JPS6254765B2 - - Google Patents

Info

Publication number
JPS6254765B2
JPS6254765B2 JP7209679A JP7209679A JPS6254765B2 JP S6254765 B2 JPS6254765 B2 JP S6254765B2 JP 7209679 A JP7209679 A JP 7209679A JP 7209679 A JP7209679 A JP 7209679A JP S6254765 B2 JPS6254765 B2 JP S6254765B2
Authority
JP
Japan
Prior art keywords
carbon dioxide
dioxide gas
gear
shaft
gas passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7209679A
Other languages
Japanese (ja)
Other versions
JPS55164610A (en
Inventor
Shigeru Hayakawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP7209679A priority Critical patent/JPS55164610A/en
Publication of JPS55164610A publication Critical patent/JPS55164610A/en
Publication of JPS6254765B2 publication Critical patent/JPS6254765B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Agricultural Chemicals And Associated Chemicals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は新規な殺菌剤とそれを製造する装置に
関するものである。 近年諸外国との往復交流の増大、或いは各種原
料の輪入量の増加等に伴ない、悪質な細菌類の本
邦への流入も増大し、それら細菌類による汚染乃
至その防止が大きな問題となつている。特におそ
ろしい毒素型の黄色ブドウ球菌から感染型の病原
大腸菌など量的にも質的にも悪化の一途をたどつ
ているのが現状である。 そのため特に市販の食品についてはそれら細菌
類による汚染の防止乃至それらの死滅策が各種構
じられており、一般にはエチルアルコール水溶液
を食品の種類に応じて練り込んだり、噴霧したり
等して行なわれている。そのアルコール水溶液の
濃度としては55〜95%の範囲で有効であるが、70
〜80%、特に75%前後が最も有効である。このア
ルコールは細菌にふれると菌体細胞壁や膜に作用
しそのアミノ酸を漏出させて飢餓状態にしたり、
アルコールの侵入により菌体の代謝合成を阻害し
たりして微生物の増殖を遅らせるのである程度の
殺菌乃至制菌作用を有するが、特に完全な殺菌及
び制菌作用を必要とする場合或いは多少分厚いも
の、表面にかたい膜等を有するものの場合に不充
分である。 又炭酸ガスの有する静菌効果と不燃性に着目し
て液状エチルアルコールと液化炭酸ガスとを溶解
共存せしめてなる食品殺菌用処理剤が提案された
が、周知のように液化炭酸ガスの製造、貯蔵には
かなりの高圧を要し、その取扱いは容易でない。
これを含む殺菌剤は高圧のボンベに貯蔵するため
その運搬、取扱いは困難でありこれを用いて殺菌
するにも特別の設備を要し、また加圧して長時間
処理せねばならず、実用的ではなかつた。特にカ
ステラ、パン等の内部多孔質の食品の殺菌に当つ
て加圧すると変形を来し、よく使用しえなかつ
た。 かくて本発明はエチルアルコールと炭酸ガスを
含有し、製造、取扱いが容易で実用的であり、特
に内部多孔質の食品の殺菌に好適に利用しうる殺
菌剤を提供することを目的とするものであり、本
発明者の研究及び実験によれば55〜95%のアルコ
ール水溶液に加圧下に撹乱運動を加えてこのアル
コール水溶液に加圧下気体炭酸ガスを注入して前
記アルコール水溶液に気体炭酸ガスを吸収せしめ
ることにより得られる殺菌剤によりかかる目的を
達成しうることが見出されたのである。 本発明について更に詳しく説明すれば、本発明
では55〜95%、好ましくは70〜80%、特に75%前
後の濃度の加圧下はげしく攪拌されたエチルアル
コール水溶液に気体炭酸ガスを吸収せしめ、これ
を殺菌剤として用いるのである。常温、常圧にお
いて炭酸ガスはエチルアルコールに3.13倍の容積
が吸収、溶解される。この溶解度は通常圧力に比
例して増大する。単に両者を混合し、前述の程度
炭酸ガスを吸収せしめたものでも有効であるが、
特に後で説明する装置により加圧下はげしく攪拌
されたアルコール液に炭酸ガスを噴出せしめると
きは炭酸ガスを加圧下例えば2気圧の圧力で圧入
すると5倍以上の容積を吸収せしめることがで
き、かかる量吸収せしめた液を噴霧せしめるとき
被処理物質内部に滲透して完全な殺菌をはかるこ
とができる。 例えばこれをカステラ、パン等の内部多孔質の
食品類の表面に噴霧するとこの液は即座に表面か
ら内部に向つて浸透していく。このアルコール+
炭酸ガスの重量は同容積では空気の重量よりも重
いため、速かに中心部まで浸透して行き、気化し
た炭酸ガスが多孔質内部の空気と速かに置換さ
れ、該食品中の空気が除去されその時点で脱酸素
が完了する。この脱酸素によつて好気性細菌類の
生命がとだえて無菌地帯となり同様に気化したア
ルコールはこ脱酸素の系にあつて制菌能力が発揮
され、炭酸ガスによる脱酸素のみでは取残されて
いる嫌気性細菌類をも死滅させるに至るので作用
効果において持続性がある。 本発明の殺菌剤はアルコール水溶液と炭酸ガス
とからなるものであり、単にこれら両者を通常の
手段により均一に混合することによつてつくるこ
とができるものではなく、特に、前述の如く本発
明者による製造、装置によつてつくられた殺菌剤
が特に有効であり食品内部に速かに滲透して表面
のみならず内部、深部まで確実に殺菌することが
できる。 而して従来この種食品類を包装するに当つて
は、用いたアルコール殺菌剤の早期の揮散を防い
で長持ちさせるためにはガスバリアー性の高い、
従つて比較的高価で分厚い材料で包装する必要が
あつたが、本発明の殺菌剤によるときは加圧下吸
収せしめた炭酸ガスにより脱酸素された状態でア
ルコールを作用せしめて殺菌乃至制菌作用を大な
らしめたので、もはやガスバリアー性の高い材料
で包装する必要はなく廉価な材料で包装すること
ができ、衛生的と同時にまたきわめて経済的であ
る。 かくして本発明はまたかかる殺菌剤の製造装置
を提供することを目的とするものであつて、複数
個の歯車と、これら歯車を内包し各歯車に噛合う
内歯歯車とを有し、前記1つの歯車の軸は非回転
としてその軸心に炭酸ガス供給孔を穿設するとと
もにこの軸の外周面から半径方向に前記供給孔に
連通する炭酸ガス通路を穿設し、前記軸に支持さ
れる歯車にはその内周面から各歯の歯先面に連通
する炭酸ガス通路を穿設し、前記歯車の歯の歯面
が内歯歯車の歯の歯面に接してその歯底部分が密
閉されるとき前記軸の炭酸ガス通路と歯車の炭酸
ガス通路とが合致するように形成してなる歯車付
撹拌装置をそなえた殺菌剤製造装置を提供するも
のである。 本発明による殺菌剤の製造装置について更に説
明すれば、アルコール水溶液を加圧下にはげしく
攪拌せしめてこれに炭酸ガスを吸収乃至吸着せし
めるのである。これはアルコール水溶液を充填せ
るタンクの底部に設けた図面の如き歯車付き撹拌
装置により行なう。 この歯車付撹拌機は、大径の平歯車A1と、こ
れより小径の平歯車A2,A3と、これら平歯車
A1,A2,A3を内包してそれぞれに噛合する
内歯歯車Bとを有し、これら平歯車A1,A2,
A3の歯先円同士は可及的近接して配設されると
