JPS6254391B2 - - Google Patents

Info

Publication number
JPS6254391B2
JPS6254391B2 JP14554484A JP14554484A JPS6254391B2 JP S6254391 B2 JPS6254391 B2 JP S6254391B2 JP 14554484 A JP14554484 A JP 14554484A JP 14554484 A JP14554484 A JP 14554484A JP S6254391 B2 JPS6254391 B2 JP S6254391B2
Authority
JP
Japan
Prior art keywords
wear
aluminum alloy
less
extrusion
strength aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14554484A
Other languages
Japanese (ja)
Other versions
JPS6126741A (en
Inventor
Kazuhiko Asano
Osamu Takezoe
Yoshinori Yasuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP14554484A priority Critical patent/JPS6126741A/en
Publication of JPS6126741A publication Critical patent/JPS6126741A/en
Publication of JPS6254391B2 publication Critical patent/JPS6254391B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は耐摩耗性高強度アルミニウム合金材お
よびその製造法に関し、さらに詳しくは、耐摩耗
性および機械的性質の優れた耐摩耗性高強度アル
ミニウム合金およびその製造法に関する。 [従来技術] 従来より自動車用部品として、例えば、ピスト
ン、シリンダー或いはカークーラーコンプレツサ
ー部品等の摺動部には、軽量化と耐摩耗性が要求
されている。そして、これらの特性を満足するた
めに、例えば、カークーラーコンプレツサーには
小型軽量化の容易なロータリーコンプレツサーが
広く採用されるようになつてきている。 ロータリーコンプレツサーの材料として軽量化
のために、アルミニウム合金の使用が検討されて
おり、中でも摺動部品のベーン材に対して、耐摩
耗性、機械的性質に優れたアルミニウム合金が望
まれている。そして、このベーン材は一種のシー
ル材であるので、寸法精度は数μが要求されるた
め、巣、ピンホール等の欠陥のないことが必須で
ある。 しかして、ベーン材としては、耐摩耗性の点か
らA390、20%アルジル等の過共晶アルミニウム
合金鋳造材が一部に使用されているが、次のよう
な欠点がある。 (1) 鋳造材であるため、巣、ピンホールが多く歩
留りが非常に低い。 (2) ベーン材は、薄肉の平板状部品であり、鋳造
によつて直接薄肉にはできず、厚肉素材から切
削することにより作られるので、歩留りが低
く、また、加工工数が多くなる。 (3) 鋳造材は共晶Siが針状で大きいため、機械的
性質、特に、疲労強度が劣る。 [発明が解決しようとする問題点] 本発明は上記に説明したように、従来の過共晶
アルミニウム合金、例えば、A390、20%アルジ
ル等のロータリーコンプレツサーのベーン材とし
ての種々の問題点を解消したものであつて、耐摩
耗性が改良され、かつ、機械的性質にも優れた、
特に、ロータリーコンプレツサーのベーン材とし
て適している耐摩耗性高強度アルミニウム合金材
およびその製造法を提供するものである。 [問題点を解決するための手段] 本発明に係る耐摩耗性高強度アルミニウム合金
材およびその製造法は、 (1) Si14.0〜22wt%、Cu4.5〜7.0wt%、 Mg0.3〜1.0wt%、Fe0.25〜1.0wt%、 Mn0.25〜1.0wt% を含有し、残部Alおよび不純物からなり、平
均の初晶Siサイズ80μ以下、Si−Mn−Fe化合
物粒子サイズ100μ以下であることを特徴とす
る耐摩耗性高強度アルミニウム合金材を第1の
発明とし、 (2) Si14.0〜22wt%、Cu4.5〜7.0wt%、 Mg0.3〜1.0wt%、Fe0.25〜1.0wt%、 Mn0.25〜1.0wt% を含有し、さらに、 Cr0.05〜0.4wt%、Zr0.05〜0.25wt% の1種または2種 を含有し、残部Alおよび不純物からなり、平
均の初晶Siサイズ80μ以下、Si−Mn−Fe化合
物粒子サイズ100μ以下であることを特徴とす
る耐摩耗性高強度アルミニウム合金材を第2の
発明とし、 (3) Si14.0〜22wt%、Cu4.5〜7.0wt%、 Mg0.3〜1.0wt%、Fe0.25〜1.0wt%、 Mn0.25〜1.0wt% を含有し、残部Alおよび不純物からなるアル
ミニウム合金鋳塊を、間接押出または静水圧押
出によつて塑性加工を行ない、平均の初晶Siサ
イズ80μ以下、Si−Mn−Fe化合物粒子サイズ
100μ以下とすることを特徴とする耐摩耗性高
強度アルミニウム合金材の製造法を第3の発明
とする3つの発明よりなるものである。 本発明に係る耐摩耗性高強度アルミニウム合金
材およびその製造法について以下詳細に説明す
る。 先ず、本発明に係る耐摩耗性高強度アルミニウ
ム合金材の含有成分および成分割合について説明
する。 Siは耐摩耗性を付与するために不可欠の元素で
あり、含有量が14.0wt%未満ではA390以上の耐
摩耗性が確保できず、また、22wt%を越えて含
有されると粗大化した初晶Siが多量に発生して機
械的性質が悪化する。よつて、Si含有量は14.0〜
22wt%とする。 Cuは機械的性質を向上させると共に、ストリ
ツクスの硬度を高め、耐摩耗性を向上させる元素
であり、含有量が4.5wt%未満ではA390以上の耐
摩耗性が確保できず、また、7.0wt%を越えて含
有されるとCuAl2晶出物が多くなり、機械的性質
が劣化する。通常、アルミニウム合金において
は、Cu含有量は固溶限5.7wt%未満であるが、本
発明に係る耐摩耗性高強度アルミニウム合金材に
おいては、固溶限を越える量を含有させて、
CuAl2晶出物を生成させることにより硬度を高め
て耐摩耗性を向上させるのである。よつて、Cu
含有量は4.5〜7.0wt%とする。 Mgは機械的性質を向上させると共にMg2Siの
析出物を生成して耐摩耗性を付与する元素であ
り、含有量が0.3wt%未満ではこの効果が少な
く、また、1.0wt%を越えて含有されると押出性
を阻害するようになる。よつて、Mg含有量は押
出性を阻害しない範囲の0.3〜1.0wt%とする。 Fe、Mnは略同様な効果を示し、即ち、微細な
共晶SiおよびSi系析出物の生成を促進し、また、
Si−Mn−Fe系晶出物を生成して耐摩耗性を向上
させる元素であり、含有量が0.25wt%未満ではこ
の効果は少なく、また、1.0wt%を越えて含有さ
れると巨大化合物を生成して機械的性質を劣化さ
せる。よつて、Fe含有量およびMn含有量は夫々
