and off in response to an electric signal from the control unit 30, and as with the conventional system, an air pump and a secondary air switching valve (not shown) are used. , a check valve, etc.

ここで、気化器11はベース空燃比がリツチに
設定されており、基本的には理論空燃比より小さ
い(濃い)混合気を生成するよう構成されてい
る。
Here, the base air-fuel ratio of the carburetor 11 is set to be rich, and is basically configured to generate a mixture that is smaller (richer) than the stoichiometric air-fuel ratio.

また三元触媒コンバータ16は、排気ガス中の
NOx,CO,HC、の三成分を同時に浄化するもの
で、2次空気が混合された排気ガスが空気過剰率
λ=1(理論空燃比)のとき高効率に浄化作用を
行う。
In addition, the three-way catalytic converter 16 converts
It simultaneously purifies the three components NO x , CO, and HC, and performs a highly efficient purification effect when the exhaust gas mixed with secondary air has an excess air ratio λ = 1 (theoretical air-fuel ratio).

排気マニホールド13の集合部には空燃比セン
サ20が設置されている。この空燃比センサ20
は、ジルコニアを主成分とする公知のもので、排
気ガス中の酸素濃度を検出することにより空燃比
を検出する。第2図の参照番号21は空燃比セン
サ20の出力波形である。排気系で検出した空燃
比が理論空燃比より小さいとき、センサ20は1
ボルト程度の高レベル電圧を出力し、理論空燃比
より大きいとき0.1ボルト程度の低レベル電圧を
出力する。
An air-fuel ratio sensor 20 is installed at a gathering part of the exhaust manifold 13. This air-fuel ratio sensor 20
is a well-known material whose main component is zirconia, and detects the air-fuel ratio by detecting the oxygen concentration in the exhaust gas. Reference number 21 in FIG. 2 is the output waveform of the air-fuel ratio sensor 20. When the air-fuel ratio detected in the exhaust system is smaller than the stoichiometric air-fuel ratio, the sensor 20
It outputs a high-level voltage of about volts, and outputs a low-level voltage of about 0.1 volts when the air-fuel ratio is higher than the stoichiometric air-fuel ratio.

次に制御ユニツト30について説明すると空燃
比センサと比較基準値とを比較し空燃比が所定空
燃比(ここでは理論空燃比)以上か以下か、つま
り、リーンかリツチかを判別する比較回路31、
空燃比状態をモニタする積分回路32、遅延時間
制御回路33空燃比制御回路34とから構成さ
れ、遅延時間制御回路33には比較回路31、積
分回路32の出力信号が入力される。積分回路3
2はその出力波形Cを第2図に示す如く、空燃比
センサ出力を積分し、本実施例では空燃比がリー
ンにずれれば積分電圧が下がりリツチにずれれば
積分電圧が上がることにより排気ガス空燃比状態
をモニタしている。
Next, the control unit 30 will be explained. A comparison circuit 31 compares the air-fuel ratio sensor with a comparison reference value and determines whether the air-fuel ratio is above or below a predetermined air-fuel ratio (here, the stoichiometric air-fuel ratio), that is, whether it is lean or rich.
It is comprised of an integrating circuit 32 for monitoring the air-fuel ratio state, a delay time control circuit 33, and an air-fuel ratio control circuit 34, and the output signals of the comparison circuit 31 and the integrating circuit 32 are input to the delay time control circuit 33. Integrating circuit 3
2 integrates the output of the air-fuel ratio sensor as shown in FIG. Monitors gas air-fuel ratio status.