ともに、軸7により平歯車A3の回転力が与えら
れ、内歯車Bおよび各平歯車A1,A2,A3に
矢印方向への回転が与えられるようになつてい
る。 前記大径の平歯車A1の軸1は非回転とし、そ
の軸1の軸心には炭酸ガス供給通孔2が軸方向に
穿設され、炭酸ガス供給源に接続されている。ま
た前記軸1には、前記炭酸ガス供給通孔2に連通
する1本の通路3が半径方向に穿設され、その外
端は軸1の外周面に開口されている。 前記大径の平歯車A1には、その内周面から各
歯4の歯先面4aに連通する通路5が各歯毎に設
けられており、該平歯車A1の歯4の左右の歯面
4b,4cの一部が、内歯歯車Bの歯6の左右の
歯面6b,6cに接して内歯歯車Bの歯底部分6
aが密閉状態となつたとき、その歯4の歯先面4
aに開口する通路5が前記軸1の通路3に合致
し、両通路3,5が連通されて内歯歯車Bの歯底
部分6aに向つて炭酸ガスが噴出されるようにな
つている。 前記内歯歯車Bの両側面は、図示しないが一部
に液の注入口および注出口を有する平板材により
密閉され、液およびガスが流出しないようにする
とともに高圧に耐え得る構造とされる。図におい
て8は平歯車A3の歯、9,10,11はケーシ
ングを示す。 上記の構成において、平歯車A1,A2,A3
の周速を毎秒30〜80mの高速をもつて回動し、内
歯歯車B内に供給されたアルコール液を高速撹拌
せしめると同時に炭酸ガスを2〜3Kg/cm2の圧力
をもつて軸1の炭酸ガス供給通路2に供給する。 平歯車A1,A2,A3の回転に伴い、アルコ
ール液は各平歯車A1,A2,A3の歯先円の対
向する部分において互いに逆方向の回転をする平
歯車A1,A2,A3の間で撹乱作用が行なわ
れ、こうして大径の平歯車A1と内歯歯車Bとの
噛合い部分に至つたアルコール液はその噛合い部
分に呼び込まれ、両者の歯面が接し合うときその
部位にあるアルコール液は圧縮分散され、歯4,
6の噛合いが深まるにつれ加圧度が増し、アルコ
ールははげしい攪拌状態となる。 平歯車A1の歯4と内歯歯車Bの歯6とが上記
のように噛合つて、内歯歯車Bの歯底部分6aが
密閉されたとき、軸2の通路3と平歯車A1の通
路5とが合致し、炭酸ガスが両通路3,5を通し
てその歯先面4aから噴射される。 このようにして前記のように200〜300気圧とい
う高圧度の下で、はげしく攪拌されたアルコール
液に高圧下で噴射される炭酸ガスが接触すること
になり、この炭酸ガスは、はげしく攪拌されたア
ルコール液によく吸収または吸着され、無圧下に
おいても安定した液体が得られる。 なお、本実施例では、平歯車を用いた場合につ
いて説明したが、この歯形状は平歯車に限定され
るものではなく、他にはすば歯車等であつてもよ
く、また歯車の個数も3個に限定されるものでは
ない。 このように本発明の如き歯車付き撹拌装置によ
りアルコール液に加圧下に撹乱運動を加えてこれ
に加圧下炭酸ガスを注入することによりアルコー
ル液に5倍乃至それ以上の容積の炭酸ガスを安定
に吸収乃至吸着せしめうるのであり、かくしてつ
くられた液を殺菌剤として例えば噴霧して用いる
ときは食品内部によく滲透して好気性、嫌気性を
問わず各種細菌を完全に死滅せしめ、更に黴の発
生等も防止することができるのである。 而して本発明の殺菌剤によるときは液化炭酸ガ
スを用いる従来のものと異なり、製造、取扱いが
容易であり、安価であり、しかも短時間に被処理
物に浸透し、内部多孔質の食品の場合も変形を来
すことなく有効に殺菌しえてきわめて実用的であ
る。 以下に二つの例をあげる。例2が本発明の如く
してつくられた殺菌剤の場合の例であるが、参考
のために単にアルコール水溶液と炭酸ガスを均一
に混合することによつてえられた殺菌剤の例も例
1として挙げた。例2における殺菌剤は勿論常圧
下にて使用することができ、圧縮、変形を来すこ
となく内部によく浸透することができて有効であ
つた。 例 1 95%アルコール水溶液100c.c.に20%プレーンソ
ーダ液20c.c.を2.5気圧下下に吸収せしめてなる本
発明の殺菌剤を各種菓子類に噴霧した。一方95%
アルコール液のみを噴霧し、噴霧前、アルコール
のみ噴霧後及アルコール+炭酸ソーダの本発明殺
菌剤噴霧後の被検菓子類について各種細菌を検査
した。その結果は第1表に示すとおりであり、噴
霧前は勿論アルコールのみ噴霧の場合に比しても
この殺菌剤の有効なることが明らかであろう。 例 2 次に、75%アルコール水溶液を周速1万5千〜
2万m/分で高速回転撹拌器で撹乱し、これに2
Kg/cm2の圧力で炭酸ガスを3分30秒間(水の場合
は50秒の短いタイムだがアルコールは吸収が3.12
倍容積として多いのでその分だけ時間が長く3分
30秒)噴出せしめて前記アルコール水溶液に対し
て約5倍容積の炭酸ガスを吸収せしめてなる殺菌
剤をクルミパイとカステラに噴霧して防黴試験を
行なつた。通常15日間が販売保証期間なので15日
間実施したが、この試験期間中黴は全く検出され
なかつた。PHも同時に測定したが、それらの結果
は第2、3表の夫々試験1に示すとおりである。 比較のため同じ食品について75%アルコール水
溶液(日本化薬〓販売「ハイネトレス」使用)を
噴霧した場合と二酸化窒素を噴霧した場合の防黴
試験の結果を第2、3表の夫々試験2、試験3に
示した。PH測定の結果も同時に示した。これによ
るときは5日から10日までの間で黴が発生してい
たことが明らかである。かくて本発明の殺菌剤は
アルコール液単独使用のとき、二酸化窒素使用の
ときに比して誠に顕著な効果を奏しえたこと明ら
かである。 尚防黴試験は温度27℃、湿度75%の恒温器を用
いて行なつた。表中+は黴の発生、〓はその発
育、〓はその発育旺盛なること、−は全く黴が発
生しないことを意味するものである。
The present invention relates to a novel disinfectant and an apparatus for producing the same. In recent years, with the increase in round-trip exchange with other countries and the increase in the amount of various raw materials being imported, the influx of harmful bacteria into Japan has also increased, and contamination by these bacteria and its prevention have become a major problem. ing. In particular, the current situation is that the toxin-type Staphylococcus aureus to the infectious-type pathogenic Escherichia coli are deteriorating both quantitatively and qualitatively. For this reason, various measures have been taken to prevent contamination by these bacteria and to kill them, especially for commercially available foods.Generally, this is done by kneading or spraying an aqueous solution of ethyl alcohol, depending on the type of food. It is. The concentration of the alcohol aqueous solution is effective in the range of 55 to 95%, but 70%