0.25〜1.0wt%とする。 CrはHv510のCrAl7化合物を形成し耐摩耗性を
付与する元素であり、含有量が0.05wt%未満では
この効果は少なく、また、0.4wt%を越えて含有
されると粗大化合物を生成し、押出性および機械
的性質を低下させる。よつて、Cr含有量は0.5〜
0.4wt%とする。 Zrは押出時および熱処理時に成じる組織の粗大
化を抑制する元素であり、含有量が0.05wt%未満
ではこの効果は少なく、また、0.25wt%を越えて
含有されると粗大化合物を形成し押出性および機
械的性質を低下させる。よつて、Zr含有量は0.05
〜0.25wt%とする。 なお、上記含有成分の外に耐摩耗性を補なう意
味において、B、Mo、Co、Sb、Nb、Pb、Bi、
Vを0.5wt%以下、また、Zn1wt%以下のうちか
ら選んだ1種または2種以上を含有させてもよ
い。 また、鋳塊組織微細化のために、Tiを0.001〜
0.05wt%含有させることができる。 さらに、本発明に係る耐摩耗性高強度アルミニ
ウム合金材の組織を、初晶Siサイズ80μ以下、Si
−Mn−Fe化合物サイズ100μ以下の限定された
合金組織とすることにより、耐摩耗性および機械
的性質を一層各改善すると共に、ベーン材への切
削加工後の表面精度を数μ以下にすることができ
る。 次に、本発明に係る耐摩耗性高強度アルミニウ
ム合金材の製造法について説明する。 ベーン用アルミニウム合金材は上記に説明した
ように、切削歩留り改善、鋳造欠陥の解消、機械
的性質の改善等の観点から、平板状の押出材とす
ることが最適である。 しかしながら、本発明に係る耐摩耗性高強度ア
ルミニウム合金材は通常のアルミニウム合金に比
較して押出性が悪い。従つて、本発明者の鋭意研
究の結果、間接押出、静水圧押出により、本発明
に係る耐摩耗性高強度アルミニウム合金材を平板
状押出材として製造するのが、生産性良く実現で
きることを知見した。 即ち、本発明に係る耐摩耗性高強度アルミニウ
ム合金材の製造法において、もし、直接押出で1
穴押出であれば1〜4m/minの速度で押出せる
が、生産性が悪く、また、2穴以上の多穴押出で
は1m/minの速度でも押出材表面に耐摩耗性を
付与する晶出物を中心として微小な割れが生じて
製品とはならないのである。 この直接押出に対して、本発明に係る耐摩耗性
高強度アルミニウム合金材の製造法において、静
水押出では1穴押出であれば3〜20m/minの速
度で押出可能であり、また、間接押出では2穴以
上の多穴押出で1.5〜4m/minの速度で押出す
ることができ、生産性は大幅に向上する。 従つて、本発明に係る耐摩耗性高強度アルミニ
ウム合金材の製造法では、間接押出法および静水
圧押出法を採用することによつて、アルミニウム
合金材の押出時の割れを防止し、生産性改善の効
果を発揮するのである。 [実施例] 次に本発明に係る耐摩耗性高強度アルミニウム
合金材およびその製造法の実施例を説明する。 実施例 1 第1表に示すNo.1〜No.8が本発明に係る耐摩耗
性高強度アルミニウム合金であつて、溶製に際し
て燐0.1wt%を添加させることにより、初晶Siの
微細化をはかり、冷却速度1.0℃/sec以上で鋳造
し、Si−Mn−Fe化合物の微細化をはかつて製作
されたものである。 第1表のNo.13は本発明に係る耐摩耗性高強度ア
ルミニウム合金材(ベーン用)No.2に該当する
が、その組織は、第1表に示す通り初晶Siサイ
ズ、Si−Mn−Fe化合物サイズが何れも特に大き
なものであり、即ち、このNo.13は溶製に膏して燐
添加による初晶Siの微細化は行なわず、また、
0.5℃/sec以下の冷却速度で鋳造製作したもので
ある。 このようにして製作された本発明に係る耐摩耗
性高強度アルミニウム合金材のNo.1〜No.8、ま
た、比較例としてのNo.9〜13を以下に示す方法に
より比較した。 各材料の熱処理は、495℃の温度で30分間保持
後、水冷を行なつてから、170℃の温度に6時間
保持する処理を行なつた。 耐摩耗性:(大越式摩耗試験機) 摩耗速度:0.1m/sec 荷重:2.1Kg 比摩耗量により比較。 表面精度:押出材を切削後、バレル研磨し、表面
の平均粗さで比較。 この結果について第1表に示す。
[Industrial Application Field] The present invention relates to a wear-resistant high-strength aluminum alloy material and a method for producing the same, and more particularly to a wear-resistant high-strength aluminum alloy with excellent wear resistance and mechanical properties and a method for producing the same. . [Prior Art] Automotive parts, such as sliding parts such as pistons, cylinders, and car cooler compressor parts, have traditionally been required to be lightweight and wear resistant. In order to satisfy these characteristics, for example, rotary compressors, which are easy to reduce in size and weight, have been widely adopted as car cooler compressors. The use of aluminum alloys as a material for rotary compressors to reduce weight is being considered, and in particular, aluminum alloys with excellent wear resistance and mechanical properties are desired for the vane materials of sliding parts. There is. Since this vane material is a type of sealing material, dimensional accuracy of several microns is required, so it is essential that there are no defects such as cavities or pinholes. However, cast hypereutectic aluminum alloys such as A390 and 20% Algyl are partially used as vane materials due to their wear resistance, but these have the following drawbacks. (1) Since it is a cast material, there