JPS6254782B2 - - Google Patents

Info

Publication number
JPS6254782B2
JPS6254782B2 JP58038637A JP3863783A JPS6254782B2 JP S6254782 B2 JPS6254782 B2 JP S6254782B2 JP 58038637 A JP58038637 A JP 58038637A JP 3863783 A JP3863783 A JP 3863783A JP S6254782 B2 JPS6254782 B2 JP S6254782B2
Authority
JP
Japan
Prior art keywords
solution
group
cations
carbon atoms
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58038637A
Other languages
Japanese (ja)
Other versions
JPS59163343A (en
Inventor
Kazuhisa Hiratani
Kazuhiro Taguchi
Hideki Sugihara
Shin Iio
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP58038637A priority Critical patent/JPS59163343A/en
Publication of JPS59163343A publication Critical patent/JPS59163343A/en
Priority to JP61297322A priority patent/JPS62149642A/en
Publication of JPS6254782B2 publication Critical patent/JPS6254782B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Landscapes

  • Extraction Or Liquid Replacement (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】 本発明は、一般式() (式中、R1、R2及びR3は水素原子又は炭素数1〜
30のアルキル基であり、R4は水素原子、炭素数
1〜30のアルキル基、ベンジル基、2−フエニル
エチル基、又は3−(ナフチル−1−オキシ)プ
ロピル基である) で表わされるポリエーテル誘導体に関するもので
ある。 本発明のポリエーテル誘導体は陽イオンキヤリ
アー(イオノフオア)として有用であり、殊に、
リチウムイオンに対して選択的に作用し、しかも
濃度勾配に逆つて移送させることができるという
特徴を有する。 本発明者らは、イオノフオアとして有用な化合
物の開発について種々研究を行つてきたが、今
回、前記一般式()表わされるポリエーテル誘
導体は、イオノフオアとしてすぐれた性能を示
し、殊に、リチウムイオンに対してすでに報告し
たキノリル基を含むポリエーテル誘導体よりも大
きな選択的移送能を示し、その上、陽イオン移送
を濃度勾配に逆つて生起させることを見出し、し
かも、これらはすでに報告したキノリル基を含む
ものと違つて存在するアニオンの種類による透過
速度の変化もないことを見出し、本発明を完成す
るに到つた。 本発明のポリエーテル誘導体()は、カテコ
ール又はそのアルキル置換体を原料として、以下
の反応により合成される。 化合物()と等モルの2−(3−クロロプロ
ピルオキシ)テトラヒドロピランとの反応は、ア
ルカリ性媒質中60〜120℃の反応温度で行い、酸
処理して保護基を脱離した後、ピリジン存在下、
塩化チオニルで処理することにより()の化合
物を得ることができる。 化合物()とカテコール又はそのアルキル置
換体との反応は、アルカリ性媒質中で実施するこ
とができる。反応温度は60〜120℃である。 化合物()と1・3−ジクロルプロパンとの
反応はアルカリ性媒質中、過剰の1・3−ジクロ
ルプロパン存在下実施する。反応温度は60〜120
℃である。 化合物()と化合物()との反応はアルカ
リ性媒質中で温度30〜150℃、好ましくは60〜120
℃の条件で行うことができる。また、化合物
()の加水分解は、常法により行うことがで
き、例えば、水酸化ナトリウム、水酸化カリウム
などのアルカリを溶解した水や、メタノール、エ
タノールなどのアルコールなどの溶媒中におい
て、温度60〜80℃で実施される。加水分解生成物
を有機酸や無機酸で中和することにより、目的物
()を得る。 なお、前記で示したアルカリ性媒質としては、
アルカリ性物質を、該アルカリ性物質に不活性な
溶媒に溶解させたものが用いられ、この場合、不
活性溶媒としては、ジメチルホルムアミド、ヘキ
サメチルホスホルアミド、ジメチルスルホキシ
ド、ジオキサンなどが挙げられ、アルカリ性物質
としては、t−ブトキシカリウム、水素化ナトリ
ウム、炭酸カリウム、炭酸ナトリウム、水酸化ナ
トリウム、水酸化カリウムなどが挙げられる。ま
た、前記各一般式において、R1、R2、R3又はR4
がアルキル基を示す場合、このアルキル基として
は、低級アルキル及び高級アルキルを問わず、任
意のものが用いられ、通常、炭素数1〜30のもの
が用いられる。このアルキル基は、ポリエーテル
化合物()に対し、水溶性を高め、有機溶媒中
からの酸性又はアルカリ性水溶液中への溶出性を
低減させる。R5はカルボキシル基の反応保護基
となるもので、任意の炭化水素基が適用される
が、通常は、炭素数1〜4のアルキル基や、フエ
ニル、ベンジル、トリル、キシリルなどのアリー
ル基、アルアルキル基が適用される。 本発明のポリエーテル誘導体()は、陽イオ
ン移送剤、即ちイオノフオアとして作用し、ある
溶液に溶解する陽イオンを他の溶液に移送するた
めに適用される。この場合、陽イオンとしては、
種々のもの、例えば、ナトリウム、カリウム、リ
チウムなどのアルカリ金属のイオンが挙げられ
る。本発明のポリエーテル誘導体()は、殊
に、リチウムイオンに対して大きな選択性を有
し、リチウムイオン以外の陽イオン、例えば、ナ
トリウム、カリウム、ルビジウム、セシウムの如
きアルカリ金属イオンの共存する溶液から、リチ
ウムイオンを選択的に移送させることができる。 本発明のポリエーテル誘導体()をイオノフ
オアとして用いて、陽イオンの移送を行うには、
2種の溶液A及びBを、本発明のポリエーテル誘
導体()を介して間接的に接触させればよい。
例えば、ポリエーテル誘導体()を溶液Aと溶
液Bに対して実質上非混和性の有機溶媒に溶解さ
せ、このポリエーテル誘導体()の溶液を中間
溶液層として、溶液A及び溶液Bを間接接触させ
る方法、溶液A及びBをそれぞれ、隔膜により仕
切られた区画内に収容させたポリエーテル誘導体
溶液を介して、それぞれ間接接触させる方法、溶
液A及びBを、高分子膜やロ紙などの支持体に支
持させたポリエーテル誘導体()を介して間接
的に接触させる方法などがある。 次に、図面により、溶液Aと溶液Bとを、ポリ
エーテル誘導体()の溶液Mを介して接触させ
て陽イオンの移送を行う場合の具体例を示す。 1はU字形の容器を示し、筒状容器2,3と、
それらの下部を連結する連結管4とから構成され
る。5,6は撹拌器である。 この容器1に対し、先ずポリエーテル誘導体
()を含む溶液Mを中間溶液層として入れ、次
に、一方の筒状容器2に溶液A及び他方の筒状容
器3に溶液Bを入れる。なお、溶液Mは溶液A及
びBと実質上非混和性のものである。 溶液Aは、移送対象となる陽イオンを含むもの
で、通常、水溶液が用いられるが、必ずしも水溶
液に限定されるものではなく、有機溶媒と水との
混合溶液や、アルコール等の有機溶媒溶液も適用
される。また、この溶液Aは、通常、PH8〜12の
アルカリ性溶媒として用いられる。溶液Bは、移
送される陽イオンを受取るためのもので、酸性溶
液が用いられ、一般には、酸塩や硫酸などの無機
酸、あるいはギ酸や、酢酸、有機スルホン酸など
の有機酸を含むPH1〜6の水溶液が用いられる。
溶液Bは種々の陽イオンを含むことができ、溶液
Aに含まれる移送対象となる陽イオンと同種のも
のを含むことができる。その上、本発明の場合、
ポリエーテル誘導体()は、イオン濃度勾配に
逆つて陽イオンを誘送させることができるので、
溶液Bに含まれる陽イオン濃度は、溶液Aに含ま
れる陽イオン濃度よりも高濃度であることができ
る。溶液Mの形成に用いられる溶媒は、溶液A及
びBと実質上非混和性のもの、例えば、溶液A及
びBが水性溶液である場合は、クロロホルム、四
塩化メタン、ジクロルエタンなどの有機ハロゲン
化物や、ベンゼン、トルエン等の炭化水素、さら
にヘキサノール、オクタノールなどの水難溶性ア
ルコール等が適用される。 前記のようにして、溶液A及びBを間接接触さ
せる時には、中性またはアルカリ性溶液A中の陽
イオンはポリエーテル誘導体()に捕捉され、
この陽イオンを捕捉したポリエーテル誘導体
()は、溶液Bと接触し、酸性溶液B中にその
捕捉した陽イオンを放出する。このようにして、
溶液A中の陽イオンは溶液B中に移送される。 本発明のポリエーテル誘導体()をイオノフ
オアとして用いる時には、前記したように溶液A
中に含まれる陽イオンを溶液B中に移送させるこ
とができ、しかもこの場合、溶液B中の陽イオン
濃度が溶液Aの陽イオン濃度よりも高濃度であつ
ても、その濃度勾配に逆つて溶液Aから溶液Bへ
陽イオンを移送させることができる。従つて、本
発明による時には、溶液Aから溶液Bへの陽イオ
ンの移送の他、溶液A中の陽イオンを溶液B中へ
濃縮することを可能にする。本発明のポリエーテ
ル誘導体()は、リチウムイオンに対して大き
な選択性を示すことから、本発明のポリエーテル
誘導体を、リチウムイオンと他の陽イオンを含む