~80%, especially around 75% is most effective. When this alcohol comes into contact with bacteria, it acts on the bacterial cell walls and membranes, causing amino acids to leak out and causing starvation.
It has a certain degree of bactericidal or bactericidal effect because it inhibits the metabolic synthesis of bacterial cells and slows down the growth of microorganisms due to the entry of alcohol. This is insufficient in cases where the surface has a hard film or the like. Also, focusing on the bacteriostatic effect and non-flammability of carbon dioxide gas, a food sterilizing agent was proposed in which liquid ethyl alcohol and liquefied carbon dioxide gas were dissolved and coexisted. Storage requires considerably high pressure and handling is not easy.
Disinfectants containing this are stored in high-pressure cylinders, making them difficult to transport and handle, and sterilizing them requires special equipment and requires long-term treatment under pressure, making it impractical. It wasn't. In particular, when pressurizing food products with internal porous properties such as castella cakes and breads, they deformed and could not be used well. Thus, an object of the present invention is to provide a sterilizing agent that contains ethyl alcohol and carbon dioxide gas, is easy to manufacture and handle, is practical, and can be particularly suitably used for sterilizing internally porous foods. According to the research and experiments of the present inventor, stirring motion is applied to a 55 to 95% alcohol aqueous solution under pressure, and gaseous carbon dioxide is injected into the alcohol aqueous solution under pressure to inject gaseous carbon dioxide into the alcohol aqueous solution. It has now been found that this objective can be achieved with a disinfectant obtained by absorption. To explain the present invention in more detail, in the present invention, gaseous carbon dioxide gas is absorbed into an aqueous solution of ethyl alcohol that is vigorously stirred under pressure at a concentration of 55 to 95%, preferably 70 to 80%, and particularly around 75%. It is used as a disinfectant. At room temperature and pressure, 3.13 times the volume of carbon dioxide gas is absorbed and dissolved in ethyl alcohol. This solubility usually increases in proportion to pressure. It is also effective to simply mix the two and absorb carbon dioxide to the extent described above, but
In particular, when carbon dioxide gas is ejected into alcoholic liquid that has been vigorously stirred under pressure using a device that will be explained later, if carbon dioxide gas is injected under pressure, for example at a pressure of 2 atmospheres, more than five times the volume can be absorbed. When the absorbed liquid is sprayed, it permeates into the interior of the substance to be treated, allowing for complete sterilization. For example, when this liquid is sprayed onto the surface of internally porous foods such as castella cake and bread, the liquid immediately permeates from the surface to the inside. This alcohol +