are many cavities and pinholes, and the yield is very low. (2) Vane material is a thin-walled flat plate-like component that cannot be made thin directly by casting, but is made by cutting from a thick-walled material, resulting in a low yield and a large number of processing steps. (3) Since the eutectic Si in the cast material is needle-shaped and large, the mechanical properties, especially the fatigue strength, are poor. [Problems to be Solved by the Invention] As explained above, the present invention solves various problems of conventional hypereutectic aluminum alloys, such as A390 and 20% Algyl, as vane materials for rotary compressors. It has improved wear resistance and excellent mechanical properties.
In particular, the present invention provides a wear-resistant, high-strength aluminum alloy material suitable as a vane material for rotary compressors, and a method for producing the same. [Means for solving the problems] The wear-resistant high-strength aluminum alloy material and the manufacturing method thereof according to the present invention are as follows: (1) Si14.0-22wt%, Cu4.5-7.0wt%, Mg0.3- Contains 1.0wt%, Fe0.25~1.0wt%, Mn0.25~1.0wt%, with the balance consisting of Al and impurities, with an average primary Si size of 80μ or less and a Si-Mn-Fe compound particle size of 100μ or less. The first invention is a wear-resistant high-strength aluminum alloy material characterized by the following: (2) Si14.0~22wt%, Cu4.5~7.0wt%, Mg0.3~1.0wt%, Fe0.25 ~1.0wt%, Mn0.25~1.0wt%, and further contains one or two of Cr0.05~0.4wt% and Zr0.05~0.25wt%, with the balance consisting of Al and impurities, A second invention provides a wear-resistant high-strength aluminum alloy material characterized by an average primary Si size of 80μ or less and a Si-Mn-Fe compound particle size of 100μ or less, (3) Si14.0-22wt% , Cu4.5~7.0wt%, Mg0.3~1.0wt%, Fe0.25~1.0wt%, Mn0.25~1.0wt%, with the balance Al and impurities, is indirectly extruded. Or plastic working by isostatic extrusion, average primary Si size 80μ or less, Si-Mn-Fe compound particle size
This invention consists of three inventions, with the third invention being a method for manufacturing a wear-resistant, high-strength aluminum alloy material characterized by having a thickness of 100μ or less. The wear-resistant high-strength aluminum alloy material and the manufacturing method thereof according to the present invention will be explained in detail below. First, the components and component ratios of the wear-resistant high-strength aluminum alloy material according to the present invention will be explained. Si is an essential element for imparting wear resistance, and if the content is less than 14.0wt%, wear resistance of A390 or higher cannot be ensured, and if the content exceeds 22wt%, coarsening occurs. A large amount of crystalline Si is generated, which deteriorates mechanical properties. Therefore, the Si content is 14.0~