溶液Aに適用することにより、その溶液中から、
他の溶液B中へリチウムイオンのみを選択的に分
離濃縮することができる。 次に本発明を実施例によりさらに詳細に説明す
る。 実施例 A:1−{3′−(O−カルボキシルフエノキシ)プ
ロピルオキシ}−2−{3′−O−エトキシフエニ
ルオキシ)プロピルオキシ}−4(又は5)−t
−ブチルベンゼンの製造 33gのサルチル酸エチルと5gのNaHを115ml
DMF中で撹拌し、均一溶液とした後、これに40
gの2−(3−クロロプロピルオキシ)テトラヒ
ドロピランを加え、70℃で24時間撹拌する。空冷
後、反応液を水にあけてベンゼンで抽出し、ベン
ゼン相を水でよく洗い、MgSO4で乾燥した後、
溶媒を除去して残留物を蒸留すると(180℃/0.5
mmHg)、36g(80%)の2−(3−ヒドロキシプ
ロピルオキシ)安息香酸エチルが得られた。 これをベンゼン中、ピリジンと塩化チオニルを
用い、常法通り塩素化することにより83%の収率
で2−(3−クロロプロピルオキシ)安息香酸エ
チル()が得られた。 50gの4−t−ブチルカテコールと6.0gのt
−BuOKを150mlDMF中、窒素雰囲気下撹拌して
均一溶液とした後、13gの2−(3−クロロプロ
ピルオキシ)安息香酸エチルを加えて、70℃、2
日間撹拌する。ベンゼンで抽出し、前記と同様の
後処理をして、過剰のt−ブチルカテコールを減
圧蒸留で除き残留物をカラムクロマト法によにり
(アルミナ、CHCl3)、14.5g(76%)の1{3−
(Oエトキシカルボニルフエニルオキシ)プロピ
ルオキシ}−2−ヒドロキシ−4(又は5)−t−
ブチルベンゼン()が得られた。一方、3−
(O−エトキシフエニルオキシ)プロピルクロリ
ドはO−エトキシフエノールと過剰の1・3−ジ
クロルプロパンをジオキサン中で反応させるか、
又はO−エトキシフエノールと3−クロロプロパ
ノールを等モル反応させた後、SOCl2とピリジン
で塩素化することにより好収率で得ることができ
た。 1.9gの()と0.6gのt−BuOKを30mlDMF
中で撹拌し、均一溶液とした後、2.2gの3−(O
−エトキシフエニルオキシ)プロピルクロリドを
加え、70℃で1日間撹拌する。ベンゼン抽出後、
前記に従つて後処理をし、カラムクロマト(アル
ミナ、CHCl3)で精製し、1.7g(65%)のエチル
エステル体()が得られた。 このエステル体()をエタノール中KOHと
共に加水分解し、後処理して、カラムクロマト法
(シリカゲル、CHCl3)で精製して81%の収率で生
成物を得た。 1HNMR(CDCl3δ):1.30〔singlet、9H、C
(CH33〕、1.40〔triplet、3H、OCH2C 〕、
2.0〜2.6〔multiplet、4H、OCH2C 2CH2O〕、
4.06〔quadruplet、2H、OC 2CH3〕、4.1〜4.7
〔multiplet、SH、OC 2CH2CH2O〕、6.93
〔singlet、4H、芳香族プロトン〕、6.8〜7.8
〔multiplet、6H、芳香族プロトン〕、8.22
〔quadruplet、1H方香族プロトン〕、ca.9〜10
〔broad、1H、COOH〕 1−{3−(Oカルボキシルフエニルオキシ)プ
ロピルオキシ}−2−〔3−{2−(2−フエニル
エトキシ)フエニルオキシ}プロピルオキシ〕
−4(又は5)−t−ブチルベンゼンの製造 前記の方法に従つて、化合物()と3−{2
−(2−フエニルエトキシ)フエニルオキシ}プ
ロピルクロリドとの反応により生成物を得た。 1HNMR(CDCl3.δ):1.30〔singlet、9H、C
(CH33〕、2.0〜2.6〔multiplet、4H、OCH2C
2CH2O〕、3.10〔triplet、2H、OCH2C
Ph〕、4.0〜4.6〔multiplet、10H、OC 2CH2C
2O及びOC 2CH2Ph〕、6.93〔singlet、4H、
芳香族プロトン〕、6.8〜7.8〔multiplet、6H、
芳香族プロトン〕、ca.9〜10〔broad、1H、
COOH〕 1−{3−(O−カルボシキシルフエニルオキ
シ)プロピルオキシ}−2−〔3−〔2−{3−
(1−ナフチルオキシ〕プロピルオキシ}フエ
ニルオキシ〕プロピルオキシ〕−4(又は5)−
t−ブチルベンゼンの製造 前記の方法に従つて、化合物()と3−〔2
−{3−(1−ナフチルオキシ)プロピルオキシ}
フエニルオキシ〕プロピルクロリド(これは2−
{3−(1−ナフチルオキシ)プロピルオキシ}フ
エノールと1・3−ジクロルプロパンとの反応に
より得られる)との反応により生成物を得た。 1HNMR(CDCl3、δ):1.27〔singlet、18H、
C(CH33〕2.0〜2.65〔multiplet、6H、
OCH2C 2CH2O〕、4.0〜4.6〔multiplet、
12H、OC 2CH2C 2O〕、6.7〜8.5
〔multiplet、17H、芳香族プロトン〕、ca.9〜10
〔broad、1H、COOH〕 1−{3−(Oカルボキシルフエニルオキシ)プ
ロピルオキシ}−2−{3−(2−ステリアルオ
キシフエニルオキシ)プロピルオキシ}−4
(又は5)−t−ブチルベンゼンの製造 前記の方法に従つて、化合物()と3−(2
−ステアリルオキシフエニルオキシ)プロピルク
ロリド(これは2−ステアリルオキシフエノール
と1・3ジクロルプロパンとの反応により得られ
る。)との反応により生成物を得た。 1HNMR(CDCl3、δ): 0.9〔broad、3H、O−(CH2)−17C 〕、 1.28〔singlit、32H、COH2−(C )−
16CH3〕、 1.30〔singlet、9HC(CH33)、 2.0〜2.6〔multiplet、4H、OCH2C 2CH2O〕、 3.8〜4.7〔multiplet、10H、OC 、CH2C
2O及びOC −(CH2)−16CH3〕、 6.92〔singlet、4H、芳香族プロトン〕、 6.9〜7.8〕multiplet、6H、芳香族プロトン〕、 8.25〔quadruplet、1芳香族プロトン〕、 ca.9〜10〔droad、1H、COOH〕 1−{3−(Oカルボキシルフエニルオキシ)プ
ロピルオキシ}−2−{3−(2−ヒドロキシフ
エニルオキシ)プロピルオキシ}−4(又は
5)−t−ブチルベンゼンの製造 化合物()と過剰の1・3−ジクロルプロパ
ンとの反応で得られる1−{3−(O−カルボキシ
ルフエニルオキシ)プロピルオキシ}−2−(3−
クロロプロピルオキシ)−4(又は5)−t−ブチ
ルベンゼンとカテコールの反応により生成物を得
た。 1HNMR(CDCl3、δ): 1.30〔singlet、9H、C(CH33〕、 2.0〜2.65〔multiplet、4H、OCH2C
2CH2O〕、 4.0〜4.7〔multiplet、8H、OC 2CH2C
2O〕、 6.7〜7.8〔multiplet、10H、芳香族プロト
ン〕、 8.22〔quadruplet、1H芳香族プロトン〕、 ca.9〜10〔broad、2H、COOH及びOH〕 B:陽イオンの移送試験 試験(1) 図面に示した装置を用いて陽イオンの移送試験
を行つた。 イオノフオアとしては、前記で得た化合物
()(式1において、R1=t−ブチル、R2
H、R3=H、R4=Et)を用いた。 溶液A、B及びMの成分組成は次の通りであ
る。 溶液A:0.1規定のLiOH、0.1規定のNaOH、0.1
規定のKOH及び0.2規定のH2SO4の混合水溶液
115ml(PH=12.4) (溶液はポンプで循環させて使用する。) 溶液B:0.1規定のH2SO4の水溶液15ml(PH=
2.0) 溶液M:前記化合物のの1.5×10-4モルをクロ
ロホルム30mlに溶解して形成した溶液 なお、本試験は25℃で行い、液の撹拌はガラス
撹拌棒により各溶液A、B及びMを200rpmで行
つた。以下の実験においても同様の条件で行つ
た。 第1表に溶液Aから溶液Bへ移送された各陽イ
オンの移送速度(μmole/hr)と選択性を示
す。 【表】 第1表に示された結果から、3種のカチオン存
在下、Na及びKに対してLiの移送は選択よく行
われることがわかる。この結果は同条件下、イオ
ノフオアとしてO−エトキシフエニル末端基の代
りに8−キノリン末端基を持つもの(既報)より
もすぐれた選択性を持つている。 2日間のLi輸送量は0.92mmoleに達する。 試験(2) 試験(1)において、溶液M中のイオノフオアとし
て、前記で得た化合物(式においてR1=t
−ブチル、R2=R3=H、R4=2−フエニルエト
キシ)を用いた以外は同様にして試験を行つた。
その結果を第2表に示す。 【表】 試験(1)よりもさらにすぐれたリチウム選択性を
示すことがわかる。 試験(3) 試験(1)において、溶液M中のイオノフオアとし
て前記で得た化合物(式においてR1=t−
ブチル、R2=R3=H、R4=3−(ナフチルオキ
シ)プロピル)を用いた以外は同様にして試験を
行つた。その結果を第3表に示す。 【表】 第3表によりこのイオノフオアは試験(1)及び(2)
で用いたイオノフオアよりさらにすぐれたリチウ
ム選択性を示すことがわかる。 試験(4) 試験(1)において、溶液Aにおける成分組成が
0.1規定のLiOH、0.1規定のNaOH、0.1規定の
KOH、0.1規定のRbOH、0.1規定のCsOH及び0.4
規定のH2SO4の混合水溶液115mlを用い、また溶
液Mにおけるイオノフオアとして前記で得た化合
物(式においてR1=t−ブチル、R2=R3
H、R4=3−(1−ナフチルオキシ)プロピル)
を用いた以外は同様にして試験を行つた。その結
果を第4表に示す。 【表】 第4表より5種のアルカリイオン存在下でもリ
チウムイオンに対する選択性はすぐれていること
がわかる。 試験(5) 試験(1)において、溶液M中のイオノフオアとし
て前記で得た化合物(式においてR1=t−
ブチル、R2=R3=H、R4=ステアリル)を用い
