JPS6254210B2 - - Google Patents

Info

Publication number
JPS6254210B2
JPS6254210B2 JP2088180A JP2088180A JPS6254210B2 JP S6254210 B2 JPS6254210 B2 JP S6254210B2 JP 2088180 A JP2088180 A JP 2088180A JP 2088180 A JP2088180 A JP 2088180A JP S6254210 B2 JPS6254210 B2 JP S6254210B2
Authority
JP
Japan
Prior art keywords
mica
weight
parts
water
veneer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2088180A
Other languages
Japanese (ja)
Other versions
JPS56118203A (en
Inventor
Tadashi Shigemoto
Hiroshi Moriguchi
Shoji Hisayoshi
Minoru Yamanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Mining and Cement Co Ltd
Original Assignee
Mitsubishi Mining and Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Mining and Cement Co Ltd filed Critical Mitsubishi Mining and Cement Co Ltd
Priority to JP2088180A priority Critical patent/JPS56118203A/en
Publication of JPS56118203A publication Critical patent/JPS56118203A/en
Publication of JPS6254210B2 publication Critical patent/JPS6254210B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Inorganic Insulating Materials (AREA)
  • Insulating Bodies (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は高温時に良好な曲げ強度及び電気絶縁
性を保持することを可能とするマイカ積層板の製
造方法に関する。 マイカ積層板は集成マイカ板にバインダーを塗
布し、これを乾燥してマイカ単板とし、マイカ単
板を所定枚数重ね合わせてホツトプレスして製造
されるものであるが、従来のマイカ積層板は高温
時に曲げ強度及び電気絶縁性が低下するという欠
点があるため、その用途は限定されている。この
ようなマイカ積層板の欠点は集成マイカ板に塗布
されるバインダー及びマイカ単板の成形方法に起
因しているものと思われる。従来バインダーとし
てはリン酸、低融点ガラスならびにシリコーンワ
ニス等を主体としたものが使用されているが、こ
れらバインダーを塗布したマイカ単板を加熱加圧
成形する場合の予備処理については何ら考慮され
ていなかつた。 本発明は上記の従来技術の欠点を解決し、高温
時に良好な曲げ強度及び電気絶縁性を保持するこ
とを可能ならしめるマイカ積層板の製造方法を提
供するもので、その要旨とするところは、集成マ
イカ板にバインダーを塗布して作成したマイカ単
板を加熱加圧成形することよりなるマイカ積層板
の製造方法において、該バインダーとして水75〜
80重量部、正リン酸12.0〜20.0重量部、ホウフツ
化亜鉛3.0〜5.0重量部、水酸化アルミニウム2.0〜
6.0重量部およびチタンカリウム繊維1.0〜5.0重量
部よりなる組成物を用いかつ該加熱加圧成形直前
に該マイカ単板に該マイカ単板100重量部に対し
アルコール50〜90重量部および水50〜10重量部よ
りなるアルコール水1〜6重量部を塗布すること
を特徴とするマイカ積層板の製造方法、にある。 すなわち、本発明は集成マイカ板塗布用のバイ
ンダーとして水75〜80重量部、正リン酸12.0〜
20.0重量部、ホウフツ化亜鉛3.0〜5.0重量部、水
酸化アルミニウム2.0〜6.0重量部及びチタン酸カ
リウム繊維1.0〜5.0重量部よりなる組成物を用い
るとともに、マイカ単板を加熱加圧成形する直前
に該マイカ単板100重量部に対しアルコール水
(アルコール50〜90重量部と水50〜10重量部をよ
りなる混合物)1〜6重量部を塗布するという構
成をとるものである。上記チタン酸カリウム繊維
は(K2O・6TiO2・1/2H2O)なる化学式で示され るもので、水との親和性を有している。この繊維
の平均繊維長さは50ミクロン、程度、また平均繊
維径は1ミクロン程度のものであり、その実用例
の1つとして、大塚化学株式会社製のテイスモL
型(商品名)を挙げることができる。 この構成によつて、得られたマイカ積層板の曲
げ強度及び電気絶縁性を大幅に向上させるととも
にそれらを高温時においても所要高レベルに保持
することを可能ならしめるものである。 次に、上記構成と効果の関係について詳述す