22wt%. Cu is an element that not only improves mechanical properties but also increases the hardness of strix and improves wear resistance.If the content is less than 4.5wt%, wear resistance of A390 or higher cannot be secured; If the content exceeds CuAl 2, the amount of CuAl 2 crystallized will increase and the mechanical properties will deteriorate. Usually, in aluminum alloys, the Cu content is less than the solid solubility limit of 5.7wt%, but in the wear-resistant high-strength aluminum alloy material according to the present invention, the Cu content is contained in an amount exceeding the solid solubility limit.
The production of CuAl 2 crystallizes increases hardness and improves wear resistance. By the way, Cu
The content is 4.5 to 7.0wt%. Mg is an element that not only improves mechanical properties but also forms Mg 2 Si precipitates and imparts wear resistance.When the content is less than 0.3wt%, this effect is small, and when the content exceeds 1.0wt%, If contained, extrudability will be inhibited. Therefore, the Mg content is set to 0.3 to 1.0 wt% within a range that does not inhibit extrudability. Fe and Mn have almost the same effect, that is, they promote the formation of fine eutectic Si and Si-based precipitates, and
It is an element that improves wear resistance by forming Si-Mn-Fe crystallized substances.If the content is less than 0.25wt%, this effect will be small, and if the content exceeds 1.0wt%, it will cause giant compounds. and deteriorate mechanical properties. Therefore, the Fe content and Mn content are respectively
The content should be 0.25-1.0wt%. Cr is an element that forms CrAl7 compounds with Hv510 and imparts wear resistance.If the content is less than 0.05wt%, this effect will be small, and if the content exceeds 0.4wt%, coarse compounds will be formed. , reducing extrudability and mechanical properties. Therefore, the Cr content is 0.5~
The content shall be 0.4wt%. Zr is an element that suppresses the coarsening of the structure that occurs during extrusion and heat treatment.If the content is less than 0.05wt%, this effect will be small, and if the content exceeds 0.25wt%, it will form coarse compounds. and reduce extrudability and mechanical properties. Therefore, the Zr content is 0.05
~0.25wt%. In addition to the above-mentioned components, B, Mo, Co, Sb, Nb, Pb, Bi,
One or more selected from 0.5 wt% or less of V and 1 wt% or less of Zn may be contained. In addition, to refine the ingot structure, Ti is added from 0.001 to
It can be contained at 0.05wt%. Furthermore, the structure of the wear-resistant high-strength aluminum alloy material according to the present invention is
-By creating a limited alloy structure with a Mn-Fe compound size of 100μ or less, the wear resistance and mechanical properties are further improved, and the surface accuracy after cutting into the vane material is reduced to several micrometers or less. Can be done. Next, a method for manufacturing a wear-resistant high-strength aluminum alloy material according to the present invention will be explained. As explained above, the aluminum alloy material for the vane is optimally made into a flat extruded material from the viewpoints of improving cutting yield, eliminating casting defects, and improving mechanical properties. However, the wear-resistant high-strength aluminum alloy material according to the present invention has poor