Since the weight of carbon dioxide gas is heavier than the weight of air in the same volume, it quickly penetrates into the center, and the vaporized carbon dioxide gas quickly replaces the air inside the porous structure, causing the air in the food to disappear. deoxygenation is completed at that point. This deoxygenation kills the life of aerobic bacteria and creates a sterile zone. Similarly, the vaporized alcohol exhibits its antibacterial ability in this deoxygenation system, and cannot be left behind by deoxygenation with carbon dioxide gas alone. It also kills the anaerobic bacteria present, so it has a long-lasting effect. The disinfectant of the present invention is composed of an alcohol aqueous solution and carbon dioxide gas, and cannot be prepared simply by uniformly mixing the two by ordinary means. The sterilizer manufactured by and manufactured by the device is particularly effective, and can quickly penetrate into the inside of food to reliably sterilize not only the surface but also the inside and deep parts of the food. Conventionally, when packaging this type of food, in order to prevent the early volatilization of the alcohol disinfectant used and make it last longer, packaging with high gas barrier properties is required.
Therefore, it was necessary to package the product in a relatively expensive and thick material, but when using the disinfectant of the present invention, alcohol is applied to the product in a deoxidized state by carbon dioxide gas absorbed under pressure to exert a bactericidal or antibacterial effect. Since it is made larger, it is no longer necessary to package it with a material with high gas barrier properties, and it can be packaged with an inexpensive material, which is not only hygienic but also extremely economical. Thus, another object of the present invention is to provide an apparatus for producing such a disinfectant, which comprises a plurality of gears and an internal gear that encloses these gears and meshes with each of the gears. The shafts of the two gears are non-rotating and have a carbon dioxide gas supply hole drilled in their axial center, and a carbon dioxide gas passage that communicates with the supply hole in the radial direction from the outer peripheral surface of the shaft, and are supported by the shaft. The gear is provided with a carbon dioxide gas passage that communicates from its inner peripheral surface to the top surface of each tooth, so that the tooth surface of the gear tooth contacts the tooth surface of the internal gear tooth and the tooth bottom portion is sealed. The present invention provides a sterilizer manufacturing apparatus equipped with a geared stirring device formed so that the carbon dioxide gas passage of the shaft and the carbon dioxide gas passage of the gear match when the carbon dioxide gas passage is made. To further explain the disinfectant manufacturing apparatus according to the present invention, an alcohol aqueous solution is vigorously stirred under pressure to absorb or adsorb carbon dioxide gas. This is carried out using a geared stirring device as shown in the drawing provided at the bottom of a tank filled with an aqueous alcohol solution. This geared stirrer includes a large-diameter spur gear A1, smaller-diameter spur gears A2 and A3, and an internal gear B that encloses these spur gears A1, A2, and A3 and meshes with each of them. , these spur gears A1, A2,