た以外は同様にて試験を行つた。その結果を第5
表に示す。 【表】 試験(6) 試験(1)において、溶液M中のイオノフオアとし
て前記で得た化合物(式においてR1=t−
ブチル、R2=R3=R4=H)を用いた以外同様に
して試験を行つた。その結果を第6表に示す。 【表】 第6表よりこのイオノフオアは陽イオン移送速
度は他のものと比べて小さいが、大変によいLi選
択性を示すことがわかる。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to the general formula () (In the formula, R 1 , R 2 and R 3 are hydrogen atoms or have 1 to 1 carbon atoms.
30 alkyl group, R 4 is a hydrogen atom, an alkyl group having 1 to 30 carbon atoms, a benzyl group, a 2-phenylethyl group, or a 3-(naphthyl-1-oxy)propyl group) It concerns derivatives. The polyether derivatives of the present invention are useful as cation carriers (ionophores), in particular:
It has the characteristics of acting selectively on lithium ions and being able to transport them against the concentration gradient. The present inventors have conducted various studies on the development of compounds useful as ionophores, and this time, the polyether derivative represented by the general formula () has shown excellent performance as an ionophore, and is particularly useful for lithium ions. We found that they exhibited greater selective transport ability than the previously reported polyether derivatives containing quinolyl groups, and also caused cation transport to occur against the concentration gradient. They found that the permeation rate does not change depending on the type of anion present, unlike those contained, and have completed the present invention. The polyether derivative () of the present invention is synthesized by the following reaction using catechol or its alkyl substituted product as a raw material. The reaction between compound () and equimolar amount of 2-(3-chloropropyloxy)tetrahydropyran is carried out in an alkaline medium at a reaction temperature of 60 to 120°C, and after removal of the protecting group by acid treatment, the presence of pyridine is removed. under,
Compound () can be obtained by treatment with thionyl chloride. The reaction of compound () with catechol or its alkyl substituted product can be carried out in an alkaline medium. The reaction temperature is 60-120°C. The reaction between compound () and 1,3-dichloropropane is carried out in an alkaline medium in the presence of an excess of 1,3-dichloropropane. Reaction temperature is 60-120
It is ℃. The reaction between compound () and compound () is carried out in an alkaline medium at a temperature of 30-150°C, preferably 60-120°C.
It can be carried out under conditions of ℃. Further, hydrolysis of the compound () can be carried out by a conventional method, for example, in water containing an alkali such as sodium hydroxide or potassium hydroxide, or in a solvent such as an alcohol such as methanol or ethanol, at a temperature of 60°C. Performed at ~80°C. The desired product () is obtained by neutralizing the hydrolysis product with an organic acid or an inorganic acid. In addition, as the alkaline medium shown above,
An alkaline substance dissolved in an inert solvent is used. In this case, examples of the inert solvent include dimethylformamide, hexamethylphosphoramide, dimethyl sulfoxide, dioxane, etc. Examples include potassium t-butoxy, sodium hydride, potassium carbonate, sodium carbonate, sodium hydroxide, potassium hydroxide, and the like. Furthermore, in each of the above general formulas, R 1 , R 2 , R 3 or R 4
When represents an alkyl group, any alkyl group can be used, regardless of lower alkyl or higher alkyl, and usually one having 1 to 30 carbon atoms is used. This alkyl group increases the water solubility of the polyether compound () and reduces its elution from an organic solvent into an acidic or alkaline aqueous solution. R 5 serves as a reactive protective group for a carboxyl group, and any hydrocarbon group can be used, but it is usually an alkyl group having 1 to 4 carbon atoms, an aryl group such as phenyl, benzyl, tolyl, xylyl, etc. Aralkyl groups are applicable. The polyether derivatives () of the present invention act as cation transport agents, ie ionophores, and are applied to transport cations dissolved in one solution to another. In this case, the cation is