extrudability compared to ordinary aluminum alloys. Therefore, as a result of intensive research by the present inventors, it has been found that the wear-resistant, high-strength aluminum alloy material according to the present invention can be manufactured as a flat extruded material with high productivity by indirect extrusion and hydrostatic extrusion. did. That is, in the method for manufacturing a wear-resistant high-strength aluminum alloy material according to the present invention, if 1
Hole extrusion can be extruded at a speed of 1 to 4 m/min, but productivity is poor, and multi-hole extrusion with two or more holes requires crystallization, which imparts wear resistance to the extruded material surface, even at a speed of 1 m/min. Microscopic cracks occur around the object and it cannot be used as a product. In contrast to this direct extrusion, in the manufacturing method of the wear-resistant high-strength aluminum alloy material according to the present invention, hydrostatic extrusion can be extruded at a speed of 3 to 20 m/min if one hole is extruded, and indirect extrusion can be used. With multi-hole extrusion of two or more holes, extrusion can be performed at a speed of 1.5 to 4 m/min, greatly improving productivity. Therefore, in the method for manufacturing a wear-resistant high-strength aluminum alloy material according to the present invention, by adopting indirect extrusion method and hydrostatic extrusion method, cracking during extrusion of the aluminum alloy material is prevented and productivity is improved. It shows the effect of improvement. [Example] Next, an example of the wear-resistant high-strength aluminum alloy material and the manufacturing method thereof according to the present invention will be described. Example 1 No. 1 to No. 8 shown in Table 1 are wear-resistant high-strength aluminum alloys according to the present invention, and by adding 0.1 wt% of phosphorus during melting, primary Si crystals were refined. It was previously produced by casting at a cooling rate of 1.0°C/sec or higher to refine the Si-Mn-Fe compound. No. 13 in Table 1 corresponds to wear-resistant high-strength aluminum alloy material (for vanes) No. 2 according to the present invention, but its structure is as shown in Table 1, primary Si size, Si-Mn -Fe compounds are all particularly large in size, that is, No. 13 does not refine the primary Si crystals by adding phosphorus during melting, and
It is manufactured by casting at a cooling rate of 0.5℃/sec or less. Wear-resistant high-strength aluminum alloy materials No. 1 to No. 8 according to the present invention manufactured in this manner and Nos. 9 to 13 as comparative examples were compared by the method shown below. Each material was heat-treated by holding it at a temperature of 495°C for 30 minutes, cooling with water, and then holding it at a temperature of 170°C for 6 hours. Wear resistance: (Okoshi type abrasion tester) Wear speed: 0.1m/sec Load: 2.1Kg Comparison based on specific wear amount. Surface accuracy: After cutting the extruded material, barrel polishing is performed and the average surface roughness is compared. The results are shown in Table 1.