The tip circles of A3 are arranged as close as possible to each other, and the rotational force of the spur gear A3 is applied by the shaft 7, causing the internal gear B and each of the spur gears A1, A2, and A3 to rotate in the direction of the arrow. is now being given. The shaft 1 of the large-diameter spur gear A1 is non-rotating, and a carbon dioxide gas supply hole 2 is axially bored in the axial center of the shaft 1, and is connected to a carbon dioxide gas supply source. Further, a passage 3 communicating with the carbon dioxide gas supply hole 2 is bored in the shaft 1 in the radial direction, and the outer end thereof is opened on the outer circumferential surface of the shaft 1. The large-diameter spur gear A1 is provided with a passage 5 for each tooth, which communicates from the inner circumferential surface to the top surface 4a of each tooth 4. 4b, 4c are in contact with the left and right tooth surfaces 6b, 6c of the teeth 6 of the internal gear B, and the bottom portions 6 of the internal gear B
When a is in a sealed state, the tooth tip surface 4 of that tooth 4
A passage 5 opening at point a matches the passage 3 of the shaft 1, and both passages 3 and 5 are communicated with each other so that carbon dioxide gas is ejected toward the tooth bottom portion 6a of the internal gear B. Although not shown, both sides of the internal gear B are partially sealed by a flat plate member having a liquid inlet and outlet, to prevent liquid and gas from flowing out and to withstand high pressure. In the figure, 8 indicates the teeth of the spur gear A3, and 9, 10, and 11 indicate the casing. In the above configuration, spur gears A1, A2, A3
The shaft rotates at a peripheral speed of 30 to 80 m/s to agitate the alcoholic liquid supplied into the internal gear B at high speed, and at the same time pumps carbon dioxide gas into the shaft 1 with a pressure of 2 to 3 kg/cm2. The carbon dioxide gas is supplied to the carbon dioxide gas supply passage 2. As the spur gears A1, A2, and A3 rotate, the alcohol liquid is disturbed between the spur gears A1, A2, and A3 that rotate in opposite directions at the opposing portions of the tip circles of each of the spur gears A1, A2, and A3. The alcohol liquid that reached the meshing area between the large-diameter spur gear A1 and the internal gear B is drawn into the meshing area, and when the tooth surfaces of the two come into contact, the alcohol in that area is absorbed. The liquid is compressed and dispersed, and the teeth 4,
As the meshing of the parts 6 deepens, the degree of pressurization increases, and the alcohol becomes violently stirred. When the teeth 4 of the spur gear A1 and the teeth 6 of the internal gear B mesh as described above and the bottom portion 6a of the internal gear B is sealed, the passage 3 of the shaft 2 and the passage 5 of the spur gear A1 are closed. match, and carbon dioxide gas is injected from the tooth tip surface 4a through both passages 3 and 5. In this way, the carbon dioxide gas injected under high pressure comes into contact with the vigorously stirred alcoholic liquid under the high pressure of 200 to 300 atmospheres as mentioned above, and this carbon dioxide gas is It is well absorbed or adsorbed in alcoholic liquids, and a stable liquid can be obtained even under no pressure. In addition, in this example, the case where a spur gear is used has been explained, but the tooth shape is not limited to a spur gear, and it may be a helical gear or the like, and the number of gears may also be changed. The number is not limited to three. In this way, by applying stirring motion to the alcoholic liquid under pressure using the geared stirring device of the present invention and injecting carbon dioxide gas under pressure into the alcoholic liquid, carbon dioxide gas of five times or more volume can be stably added to the alcoholic liquid. It can be absorbed or adsorbed, and