Various ions include, for example, ions of alkali metals such as sodium, potassium, and lithium. The polyether derivative () of the present invention has a particularly high selectivity to lithium ions, and a solution in which cations other than lithium ions, such as alkali metal ions such as sodium, potassium, rubidium, and cesium, coexist. From this, lithium ions can be selectively transferred. To transport cations using the polyether derivative () of the present invention as an ionophore,
Two types of solutions A and B may be brought into contact indirectly via the polyether derivative () of the present invention.
For example, a polyether derivative () is dissolved in an organic solvent that is substantially immiscible with solutions A and B, and the solution A and solution B are brought into indirect contact using the solution of the polyether derivative () as an intermediate solution layer. A method in which solutions A and B are brought into indirect contact with each other via a polyether derivative solution contained in a compartment partitioned by a diaphragm, A method in which solutions A and B are brought into contact with each other through a support such as a polymer membrane or paper There is a method of indirect contact via a polyether derivative supported on the body. Next, with reference to the drawings, a specific example will be shown in which cations are transferred by bringing solution A and solution B into contact via solution M of polyether derivative (). 1 indicates a U-shaped container, cylindrical containers 2 and 3,
It is composed of a connecting pipe 4 that connects their lower parts. 5 and 6 are stirrers. First, a solution M containing a polyether derivative () is poured into the container 1 as an intermediate solution layer, and then a solution A is poured into one cylindrical container 2 and a solution B is poured into the other cylindrical container 3. Note that solution M is substantially immiscible with solutions A and B. Solution A contains cations to be transferred, and is usually an aqueous solution, but is not necessarily limited to an aqueous solution, and may also be a mixed solution of an organic solvent and water, or a solution of an organic solvent such as alcohol. Applicable. Moreover, this solution A is normally used as an alkaline solvent with a pH of 8 to 12. Solution B is for receiving the cations to be transferred, and is an acidic solution, generally containing an inorganic acid such as an acid salt or sulfuric acid, or an organic acid such as formic acid, acetic acid, or an organic sulfonic acid. -6 aqueous solutions are used.
Solution B can contain various cations, and can contain the same type of cations as the cations to be transferred, which are contained in solution A. Moreover, in the case of the present invention,
Polyether derivatives () can transport cations against the ion concentration gradient, so
The concentration of cations contained in solution B can be higher than the concentration of cations contained in solution A. The solvent used to form solution M is one that is substantially immiscible with solutions A and B, for example, when solutions A and B are aqueous solutions, an organic halide such as chloroform, tetrachlormethane, dichloroethane, etc. , hydrocarbons such as benzene and toluene, and poorly water-soluble alcohols such as hexanol and octanol. When solutions A and B are brought into indirect contact as described above, the cations in neutral or alkaline solution A are captured by the polyether derivative (),
The polyether derivative () that has captured this cation comes into contact with solution B and releases the captured cation into acidic solution B. In this way,
Cations in solution A are transported into solution B. When using the polyether derivative () of the present invention as an ionophore, as described above, the solution A
In this case, even if the concentration of cations in solution B is higher than that in solution A, the cations contained in the solution can be transferred against the concentration gradient. Cations can be transferred from solution A to solution B. According to the invention, therefore, in addition to the transfer of cations from solution A to solution B, it is also possible to concentrate the cations in solution A into solution B. Since the polyether derivative () of the present invention exhibits high selectivity for lithium ions, by applying the polyether derivative of the present invention to solution A containing lithium ions and other cations, the solution From inside,