【表】【table】

【表】 この第1表から明らかなように、本発明に係る
耐摩耗性高強度アルミニウム合金材は、比較合金
No.9の従来の過共晶Si合金より耐摩耗性および機
械的性質が優れている。 さらに、本発明に係る耐摩耗性高強度アルミニ
ウム合金材のNo.2は初晶サイズ80μ以下の40μで
あり、また、Si−Mn−Fe化合物サイズ100μ以
下の60μであり、比較合金No.13の夫々のサイズが
上記サイズより大幅に大きいことにより耐摩耗
性、機械的性質および表面精度が劣つていること
から、合金組織のサイズを特定することは有利で
ある。 なお、第1図はSi14wt%、Cu5.0wt%、
Mg0.6wt%、Fe0.5wt%、Mn0.5wt%、Al残部お
よび不純物よりなる本発明に係る耐摩耗性高強度
アルミニウム合金における晶出物サイズが鋳造の
際の冷却速度により影響を受けることについて示
したものであり、即ち、Si−Mn−Fe化合物サイ
ズを100μ以下とするためには、0.5℃/sec以上
の冷却速度が必要であるこのがわかる。 また、第2図および第3図は、本発明に係る耐
摩耗性高強度アルミニウム合金材No.2と比較合金
No.13の顕微鏡写真(100倍)を示し、No.2の組織
寸法の微細化を顕著に示している。 実施例 2 第1表のNo.2に示す含有成分および成分割合の
アルミニウム合金を実施例1と同様の方法により
溶製し、245φの鋳塊とした。 次に、この鋳造を470℃の温度で8時間の均質
化処理を行なつた後、押出温度330℃で間接押出
しを行ない、この押出材から疲労試験片を採取し
た。 また、上記鋳塊を470℃の温度で8時間の均質
化処理を行ない、この鋳塊から疲労試験片を採取
した。 この両試験片を、495℃の温度で30分間の溶体
化処理を行なつた後、水焼入れをし、170℃の温
度で6時間の時効処理を施し、小野式疲労試験に
より疲労強度を比較した。 この結果を第4図に示す。 この第4図から明らかなように、本発明に係る
耐摩耗性高強度アルミニウム合金材(図中−〇−
〇−で示す。)は押出加工によつて、共晶Siが微
細均一化されるため、鋳造材(図中−●−●−で
示す。)に比較して疲労強度が改善されているこ
とがわかる。 実施例 3 第1表のNo.3のアルミニウム合金を通常の方法
により溶製して鋳造し、245φ×10001の鋳塊を作
製した。 この鋳塊を470℃温度で3時間の均質化処理を
行なつた後、押出温度330℃、製品サイズ4.5t×
50wの平板に直接押出、間接押出により押出し
た。 また、第1表のNo.3のアルミニウム合金を通常
の方法により溶製して鋳造し、70φ×1501の鋳塊
を作製し、この鋳塊を470℃の温度で8時間の均
質化処理を行なつた後、押出温度350℃、製品サ
イズ4.5t×50wの平板に静水圧押圧により押出し
た。 これらの結果について第2表に示す。 この第2表から明らかなように、押出材に割れ
の発生がなく、押出可能な速度は異なるけれど、
間接押出であれば多穴押出が可能であり、1穴の
直接押出に比較して4倍の生産性が得られる。ま
た、静水圧押出であれば、直接押出の約5倍の押
出速度で押出することが可能である。
[Table] As is clear from Table 1, the wear-resistant high-strength aluminum alloy material according to the present invention
It has better wear resistance and mechanical properties than the conventional hypereutectic Si alloy No.9. Furthermore, the wear-resistant high-strength aluminum alloy material No. 2 according to the present invention has a primary crystal size of 40 μ, which is less than 80 μ, and the Si-Mn-Fe compound size is 60 μ, which is less than 100 μ, and Comparative alloy No. 13 It is advantageous to determine the size of the alloy structure, since the respective sizes significantly larger than the above-mentioned sizes result in poor wear resistance, mechanical properties and surface precision. In addition, Figure 1 shows Si14wt%, Cu5.0wt%,
Regarding the influence of the crystallized size in the wear-resistant high-strength aluminum alloy according to the present invention, which is composed of Mg0.6wt%, Fe0.5wt%, Mn0.5wt%, Al balance and impurities, by the cooling rate during casting. In other words, it can be seen that in order to reduce the size of the Si-Mn-Fe compound to 100μ or less, a cooling rate of 0.5°C/sec or more is required. In addition, FIGS. 2 and 3 show the wear-resistant high-strength aluminum alloy material No. 2 according to the present invention and the comparative alloy.
A micrograph (100x) of No. 13 is shown, which clearly shows the refinement of the structure size of No. 2. Example 2 An aluminum alloy having the components and proportions shown in No. 2 of Table 1 was melted in the same manner as in Example 1 to form an ingot of 245φ. Next, this casting was subjected to a homogenization treatment at a temperature of 470°C for 8 hours, and then indirect extrusion was performed at an extrusion temperature of 330°C, and fatigue test pieces were taken from this extruded material. Further, the above ingot was homogenized at a temperature of 470° C. for 8 hours, and fatigue test pieces were taken from this ingot. Both specimens were solution-treated at a temperature of 495°C for 30 minutes, water-quenched, and aged at a temperature of 170°C for 6 hours, and their fatigue strengths were compared using the Ono fatigue test. did. The results are shown in FIG. As is clear from FIG. 4, the wear-resistant high-strength aluminum alloy material according to the present invention (-〇-
Indicate with 〇-. ) has improved fatigue strength compared to the cast material (indicated by -●-●- in the figure) because the eutectic Si is made fine and uniform through extrusion processing. Example 3 Aluminum alloy No. 3 in Table 1 was melted and cast by a conventional method to produce an ingot of 245φ×10001 mm. After homogenizing this ingot at 470℃ for 3 hours, extrusion temperature was 330℃ and product size was 4.5t×
It was extruded onto a 50W flat plate by direct extrusion and indirect extrusion. In addition, aluminum alloy No. 3 in Table 1 was melted and cast using the usual method to produce an ingot of 70φ x 1501 mm, and this ingot was homogenized at a temperature of 470°C for 8 hours. After this, the extrusion temperature was 350°C, and the product was extruded by hydrostatic pressing onto a flat plate with a product size of 4.5t x 50w. These results are shown in Table 2. As is clear from Table 2, there is no cracking in the extruded material, and although the extrudable speeds are different,
Indirect extrusion allows multi-hole extrusion, and yields four times the productivity compared to single-hole direct extrusion. In addition, if hydrostatic extrusion is used, it is possible to extrude at an extrusion speed approximately five times faster than direct extrusion.