when the liquid thus prepared is used as a disinfectant, for example by spraying, it penetrates well into the food and completely kills all types of bacteria, both aerobic and anaerobic, and also kills mold. It is also possible to prevent such occurrences. Unlike the conventional disinfectant using liquefied carbon dioxide, the disinfectant of the present invention is easy to manufacture and handle, is inexpensive, and penetrates into the object in a short period of time, eliminating internally porous foods. It is also extremely practical as it can be effectively sterilized without causing deformation. Two examples are given below. Example 2 is an example of a disinfectant prepared according to the present invention, but for reference, there is also an example of a disinfectant obtained simply by uniformly mixing an aqueous alcohol solution and carbon dioxide gas. Listed as 1. The disinfectant in Example 2 could of course be used under normal pressure, and was effective because it could penetrate well into the interior without causing compression or deformation. Example 1 The disinfectant of the present invention, which was prepared by absorbing 20 c.c. of a 20% plain soda solution into 100 c.c. of a 95% aqueous alcohol solution under 2.5 atmospheres, was sprayed onto various confectionery products. while 95%
Various types of bacteria were tested on the test confectioneries before spraying only alcohol solution, after spraying alcohol only, and after spraying the disinfectant of the present invention (alcohol + soda carbonate). The results are shown in Table 1, and it is clear that this disinfectant is effective not only before spraying but also when compared to spraying only alcohol. Example 2 Next, apply a 75% alcohol aqueous solution at a circumferential speed of 15,000~
Stirred with a high-speed rotating stirrer at 20,000 m/min, and
Carbon dioxide gas is absorbed at a pressure of Kg/cm 2 for 3 minutes and 30 seconds (in the case of water, the time is 50 seconds, but the absorption rate for alcohol is 3.12 seconds).
Since it is double the volume, the time is longer by that amount, 3 minutes.
A fungicide test was carried out by spraying walnut pie and castella cake with a disinfectant prepared by ejecting (30 seconds) and absorbing about 5 times the volume of carbon dioxide gas relative to the alcohol aqueous solution. The test was conducted for 15 days since the sales guarantee period is normally 15 days, but no mold was detected during this test period. PH was also measured at the same time, and the results are shown in Test 1 in Tables 2 and 3, respectively. For comparison, the results of the anti-mold test when the same food was sprayed with a 75% alcohol aqueous solution (using "Hinetress" sold by Nippon Kayaku Co., Ltd.) and when nitrogen dioxide was sprayed are shown in Test 2 and Test 2 in Tables 2 and 3, respectively. Shown in 3. The results of PH measurement are also shown at the same time. Based on this, it is clear that mold was generated from the 5th to the 10th. Thus, it is clear that the disinfectant of the present invention was much more effective when using only alcohol solution than when using nitrogen dioxide. The anti-mold test was conducted using a constant temperature chamber at a temperature of 27°C and a humidity of 75%. In the table, + means occurrence of mold, 〓 means its growth, 〓 means vigorous growth, and - means no mold occurs at all.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