Only lithium ions can be selectively separated and concentrated into another solution B. Next, the present invention will be explained in more detail with reference to Examples. Example A: 1-{3'-(O-carboxylphenoxy)propyloxy}-2-{3'-O-ethoxyphenyloxy)propyloxy}-4 (or 5)-t
-Production of butylbenzene 115ml of 33g of ethyl salicylate and 5g of NaH
After stirring in DMF to make a homogeneous solution, add 40
g of 2-(3-chloropropyloxy)tetrahydropyran is added and stirred at 70°C for 24 hours. After cooling in air, the reaction solution was poured into water and extracted with benzene, and the benzene phase was thoroughly washed with water and dried with MgSO4 .
After removing the solvent and distilling the residue (180℃/0.5
mmHg), 36 g (80%) of ethyl 2-(3-hydroxypropyloxy)benzoate were obtained. This was chlorinated in benzene using pyridine and thionyl chloride in a conventional manner to obtain ethyl 2-(3-chloropropyloxy)benzoate (2) in a yield of 83%. 50 g of 4-t-butylcatechol and 6.0 g of t
- BuOK was stirred in 150 ml of DMF under a nitrogen atmosphere to make a homogeneous solution, then 13 g of ethyl 2-(3-chloropropyloxy)benzoate was added, and the mixture was heated at 70°C for 2 hours.
Stir for days. After extraction with benzene and the same post-treatment as above, excess t-butylcatechol was removed by vacuum distillation and the residue was purified by column chromatography (alumina, CHCl 3 ) to obtain 14.5 g (76%) of 1{3-
(O ethoxycarbonylphenyloxy)propyloxy}-2-hydroxy-4(or 5)-t-
Butylbenzene () was obtained. On the other hand, 3-
(O-ethoxyphenyloxy)propyl chloride can be obtained by reacting O-ethoxyphenol and excess 1,3-dichloropropane in dioxane, or
Alternatively, it could be obtained in good yield by reacting equimolar amounts of O-ethoxyphenol and 3-chloropropanol, followed by chlorination with SOCl 2 and pyridine. 1.9g () and 0.6g t-BuOK in 30ml DMF
After stirring to make a homogeneous solution, 2.2 g of 3-(O
-Ethoxyphenyloxy)propyl chloride is added and stirred at 70°C for 1 day. After benzene extraction,
After post-treatment as described above and purification by column chromatography (alumina, CHCl 3 ), 1.7 g (65%) of the ethyl ester compound ( ) was obtained. The ester () was hydrolyzed with KOH in ethanol, worked up and purified by column chromatography (silica gel, CHCl 3 ) to give the product in 81% yield. 1 HNMR (CDCl 3 δ): 1.30 [singlet, 9H, C
(CH 3 ) 3 ], 1.40 [triplet, 3H, OCH 2 C H 3 ],
2.0 ~ 2.6 [multiplet, 4H, OCH2CH2CH2O ] ,
4.06 [quadruplet, 2H, OC H 2 CH 3 ], 4.1-4.7
[multiplet, SH, OC H 2 CH 2 CH 2 O], 6.93
[singlet, 4H, aromatic proton], 6.8-7.8
[multiplet, 6H, aromatic proton], 8.22
[quadruplet, 1H proton], ca.9-10
[broad, 1H, COOH] 1-{3-(Ocarboxylphenyloxy)propyloxy}-2-[3-{2-(2-phenylethoxy)phenyloxy}propyloxy]
-Production of 4(or 5)-t-butylbenzene According to the above method, compound () and 3-{2
The product was obtained by reaction with -(2-phenylethoxy)phenyloxy}propyl chloride. 1 HNMR (CDCl 3.δ ): 1.30 [singlet, 9H, C
( CH3 ) 3 〕, 2.0~2.6〔multiplet, 4H, OCH2C
H 2 CH 2 O], 3.10 [triplet, 2H, OCH 2 C H 2
Ph], 4.0 to 4.6 [multiplet, 10H, OC H 2 CH 2 C
H 2 O and OC H 2 CH 2 Ph], 6.93 [singlet, 4H,
Aromatic proton], 6.8-7.8 [multiplet, 6H,
aromatic proton], ca.9-10 [broad, 1H,
COOH] 1-{3-(O-carboxylphenyloxy)propyloxy}-2-[3-[2-{3-
(1-naphthyloxy]propyloxy}phenyloxy]propyloxy]-4 (or 5)-
Production of t-butylbenzene According to the above method, compound () and 3-[2
-{3-(1-naphthyloxy)propyloxy}
phenyloxy]propyl chloride (this is 2-
The product was obtained by reaction with {obtained by reaction of 3-(1-naphthyloxy)propyloxy}phenol and 1,3-dichloropropane). 1 HNMR (CDCl 3 , δ): 1.27 [singlet, 18H,
C( CH3 ) 3 〕2.0~2.65〔multiplet, 6H,
OCH 2 C H 2 CH 2 O], 4.0 to 4.6 [multiplet,
12H , OC H2CH2CH2O ] , 6.7-8.5
[multiplet, 17H, aromatic proton], ca.9-10
[broad, 1H, COOH] 1-{3-(Ocarboxylphenyloxy)propyloxy}-2-{3-(2-sterialoxyphenyloxy)propyloxy}-4
(or 5) Production of -t-butylbenzene According to the above method, compound () and 3-(2
The product was obtained by reaction with -stearyloxyphenyloxy)propyl chloride, which is obtained by reaction of 2-stearyloxyphenol with 1.3 dichloropropane. 1 HNMR ( CDCl3 , δ): 0.9 [broad, 3H, O-(CH2)-17CH3 ] , 1.28 [singlit, 32H , COH2- ( CH2 )-