【表】【table】

【表】 〓注〓 割れずに押出可能な速度
(m〓〓)
[発明の効果] 以上説明したように、本発明に係る耐摩耗性高
強度アルミニウム合金材およびその製造法は上記
の構成を有しているものであるから、耐摩耗性に
優れていることはもとより、押出性および機械的
性質にも優れているという効果を有するものであ
る。
[Table] Note: Speed at which extrusion is possible without cracking
(m〓〓)
[Effects of the Invention] As explained above, since the wear-resistant high-strength aluminum alloy material and the method for manufacturing the same according to the present invention have the above-mentioned configuration, it is possible that the material has excellent wear resistance. It also has the effect of being excellent in extrudability and mechanical properties.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は晶出物サイズと冷却速度の関係を示す
図、第2図、第3図は本発明に係る耐摩耗性高強
度アルミニウム合金材と比較合¥との合金組織を
示す顕微鏡写真、第4図は応力と繰返し数との関
係を示す図である。
FIG. 1 is a diagram showing the relationship between crystallized substance size and cooling rate, FIGS. 2 and 3 are micrographs showing the alloy structure of the wear-resistant high-strength aluminum alloy material according to the present invention and a comparative alloy, FIG. 4 is a diagram showing the relationship between stress and number of repetitions.

Claims (1)

【特許請求の範囲】 1 Si14.0〜22wt%、Cu4.5〜7.0wt%、 Mg0.3〜1.0wt%、Fe0.25〜1.0wt%、 Mn0.25〜1.0wt% を含有し、残部Alおよび不純物からなり、平均
の初晶Siサイズ80μ以下、Si−Mn−Fe化合物粒
子サイズ100μ以下であることを特徴とする耐摩
耗性高強度アルミニウム合金材。 2 Si14.0〜22wt%、Cu4.5〜7.0wt%、 Mg0.3〜1.0wt%、Fe0.25〜1.0wt%、 Mn0.25〜1.0wt% を含有し、さらに、 Cr0.05〜0.4wt%、Zr0.05〜0.25wt% の1種または2種 を含有し、残部Alおよび不純物からなり、平均
の初晶Siサイズ80μ以下、Si−Mn−Fe化合物粒
子サイズ100μ以下であることを特徴とする耐摩
耗性高強度アルミニウム合金材。 3 Si14.0〜22wt%、Cu4.5〜7.0wt%、 Mg0.3〜1.0wt%、Fe0.25〜1.0wt%、 Mn0.25〜1.0wt% を含有し、残部Alおよび不純物からなるアルミ
ニウム合金鋳塊を、間接押出または静水圧押出に
よつて塑性加工を行ない、平均の初晶Siサイズ80
μ以下、Si−Mn−Fe化合物粒子サイズ100μ以
下とすることを特徴とする耐摩耗性高強度アルミ
ニウム合金材の製造法。
[Claims] 1 Contains 14.0 to 22 wt% Si, 4.5 to 7.0 wt% Cu, 0.3 to 1.0 wt% Mg, 0.25 to 1.0 wt% Fe, 0.25 to 1.0 wt% Mn, and the remainder A wear-resistant, high-strength aluminum alloy material consisting of Al and impurities, characterized by an average primary Si size of 80μ or less and a Si-Mn-Fe compound particle size of 100μ or less. 2 Contains Si14.0~22wt%, Cu4.5~7.0wt%, Mg0.3~1.0wt%, Fe0.25~1.0wt%, Mn0.25~1.0wt%, and further Cr0.05~0.4 wt%, Zr0.05-0.25wt%, the balance is Al and impurities, and the average primary Si size is 80μ or less, and the Si-Mn-Fe compound particle size is 100μ or less. A wear-resistant high-strength aluminum alloy material. 3 Aluminum containing 14.0 to 22 wt% Si, 4.5 to 7.0 wt% Cu, 0.3 to 1.0 wt% Mg, 0.25 to 1.0 wt% Fe, and 0.25 to 1.0 wt% Mn, with the balance consisting of Al and impurities. The alloy ingot is plastically worked by indirect extrusion or isostatic extrusion, and the average primary Si size is 80.
A method for producing a wear-resistant high-strength aluminum alloy material, characterized in that the particle size of Si-Mn-Fe compound is 100μ or less.
JP14554484A 1984-07-13 1984-07-13 Wear resistant and high strength aluminum alloy material and its manufacture Granted JPS6126741A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14554484A JPS6126741A (en) 1984-07-13 1984-07-13 Wear resistant and high strength aluminum alloy material and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14554484A JPS6126741A (en) 1984-07-13 1984-07-13 Wear resistant and high strength aluminum alloy material and its manufacture