図面第1図は本発明に係る装置に用いる歯車付
撹拌装置の機構の説明図、第2図は同装置の要部
拡大説明図第3図は第1図の−線断面図であ
る。 A1,A2,A3……平歯車、B……内歯歯
車、1……軸、2……ガス供給通孔、3,5……
ガス供給通路、4……歯。
FIG. 1 is an explanatory view of the mechanism of the geared stirring device used in the apparatus according to the present invention, and FIG. 2 is an enlarged explanatory view of the main parts of the device. FIG. 3 is a sectional view taken along the line -- in FIG. 1. A1, A2, A3... Spur gear, B... Internal gear, 1... Shaft, 2... Gas supply hole, 3, 5...
Gas supply passage, 4...teeth.

Claims (1)

【特許請求の範囲】 1 55〜95%のアルコール水溶液に加圧下に攪乱
運動を加えこの撹拌状態のアルコール水溶液に加
圧下気体炭酸ガスを注入して前記アルコール水溶
液に気体炭酸ガスを吸収せしめることによりつく
られる、常圧で使用しうる内部多孔質食品用殺菌
剤。 2 複数個の歯車と、これら歯車を内包し各歯車
に噛合う内歯歯車とを有し、前記1つの歯車の軸
は非回転としてその軸心に気体炭酸ガス供給孔を
穿設するとともにこの軸の外周面から半径方向に
前記供給孔に連通する炭酸ガス通路を穿設し、前
記軸に支持される歯車にその内周面から各歯の歯
先面に連通する炭酸ガス通路を穿設し、前記歯車
の歯の歯面が内歯歯車の歯の歯面に接してその歯
底部分が密閉されるとき前記軸の炭酸ガス通路と
歯車の炭酸ガス通路とが合致するように形成して
なる歯車付撹拌装置をそなえた殺菌剤製造装置。
[Claims] 1. By subjecting a 55 to 95% alcohol aqueous solution to stirring motion under pressure and injecting gaseous carbon dioxide under pressure into the stirred alcohol aqueous solution to cause the alcohol aqueous solution to absorb the gaseous carbon dioxide. An internally porous food disinfectant that can be used under normal pressure. 2. It has a plurality of gears and an internal gear that encloses these gears and meshes with each gear, and the shaft of the one gear is non-rotating and has a gaseous carbon dioxide supply hole in its axis, and this A carbon dioxide gas passage is drilled in a radial direction from the outer circumferential surface of the shaft to communicate with the supply hole, and a carbon dioxide gas passage is bored in the gear supported by the shaft to communicate from the inner circumferential surface of the gear to the tip surface of each tooth. The carbon dioxide gas passage of the shaft and the carbon dioxide gas passage of the gear are formed so that when the tooth surfaces of the teeth of the gear are in contact with the tooth surfaces of the internal gear and the bottom portions thereof are sealed, the carbon dioxide gas passage of the shaft and the carbon dioxide gas passage of the gear are formed. Sterilizer manufacturing equipment equipped with a geared stirring device.
JP7209679A 1979-06-08 1979-06-08 Bactericide, and method and apparatus for preparing the same Granted JPS55164610A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7209679A JPS55164610A (en) 1979-06-08 1979-06-08 Bactericide, and method and apparatus for preparing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7209679A JPS55164610A (en) 1979-06-08 1979-06-08 Bactericide, and method and apparatus for preparing the same