16 CH 3 ], 1.30 [singlet, 9HC(CH 3 ) 3 ), 2.0 to 2.6 [multiplet, 4H, OCH 2 C H 2 CH 2 O], 3.8 to 4.7 [multiplet, 10 H, OC H 2 , CH 2 C H
2 O and OC H2- ( CH2 ) -16 CH3 ], 6.92 [singlet, 4H, aromatic proton], 6.9-7.8 ] multiplet, 6H, aromatic proton], 8.25 [quadruplet, 1 aromatic proton] , ca.9-10 [droad, 1H, COOH] 1-{3-(Ocarboxylphenyloxy)propyloxy}-2-{3-(2-hydroxyphenyloxy)propyloxy}-4 (or 5 ) - Production of t-butylbenzene 1-{3-(O-carboxylphenyloxy)propyloxy}-2-(3-
The product was obtained by reaction of (chloropropyloxy)-4(or 5)-t-butylbenzene and catechol. 1 HNMR ( CDCl3 , δ): 1.30 [singlet , 9H, C( CH3 ) 3 ], 2.0-2.65 [multiplet, 4H, OCH2CH
2 CH 2 O], 4.0 to 4.7 [multiplet, 8H, OC H 2 CH 2 C H
2 O], 6.7-7.8 [multiplet, 10H, aromatic proton], 8.22 [quadruplet, 1H aromatic proton], ca.9-10 [broad, 2H, COOH and OH] B: Cation transport test test ( 1) A cation transport test was conducted using the equipment shown in the drawing. As the ionophore, the compound () obtained above (in formula 1, R 1 = t-butyl, R 2 =
H, R 3 =H, R 4 =Et). The component compositions of solutions A, B and M are as follows. Solution A: 0.1N LiOH, 0.1N NaOH, 0.1N
Mixed aqueous solution of specified KOH and 0.2 normal H 2 SO 4
115ml (PH=12.4) (The solution is circulated with a pump.) Solution B: 15ml of an aqueous solution of 0.1N H 2 SO 4 (PH=
2.0) Solution M: A solution formed by dissolving 1.5 x 10 -4 moles of the above compound in 30 ml of chloroform. This test was conducted at 25°C, and the liquid was stirred using a glass stirring rod for each solution A, B, and M. was performed at 200 rpm. The following experiments were also conducted under similar conditions. Table 1 shows the transfer rate (μmole/hr) and selectivity of each cation transferred from solution A to solution B. [Table] From the results shown in Table 1, it can be seen that Li is selectively transferred relative to Na and K in the presence of three types of cations. This result shows that under the same conditions, the ionophore has superior selectivity to the ionophore having an 8-quinoline terminal group instead of an O-ethoxyphenyl terminal group (previously reported). The amount of Li transported for two days reached 0.92 mmole. Test (2) In test (1), the compound obtained above (in the formula R 1 = t
-butyl, R2 = R3 = H, R4 = 2-phenylethoxy).
The results are shown in Table 2. [Table] It can be seen that this test shows even better lithium selectivity than Test (1). Test (3) In test (1), the compound obtained above (in the formula R 1 = t-
The test was conducted in the same manner except that butyl, R 2 =R 3 =H, and R 4 =3-(naphthyloxy)propyl) were used. The results are shown in Table 3. [Table] According to Table 3, this ionophore was tested (1) and (2).
It can be seen that the lithium selectivity is even better than that of the ionophore used in . Test (4) In test (1), the component composition of solution A is
0.1N LiOH, 0.1N NaOH, 0.1N
KOH, 0.1 normal RbOH, 0.1 normal CsOH and 0.4
Using 115 ml of the specified mixed aqueous solution of H 2 SO 4 and using the compound obtained above as the ionophore in solution M (in the formula, R 1 = t-butyl, R 2 = R 3 =
H, R 4 =3-(1-naphthyloxy)propyl)
The test was conducted in the same manner except that . The results are shown in Table 4. [Table] Table 4 shows that the selectivity to lithium ions is excellent even in the presence of five types of alkali ions. Test (5) In test (1), the compound obtained above (in the formula R 1 = t-
The test was conducted in the same manner except that (butyl, R 2 =R 3 =H, R 4 =stearyl) was used. The result is the fifth
Shown in the table. [Table] Test (6) In test (1), the compound obtained above (in the formula R 1 = t-
The test was conducted in the same manner except that butyl (R 2 =R 3 =R 4 =H) was used. The results are shown in Table 6. [Table] From Table 6, it can be seen that although this ionophore has a lower cation transfer rate than the others, it exhibits very good Li selectivity.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明のポリエーテル誘導体をイオノフ
オアとして用いて陽イオンの移送を行う場合の装
置説明図である。 1……U字形容器、2,3……筒状容器、4…
…連結管、5,6……撹拌器。
The drawing is an explanatory diagram of an apparatus for transporting cations using the polyether derivative of the present invention as an ionophore. 1... U-shaped container, 2, 3... Cylindrical container, 4...
...Connecting pipe, 5, 6... Stirrer.