第3図は第1図に示す制御ユニツト30のブロ
ツク図の詳細な電気回路を示すもので回路構成と
ともにその作動を以下に説明する。まず制御ユニ
ツト30は、車載バツテリ35の出力電圧を定電
圧化する定電圧回路36により動作する。比較回
路31はコンパレータ100の非反転入力に抵抗
101,102による分圧電圧を与えており、空
燃比センサ20がリツチ状態により高電圧を発生
すればこれが抵抗、コンデンサよりなるローパス
フイルタを介して反転入力端子に加わり、コンパ
レータ100の出力は低レベルとなりトランジス
タ104はオフする。また逆に、リーン状態によ
り低電圧を発生すればコンパレータ100の出力
は高レベルとなりトランジスタ104はオンす
る。次に積分回路32はコンパレータ104の非
反転入力に空燃比センサ20の出力信号を入力
し、コンパレータ102の出力に抵抗105、コ
ンデンサ106のCR回路を設け、コンデンサ1
06の充電電圧をコンパレータ104の反転入力
に接続することにより、今、コンデンサ106の
充電電圧より空燃比センサ20の出力が大きけれ
ばコンパレータ104の出力は高レベルとなりコ
ンデンサ106は抵抗105を通して充電され、
逆に空燃比センサ20の出力が小さくなればコン
パレータ104の出力は低レベルとなりコンデン
サ106は抵抗105を通して充電され、第2図
に示す積分波形Cが得られるわけである。次に遅
延時間制御回路33について第4図の作動特性図
を用いて説明する。比較回路31より第4図Aに
示す出力信号をトランジスタ107のベースに入
力する。トランジスタ107はこれを受け、A波
形が低レベルになるとオンし、低抵抗108(数
100Ω)を通してコンデンサ109が急速充電さ
れ、A点波形が高レベルになるとトランジスタ1
07はオフし、コンデンサ109の充電電荷は抵
抗110を通して、所定時定数にて放電され、第
4図Bに示す波形が得られるわけである。一方積
分回路32の出力をOPアンプ111、抵抗11
2,113よりなる増巾器により増巾し、増巾器
の出力信号を抵抗114、コンデンサ115の平
滑回路により平滑し、第4図C′に示す如く波形
を得て、該信号をコンパレータ116の非反転入
力に接続する。また一方、反転入力にはコンデン
サ109の電圧Bを入力することにより、C′電
圧(積分回路出力)と比較され、排気ガス空燃比
がリーンずれで積分回路32出力が低くなると、
A電圧が低レベルから高レベルすなわち、排気ガ
ス空燃比がリーンからリツチに変化する時点に於
いて、遅延時間tが長くなり、制御ユニツト30
が出力するリツチ判別時間が短かくなり、例えば
排気系に於ける2次空気制御に於いては、2次空
気量を少なくし、空燃比がリーンずれすることを
補正する働らきを行なう。逆に排気ガス空燃比が
リツチずれした場合は、積分回路32出力が高く
なり、遅延時間が短かくなり、制御ユニツト30
が出力するリツチ判別時間が長くなり、2次空気
量が増加することにより、空燃比がリツチずれす
ることを補正することになる。
FIG. 3 shows a detailed electric circuit of the block diagram of the control unit 30 shown in FIG. 1, and its circuit structure and operation will be explained below. First, the control unit 30 is operated by a constant voltage circuit 36 that makes the output voltage of the on-vehicle battery 35 constant. The comparator circuit 31 applies a voltage divided by resistors 101 and 102 to the non-inverting input of the comparator 100, and if the air-fuel ratio sensor 20 generates a high voltage due to a rich condition, this is inverted via a low-pass filter consisting of a resistor and a capacitor. The output of comparator 100 becomes low level and transistor 104 is turned off. Conversely, if a low voltage is generated due to a lean state, the output of the comparator 100 will be at a high level and the transistor 104 will be turned on. Next, the integrating circuit 32 inputs the output signal of the air-fuel ratio sensor 20 to the non-inverting input of the comparator 104, and connects the output of the comparator 102 with a CR circuit consisting of a resistor 105 and a capacitor 106.
By connecting the charging voltage of 06 to the inverting input of the comparator 104, if the output of the air-fuel ratio sensor 20 is now larger than the charging voltage of the capacitor 106, the output of the comparator 104 becomes a high level, and the capacitor 106 is charged through the resistor 105.
Conversely, when the output of the air-fuel ratio sensor 20 becomes small, the output of the comparator 104 becomes low level, and the capacitor 106 is charged through the resistor 105, so that the integral waveform C shown in FIG. 2 is obtained. Next, the delay time control circuit 33 will be explained using the operating characteristic diagram shown in FIG. The output signal shown in FIG. 4A from the comparator circuit 31 is input to the base of the transistor 107. In response to this, the transistor 107 turns on when the A waveform becomes low level, and the low resistance 108 (several
100Ω), the capacitor 109 is rapidly charged, and when the waveform at point A becomes high level, the transistor 1
07 is turned off, the charge in the capacitor 109 is discharged at a predetermined time constant through the resistor 110, and the waveform shown in FIG. 4B is obtained. On the other hand, the output of the integrating circuit 32 is connected to the OP amplifier 111 and the resistor 11.
2,113, and the output signal of the amplifier is smoothed by a smoothing circuit including a resistor 114 and a capacitor 115 to obtain a waveform as shown in FIG. Connect to the noninverting input of On the other hand, by inputting the voltage B of the capacitor 109 to the inverting input, it is compared with the C' voltage (integrator circuit output).
When the A voltage changes from a low level to a high level, that is, when the exhaust gas air-fuel ratio changes from lean to rich, the delay time t becomes longer and the control unit 30
For example, in secondary air control in the exhaust system, the amount of secondary air is reduced and the air-fuel ratio corrects lean deviation. Conversely, if the exhaust gas air-fuel ratio deviates richly, the output of the integrating circuit 32 becomes higher, the delay time becomes shorter, and the control unit 30
The richness determination time output by the engine becomes longer and the amount of secondary air increases, thereby correcting the richness deviation in the air-fuel ratio.