Publications (2)

Publication Number Publication Date
JPS55164610A JPS55164610A (en) 1980-12-22
JPS6254765B2 true JPS6254765B2 (en) 1987-11-17

Family

ID=13479529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7209679A Granted JPS55164610A (en) 1979-06-08 1979-06-08 Bactericide, and method and apparatus for preparing the same

Country Status (1)

Country Link
JP (1) JPS55164610A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6339773A (en) * 1986-07-31 1988-02-20 鹿島建設株式会社 Stretching erection method of rope

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070059200A1 (en) * 2005-09-09 2007-03-15 Yuan James T Method of sanitation using carbon dioxide based process

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6339773A (en) * 1986-07-31 1988-02-20 鹿島建設株式会社 Stretching erection method of rope

Also Published As

Publication number Publication date
JPS55164610A (en) 1980-12-22

Similar Documents

Publication Publication Date Title
US20140221308A1 (en) Methods and compositions of reducing and preventing bacterial growth and the formation of biofilm on a surface utilizing chitosan-derivative compounds
ES2265645T3 (en) TRANSPARENT BIOCIDES COMPOSITIONS OF PROLONGED RELEASE.
US4169123A (en) Hydrogen peroxide vapor sterilization method
KR20090035687A (en) Preservatives based on carboxylic anhydrides
US6284193B1 (en) Dynamic Ox biological burden reduction
US20050233009A1 (en) Acidic solution of sparingly-soluble group IIA complexes
EP2531036B1 (en) Disinfectant materials and methods
KR20190045652A (en) The kit to provide long term chlorite source for disinfection, sanitary treatment and freshness of the food
JPS6254765B2 (en)
US6902753B1 (en) Acidic solution of sparingly-soluble group IIA complexes
KR102201176B1 (en) Method for Preparing Disinfectant Containing Natural Fruit Extract and Organic Acid
US20230144935A1 (en) Gas-phase antimicrobial delivery via infused crystalline and porous solids
CN102887482A (en) Sustained-release disinfectant generator for on-site preparation of chlorine dioxide and use thereof
EP3781218A1 (en) Disinfection process using an active disinfecting substance formed in situ by reacting h2o2 and no2-
Reis et al. Use of 0.25% and 0.025% peracetic acid as disinfectant agent for chemically activated acrylic resin: an in vitro study
Miller et al. Antimicrobial effects of an acidified nitrite foam on drip flow reactor biofilm
DE737149C (en) Process for making fresh bread with a long shelf life
CN106491643A (en) A kind of preparation facilitiess of plasma-activated hydrogen peroxide solution and preparation method
Tumuluri Effect of plasma activated mist (PAM) on inactivation of Listeria innocua and Klebsiella michiganensis on selected surfaces
PT90088B (en) STERILIZATION PROCESS OF A CONTAINER FOR AEROSOL AND PRODUCTION OF STERILIZED AEROSOL CONTAINER CONTAINING A SALOON SOLUTION AQUOSA
JPH0221868A (en) Sterilizing method by use of ozone
DE3900862A1 (en) Method of disinfecting and cleaning surfaces, and agent for performing the method
JPS6075231A (en) Antiseptic and sterilizing agent for treating meat
KR20210122419A (en) One-touch spray type sterilizing composition comprising hydrogen peroxide and filling gas
JPS6010729B2 (en) Vacuum sterilization method