る。まずバインダー組成において、水75〜80重量
部を配合すると、得られるバインダーの塗布性が
よくなり、75重量部未満では塗布性が悪く、80重
量部を越えると塗布性はよいが得られるマイカ積
層板の曲げ及び電気絶縁性が低下する。正リン酸
の配合はマイカ積層板の曲げ強度向上のためのも
ので、配合範囲は12.0〜20.0重量部であるが、
12.0重量部未満ではマイカ積層板の曲げ強度が著
しく低下し、また20.0重量部を越えると、バイン
ダーの塗布性が悪くなり、かつマイカ単板を造る
際乾燥するのに長時間を要する。ホウフツ化亜鉛
の配合はマイカ積層板の曲げ強度向上のためのも
ので、配合範囲は3.0〜5.0重量部であるが、3.0重
量部未満ではマイカ積層板の曲げ強度が大幅に低
下し、また5.0重量部を越えると、マイカ積層板
は脆くなり曲げ強度も増大しない。水酸化アルミ
ニウムの配合はマイカ積層板の曲げ強度向上のた
めのもので、配合範囲は2.0〜6.0重量部である
が、2.0重量部未満ではマイカ積層板の曲げ強度
が低下し6.0重量部を越えると、バインダーの塗
布性が著しく悪くなる。チタン酸カリウム繊維は
マイカ積層板の曲げ強度及び電気絶縁性向上のた
めのもので、配合範囲は1.0〜5.0重量部である
が、1.0重量部未満では、マイカ積層板の曲げ強
度は低く、5.0重量部を越えても、同じくマイカ
積層板の曲げ強度は向上せず、上記範囲内で2.5
〜4.5重量部の範囲が好ましく、この範囲におい
てマイカ積層板の曲げ強度及び電気絶縁性は最大
値を示す。ただし、この場合、チタン酸カリウム
繊維の平均繊維長及び平均繊維径がそれぞれ上記
の数値、すなわち50ミクロン程度1ミクロン程度
より小さい場合にはマイカ積層板の曲げ強度は向
上せず、また大きい場合にはバインダーの集成マ
イカ板への密着性を低下させ、かつマイカ積層板
の電気絶縁性も良好な値を示さないからである。
上記組成のバインダーを集成マイカ板に塗布する
と、従来のバインダーのそれより向上した接着性
によつてマイカにより密接に付着し、一部はマイ
カと反応し、かつチタン酸カリウム繊維を含むた
め、集成マイカ板表面に形成されるバインダー層
の表面にはミクロ的に凹凸部分が生ずる。 このように、上記バインダーを塗布した集成マ
イカ板を60℃で60分間乾燥させてマイカ単板と
し、このマイカ単板にアルコール50〜60重量部及
び水50〜10重量部よりなるアルコール水をマイカ
単板100重量部に対し1〜6重量部塗布すると、
アルコール水中のマイカ単板のバインダー層表面
の乾燥膜を一部溶解し、次の加熱加圧成形時には
このアルコール水中のアルコール分が上記乾燥膜
を溶解した水分を運んで蒸発するので、ここに接
着効果が発生する。特にマイカ単板のバインダー
層表面は上述したように凹凸構造であるので加熱
加圧成形の際に上、下の重ね合わせたマイカ単板
の接合は不整接合となつて強力な接着効果を発生
させることになる。 上記のように、予備処理としてアルコール水塗
布を施したマイカ単板の加熱加圧成形について
は、該マイカ単板を所要枚数重ね合わせて温度
190〜300℃、好ましくは200℃、圧力100〜150
Kg/cm2好ましくは120〜130Kg/cm2で40〜70分間、
好ましくは60分間、ホツトプレスで成形を行なう
ことによつて、曲げ強度および高温時の電気絶縁
性の著しく向上したマイカ積層板が得られる。上
記アルコール水はアルコール分と水を加えて100
重量部となるようにするのであるが、アルコール
分が50重量部未満では水が多くなりすぎてマイカ
単板のバインダー層表面の乾燥膜をすべて溶解
し、加熱加圧成形による接着を不十分ならしめ、
またアルコール分が90重量部を越えると、水のキ
ヤリアーであるアルコール分が多すぎてマイカ単
板上に残留する水量が少なくなる。このように、
アルコール水をマイカ単板に塗布した場合、マイ
カ単板上に残留する水の残量は重要な意味を有
し、水の残量が多いと、マイカ積層板の曲げ強度
は低下し、水の残量が少なすぎると、マイカ単板
の接着が十分行なわれずマイカ積層板の曲げ強度
の向上はない。すなわち、アルコール水の必要量
はマイカ単板100重量部に対し1〜6重量部、好
ましくは1.5〜2重量部の範囲である。この場合
のアルコールはメチルアルコール、エチルアルコ
ールが好適である。また、加熱加圧成形において
は、温度190℃未満および圧力100Kg/cm2未満では
マイカ積層板は低密度で曲げ強度及び電気絶縁性
が低下し、温度300℃を越えるとマイカ積層板の
表層部と内部の強度のばらつきが生じ、また圧力
150Kg/cm2を越えると成形面積が小さくなり、従
つて製造コストが高くなる。 本発明で製造されたマイカ積層板は曲げ強度が
著しく大であるので加工性にもすぐれ、かつ高温
時の電気絶縁性にもすぐれているので、トースタ
ー、ヘアドライヤー、アイロンなどのヒータープ
レートに最適である。 次に、本発明を実施例によつてさらに具体的に
説明する。 実施例 まず、バインダーの調製について述べる。 正リン酸水溶液(n−H3PO4、試薬1級、濃度
85%)17.0gを加熱(110℃)し、これに水酸化
アルミニウム(Al(OH)3、試薬1級)3.2gを撹
拌しながら添加し、さらに水72.9gを加えながら
撹拌して液温が20℃に低下するとチタン酸カリウ