なお、上記実施例では、制御ユニツト30によ
り2次空気供給装置を制御して排気空燃比を制御
するようになしたが、気化器としてエアブリード
あるいは燃料ジエツトなどを電子的に制御可能な
電子制御式気化器を用いれば、第1図破線で示す
ように制御ユニツト30の出力で気化器11を制
御して空燃比を制御する構成であつてもよい。
In the above embodiment, the secondary air supply device is controlled by the control unit 30 to control the exhaust air-fuel ratio. If a type carburetor is used, the configuration may be such that the output of the control unit 30 controls the carburetor 11 to control the air-fuel ratio, as shown by the broken line in FIG.

なお、本発明の遅延期間制御回路の出力Eは、
比較回路の出力Aに対しその立上りにおいて遅延
時間を持たせ、空燃比状態に応じてそのパルス巾
を出力A対して減少させたものであるが、上述の
ような出力Eの立上りを出力Aに対し遅延させた
ものに限るのではなく、出力Eの立下りに対して
遅延時間を持たせた信号によつて空燃比を制御す
る場合も、本発明の範囲から逸脱することなく容
易に推考されるものである。
Note that the output E of the delay period control circuit of the present invention is
The output A of the comparator circuit has a delay time at its rise, and its pulse width is reduced relative to the output A according to the air-fuel ratio condition. However, the present invention is not limited to the case where the air-fuel ratio is controlled by a signal that has a delay time with respect to the fall of the output E, and can be easily conceived without departing from the scope of the present invention. It is something that

以上説明したとおり、本発明の一実施例の空燃
比制御装置においては、排気ガス空燃比調整用の
2次空気供給装置を制御する場合排気ガス空燃比
が気化器のベース空燃比の変動等によりリーンに
ずれたときは遅延時間を長くし、帰還制御後の空
燃比を補正し、所定空燃比に制御でき、逆に排気
ガス空燃比がリツチにずれた場合は遅延時間を短
かくし、2次空気量を増加して排気ガス空燃比を
効果的に補正できる。
As explained above, in the air-fuel ratio control device according to the embodiment of the present invention, when controlling the secondary air supply device for adjusting the exhaust gas air-fuel ratio, the exhaust gas air-fuel ratio changes due to fluctuations in the base air-fuel ratio of the carburetor, etc. When the exhaust gas air-fuel ratio deviates from lean, the delay time is lengthened and the air-fuel ratio after feedback control is corrected to control the air-fuel ratio to a predetermined level. Conversely, when the exhaust gas air-fuel ratio deviates from rich, the delay time is shortened and the air-fuel ratio after feedback control is corrected. By increasing the amount of air, the exhaust gas air-fuel ratio can be effectively corrected.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の空燃比制御装置を
ブロツクで示すシステム図、第2図は第1図の積
分回路の出力信号のタイミングチヤート図、第3
図は第1図の空燃比制御装置に含まれる電気回路
図、および第4図は第3図の電気回路の動作特性
を示す信号波形図である。 11……気化器、14……排気管、15……2
次空気供給装置、16……触媒、20……空燃比
センサ、31……比較回路、32……積分回路、
33……遅延時間制御回路。
FIG. 1 is a system diagram showing an air-fuel ratio control device according to an embodiment of the present invention as a block diagram, FIG. 2 is a timing chart of the output signal of the integrating circuit in FIG. 1, and FIG.
1 is an electric circuit diagram included in the air-fuel ratio control device of FIG. 1, and FIG. 4 is a signal waveform diagram showing operating characteristics of the electric circuit of FIG. 3. 11... Carburetor, 14... Exhaust pipe, 15...2
Secondary air supply device, 16...Catalyst, 20...Air-fuel ratio sensor, 31...Comparison circuit, 32...Integrator circuit,
33...Delay time control circuit.

Claims (1)

【特許請求の範囲】[Claims] 1 エンジンの排気ガス成分によつて空燃比を検
出する空燃比センサと、前記空燃比センサの出力
を積分し空燃比状態を表わす空燃比センサ出力の
平均値を出力する積分手段と、前記空燃比センサ
からの信号により空燃比が所定空燃比以上か以下
かを表わす信号を出力する比較手段と、前記積分
手段の出力信号に基づいて前記比較手段から出力
される信号に対し前記空燃比センサ出力の平均値
の大きさに対応してその長さが変化する遅延時間
を持つた信号を出力する遅延時間制御手段とを有
し、前記遅延時間制御手段の出力信号に応じて空
燃比または空気過剰率を所定の値に制御する空燃
比制御装置。
1: an air-fuel ratio sensor that detects an air-fuel ratio based on engine exhaust gas components; an integrating means that integrates the output of the air-fuel ratio sensor and outputs an average value of the air-fuel ratio sensor output representing the air-fuel ratio state; a comparison means for outputting a signal indicating whether the air-fuel ratio is above or below a predetermined air-fuel ratio based on a signal from the sensor; and a delay time control means for outputting a signal having a delay time whose length changes in accordance with the magnitude of the average value, the air-fuel ratio or the excess air ratio depending on the output signal of the delay time control means. An air-fuel ratio control device that controls the ratio to a predetermined value.
JP7018479A 1979-06-05 1979-06-05 Controller for fuel-air ratio Granted JPS55161934A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7018479A JPS55161934A (en) 1979-06-05 1979-06-05 Controller for fuel-air ratio