Claims (1)

【特許請求の範囲】 1 一般式 (式中、R1、R2及びR3は水素原子又は炭素数1〜
30のアルキル基であり、R4は水素原子、炭素数
1〜30のアルキル基、ベンジル基、2−フエニル
エチル基、又は3−(ナフチル−1−オキシ)プ
ロピル基である) で表わされるポリエーテル誘導体。 2 一般式 (式中、R1、R2及びR3は水素原子又は炭素数1〜
30のアルキル基であり、R4は水素原子、炭素数
1〜30のアルキル基、ベンジル基、2−フエニル
エチル基又は3−(ナフチル−1−オキシ)プロ
ピル基であり、R5は反応保護基である) で表わされるポリエーテル誘導体をアルカリ条件
下で加水分解処理することを特徴とする 一般式 (式中、R1、R2、R3及びR4は前記と同じ) で表わされるポリエーテル誘導体の製造方法。 3 一般式 (式中、R1、R2及びR3は水素原子又は炭素数1〜
30のアルキル基であり、R4は水素原子、炭素数
1〜30のアルキル基、ベンジル基、2−フエニル
エチル基、又は3−(ナフチル−1−オキシ)プ
ロピル基である) で表わされるポリエーテル誘導体をイオノフオア
として用い、溶液Aに含まれる陽イオンを溶液B
へ移送させることを特徴とする陽イオン移送方
法。
[Claims] 1. General formula (In the formula, R 1 , R 2 and R 3 are hydrogen atoms or have 1 to 1 carbon atoms.
30 alkyl group, R 4 is a hydrogen atom, an alkyl group having 1 to 30 carbon atoms, a benzyl group, a 2-phenylethyl group, or a 3-(naphthyl-1-oxy)propyl group) derivative. 2 General formula (In the formula, R 1 , R 2 and R 3 are hydrogen atoms or have 1 to 1 carbon atoms.
30 alkyl group, R 4 is a hydrogen atom, an alkyl group having 1 to 30 carbon atoms, a benzyl group, a 2-phenylethyl group, or a 3-(naphthyl-1-oxy)propyl group, and R 5 is a reactive protecting group. General formula characterized by hydrolyzing a polyether derivative represented by ) under alkaline conditions. (In the formula, R 1 , R 2 , R 3 and R 4 are the same as above.) A method for producing a polyether derivative represented by the following. 3 General formula (In the formula, R 1 , R 2 and R 3 are hydrogen atoms or have 1 to 1 carbon atoms.
30 alkyl group, R 4 is a hydrogen atom, an alkyl group having 1 to 30 carbon atoms, a benzyl group, a 2-phenylethyl group, or a 3-(naphthyl-1-oxy)propyl group) Using the derivative as an ionophore, the cations contained in solution A are transferred to solution B.
A cation transport method characterized by transporting cations to.
JP58038637A 1983-03-08 1983-03-08 Polyether derivative useful as ionophore Granted JPS59163343A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP58038637A JPS59163343A (en) 1983-03-08 1983-03-08 Polyether derivative useful as ionophore
JP61297322A JPS62149642A (en) 1983-03-08 1986-12-13 Polyether derivative useful as ionophore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58038637A JPS59163343A (en) 1983-03-08 1983-03-08 Polyether derivative useful as ionophore