ム繊維(K2O・6TiO2・1/2H2O、平均繊維長50ミ クロン、平均繊維径1ミクロン)を2.8g、さら
にホウフツ化亜鉛4.1gをそれぞれ加え、よく撹
拌してバインダーを調製した。 次に、厚さ0.1mm、幅50mm、長さ60mm、重量3.0
gの集成マイカ板5枚を用意し、それぞれに前記
バインダー2.8gを均一に塗布し、さらに60℃で
60分間乾燥してバインダー単板を作成し、これら
マイカ単板にエチルアルコール80重量部及び水20
重量部よりなるアルコール水を均一に塗布し、ア
ルコール水の塗布量がマイカ単板重量の1.2%に
なるようにした。 このようにアルコール水を塗布したマイカ単板
5枚を直ちに重ね合わせてプレス金型間に入れ、
温度200℃、圧力130Kg/cm2で60分間加熱加圧成形
し、厚さ0.50〜0.48mmのマイカ積層板を得た。こ
のマイカ積層板の特性を測定し、その結果を次表
に示す。ただし、曲げ強度はこのマイカ積層板か
ら原厚さで幅20mm、長さ50mmの試験片を取り、支
点間40mmで装定した値であり、電気絶縁抵抗値は
この試験片を30℃デシケータ中に24時間保持した
のち、JIS C2116・14に準じて測定した値であ
る。 比較例 1 本比較例は実施例で作成されたマイカ単板を使
用し、このマイカ単板にアルコール水塗布を施す
ことなく、実施例と同一条件で加熱加圧成形を行
なつた場合である。得られたマイカ積層板の特性
を実施例と同様に測定して次表に併記する。 比較例 2 本比較例はバインダーにチタン酸カリウム繊維
を含まない場合である。すなわち、正リン酸水溶
液(n−H3PO4、試薬1級、濃度85%)17.0gを
加熱(110℃)し、水酸化アルミニウム(Al
(OH)3、試薬1級)3.2gを撹拌しながら添加
し、さらに水72.9gを加えながら撹拌し、液温が
20℃に低下すると、ホウフツ化亜鉛4.1gを加え
てよく撹拌し、バインダーを調製した。このバイ
ンダー塗布によるマイカ単板の作成、マイカ単板
へのアルコール水塗布及びアルコール水を塗布し
たマイカ単板の加熱加圧成形は実施例と同様に行
ない厚さ0.48〜0.50mmのマイカ積層板を得、その
特性を測定して次表に併記する。 比較例 3 本比較例は比較例2で作成されたマイカ単板を
使用し、このマイカ単板にアルコール水塗布を施
すことなく、比較例2と同一条件で加熱加圧成形
を行なつた場合である。得られたマイカ積層板の
特性を測定して次表に併記する。
The present invention relates to a method for producing a mica laminate that can maintain good bending strength and electrical insulation properties at high temperatures. Mica laminates are manufactured by applying a binder to a laminated mica board, drying it to form a mica veneer, and stacking a predetermined number of mica veneers and hot pressing them. Their use is limited due to the disadvantage that their bending strength and electrical insulation properties are sometimes reduced. These drawbacks of mica laminates are believed to be due to the binder applied to the mica laminated board and the molding method of the mica veneer. Conventionally, binders mainly include phosphoric acid, low-melting glass, and silicone varnish, but no consideration has been given to pretreatment when molding mica veneers coated with these binders under heat and pressure. Nakatsuta. The present invention solves the above-mentioned drawbacks of the prior art and provides a method for manufacturing a mica laminate that makes it possible to maintain good bending strength and electrical insulation properties at high temperatures. In a method for producing a mica laminate, which comprises heating and press-molding a mica veneer prepared by applying a binder to a laminated mica board, water is used as the binder.