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7018479A JPS55161934A (en) 1979-06-05 1979-06-05 Controller for fuel-air ratio

Publications (2)

Publication Number Publication Date
JPS55161934A JPS55161934A (en) 1980-12-16
JPS6254973B2 true JPS6254973B2 (en) 1987-11-17

Family

ID=13424177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7018479A Granted JPS55161934A (en) 1979-06-05 1979-06-05 Controller for fuel-air ratio

Country Status (1)

Country Link
JP (1) JPS55161934A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6287069U (en) * 1985-11-21 1987-06-03
JPS6432377U (en) * 1987-08-24 1989-02-28
JPS6435879U (en) * 1987-09-30 1989-03-03

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51146638A (en) * 1975-06-10 1976-12-16 Nippon Denso Co Ltd Air-fuel ratio recycling type fuel controlling system
JPS5248738A (en) * 1975-10-13 1977-04-19 Bosch Gmbh Robert Method and apparatus for control of proportion of mass of fuel air mixture supplied to internal combustion engine
JPS5499829A (en) * 1978-01-23 1979-08-07 Nissan Motor Co Ltd Air fuel ratio controller
JPS54162023A (en) * 1978-06-13 1979-12-22 Nippon Soken Inc Air fuel ratio controller

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51146638A (en) * 1975-06-10 1976-12-16 Nippon Denso Co Ltd Air-fuel ratio recycling type fuel controlling system
JPS5248738A (en) * 1975-10-13 1977-04-19 Bosch Gmbh Robert Method and apparatus for control of proportion of mass of fuel air mixture supplied to internal combustion engine
JPS5499829A (en) * 1978-01-23 1979-08-07 Nissan Motor Co Ltd Air fuel ratio controller
JPS54162023A (en) * 1978-06-13 1979-12-22 Nippon Soken Inc Air fuel ratio controller

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6287069U (en) * 1985-11-21 1987-06-03
JPS6432377U (en) * 1987-08-24 1989-02-28
JPS6435879U (en) * 1987-09-30 1989-03-03

Also Published As

Publication number Publication date
JPS55161934A (en) 1980-12-16

Similar Documents

Publication Publication Date Title
US5083427A (en) Apparatus and method to reduce automotive emissions using filter catalyst interactive with uego
JP2592342B2 (en) Control device for internal combustion engine
US4344317A (en) Air-fuel ratio detecting system
US20020184876A1 (en) Fueling control system
US5791139A (en) Fuel injection control method for an internal-combustion engine provided with NOx reducing catalytic converter and fuel injection controller
JPH06146865A (en) Catalyst deterioration judgment device for internal combustion engine
US6089017A (en) Exhaust gas purification system of internal combustion engine
EP0799985A3 (en) Air-fuel ratio control system for internal combustion engines
EP0799988A3 (en) Air-fuel ratio control system for internal combustion engines
US8037671B2 (en) Method and device for the calibration of an exhaust gas probe, and method and device for the operation of an internal combustion engine
US20100037683A1 (en) Method and device for monitoring an exhaust gas probe
JPS6020570B2 (en) Internal combustion engine fuel supply system
JPH02125941A (en) Air-fuel ratio control device of engine
KR20180090759A (en) Method for heating and regenerating a particulate filter in an exhaust gas of an otto engine
JPS6254973B2 (en)
JPS6133981B2 (en)
JP3221158B2 (en) Air-fuel ratio sensor deterioration determination control device
JP3627417B2 (en) Fuel property detection device for internal combustion engine
US11174808B2 (en) Air-fuel ratio control system and air-fuel ratio control method
JPH01113565A (en) Air-fuel ratio control device for spark-ignition engine
JPS6032357Y2 (en) Exhaust purification device
JPH06323185A (en) Air-fuel ratio control device
JP2591072B2 (en) Control device for internal combustion engine
JPS6011217B2 (en) Basic air-fuel ratio adjustment device for internal combustion engines
JPS60233329A (en) Air-fuel ratio controlling apparatus for internal-combustion engine