Publications (2)

Publication Number Publication Date
JPS6126741A JPS6126741A (en) 1986-02-06
JPS6254391B2 true JPS6254391B2 (en) 1987-11-14

Family

ID=15387633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14554484A Granted JPS6126741A (en) 1984-07-13 1984-07-13 Wear resistant and high strength aluminum alloy material and its manufacture

Country Status (1)

Country Link
JP (1) JPS6126741A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62177992U (en) * 1986-04-30 1987-11-12

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0791613B2 (en) * 1986-09-22 1995-10-04 住友軽金属工業株式会社 Heat and wear resistant aluminum alloy material
JPS6411952A (en) * 1987-07-06 1989-01-17 Showa Aluminum Corp Manufacture of hollow aluminum-alloy combining high strength with high wear resistance
EP2034035B2 (en) * 2006-05-18 2022-09-14 Kabushiki Kaisha Kobe Seiko Sho Process for producing aluminum alloy plate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62177992U (en) * 1986-04-30 1987-11-12

Also Published As

Publication number Publication date
JPS6126741A (en) 1986-02-06

Similar Documents

Publication Publication Date Title
EP1778887B1 (en) An al-si-mg-zn-cu alloy for aerospace and automotive castings
US4975243A (en) Aluminum alloy suitable for pistons
JP3335732B2 (en) Hypoeutectic Al-Si alloy and casting method thereof
JP2007169712A (en) Aluminum alloy for plastic working
US5162065A (en) Aluminum alloy suitable for pistons
US4648918A (en) Abrasion resistant aluminum alloy
KR19990072038A (en) Manufacturing method of thin strip of aluminum alloy with high strength and excellent moldability
US20040261916A1 (en) Dispersion hardenable Al-Ni-Mn casting alloys for automotive and aerospace structural components
US5055255A (en) Aluminum alloy suitable for pistons
CN111020303A (en) 4XXX series aluminum alloy and preparation method thereof
JP2001020047A (en) Stock for aluminum alloy forging and its production
JPH093610A (en) Thin aluminum diecast product excellent in dimensional accuracy and ductility and its production
US6416710B1 (en) High-strength aluminum alloy for pressure casting and cast aluminum alloy comprising the same
JPH0790459A (en) Production of wear resistant aluminum alloy for extrusion and wear resistant aluminum alloy material
JPH07197165A (en) High wear resistant free cutting aluminum alloy and its production
JPS6254391B2 (en)
JPH07145440A (en) Aluminum alloy forging stock
JPS62149839A (en) Wear resistant aluminum alloy for working excellent in strength
JPS6238420B2 (en)
JP3731911B2 (en) Aluminum alloy extruded material with excellent surface properties, manufacturing method thereof, and aluminum alloy motorcycle frame
JPS649388B2 (en)
JPH083701A (en) Production of wear resistant aluminum alloy extruded material excellent in strength and machinability
JPS63103046A (en) Aluminum alloy for cold forging
JP2004269937A (en) ABRASION RESISTANT Al-Si ALLOY SUPERIOR IN MACHINABILITY, AND CASTING METHOD THEREFOR
DE102012018934A1 (en) Preparation of aluminum-iron alloy semi-finished product e.g. brake rotor, involves casting aluminum-iron alloy containing iron, copper, vanadium and element chosen from silicon, zinc and boron, and aluminum, cooling, and extruding