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP61297322A Division JPS62149642A (en) 1983-03-08 1986-12-13 Polyether derivative useful as ionophore

Publications (2)

Publication Number Publication Date
JPS59163343A JPS59163343A (en) 1984-09-14
JPS6254782B2 true JPS6254782B2 (en) 1987-11-17

Family

ID=12530754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58038637A Granted JPS59163343A (en) 1983-03-08 1983-03-08 Polyether derivative useful as ionophore

Country Status (1)

Country Link
JP (1) JPS59163343A (en)

Also Published As

Publication number Publication date
JPS59163343A (en) 1984-09-14

Similar Documents

Publication Publication Date Title
JPS6325586B2 (en)
JPS6254782B2 (en)
JPH0115490B2 (en)
JPH0432817B2 (en)
JPH0132825B2 (en)
US3903108A (en) Production of 2-arylindoles
US1862594A (en) Process for manufacturing halogen aryl-thicglycollic acids
JPS60132933A (en) Manufacture of nitrodiarylamine
JPS5970671A (en) Arylcarbostyryl derivative
EP0508424B1 (en) Method for preparing sulfones
US4365072A (en) Biphenyl aldehydes
JPS5931731A (en) Novel method for preparing carboxylic acid derivative
JP3723836B2 (en) Calixarene compound having heteroatom in skeleton, process for producing the same and metal ion scavenger
US4332723A (en) Process for preparing N-vinyl carbazoles
JPH1036326A (en) Acid adduct salt of 3-ethynylaniline compound and purification of 3-ethynylaniline compound
JP2602068B2 (en) New degradable surfactant
JPH0114897B2 (en)
JP3725587B2 (en) Amino group-containing benzoate derivatives
JP2807780B2 (en) Method for producing aromatic fluorine compound
JPS6248654B2 (en)
JPS5929666A (en) Dihydrocarbostyryl derivative and its preparation
JPS6161844B2 (en)
JPS6051142A (en) Manufacture of monoalkylated dihydroxybenzene and novel compound thereby
JPH027583B2 (en)
JPS59106459A (en) Manufacture of 2-hydroxycarbazole-1-carboxylic acid