80 parts by weight, 12.0 to 20.0 parts by weight of orthophosphoric acid, 3.0 to 5.0 parts by weight of zinc borofluoride, 2.0 to 2.0 parts by weight of aluminum hydroxide
Using a composition consisting of 6.0 parts by weight and 1.0 to 5.0 parts by weight of titanium-potassium fibers, the mica veneer was coated with 50 to 90 parts by weight of alcohol and 50 to 50 parts by weight of water per 100 parts by weight of the mica veneer immediately before the heat and pressure molding. A method for producing a mica laminate, comprising applying 1 to 6 parts by weight of alcoholic water containing 10 parts by weight. That is, the present invention uses 75 to 80 parts by weight of water and 12.0 to 12.0 parts by weight of orthophosphoric acid as a binder for coating a laminated mica board.
Using a composition consisting of 20.0 parts by weight, 3.0 to 5.0 parts by weight of zinc borofusate, 2.0 to 6.0 parts by weight of aluminum hydroxide, and 1.0 to 5.0 parts by weight of potassium titanate fibers, and immediately before heating and pressing the mica veneer. The structure is such that 1 to 6 parts by weight of alcoholic water (a mixture of 50 to 90 parts by weight of alcohol and 50 to 10 parts by weight of water) is applied to 100 parts by weight of the mica veneer. The potassium titanate fiber is represented by the chemical formula (K 2 O.6TiO 2.1 /2H 2 O) and has an affinity for water. The average fiber length of this fiber is about 50 microns, and the average fiber diameter is about 1 micron.
Types (product names) can be mentioned. This configuration allows the bending strength and electrical insulation properties of the obtained mica laminate to be significantly improved and to maintain them at the required high level even at high temperatures. Next, the relationship between the above configuration and effects will be explained in detail. First, in the binder composition, if 75 to 80 parts by weight of water is added, the coating properties of the obtained binder will be good, if it is less than 75 parts by weight, the coating properties will be poor, and if it exceeds 80 parts by weight, the coating properties will be good but the mica lamination will be obtained. The bending and electrical insulation properties of the plate are reduced. The blending of orthophosphoric acid is to improve the bending strength of mica laminates, and the blending range is 12.0 to 20.0 parts by weight.
If it is less than 12.0 parts by weight, the bending strength of the mica laminate will be significantly reduced, and if it exceeds 20.0 parts by weight, the binder will have poor applicability and will take a long time to dry when producing mica veneers. The purpose of blending zinc fluoride is to improve the bending strength of mica laminates, and the blending range is 3.0 to 5.0 parts by weight, but if it is less than 3.0 parts by weight, the bending strength of mica laminates will decrease significantly, and If the amount exceeds the weight part, the mica laminate becomes brittle and the bending strength does not increase. The blending of aluminum hydroxide is to improve the bending strength of the mica laminate, and the blending range is 2.0 to 6.0 parts by weight, but if it is less than 2.0 parts by weight, the bending strength of the mica laminate decreases, and if it exceeds 6.0 parts by weight. Then, the applicability of the binder deteriorates significantly. Potassium titanate fibers are used to improve the bending strength and electrical insulation properties of mica laminates, and the blending range is 1.0 to 5.0 parts by weight, but if it is less than 1.0 parts by weight, the bending strength of mica laminates is low, 5.0 parts by weight. Even if the weight part is exceeded, the bending strength of the mica laminate does not improve, and within the above range 2.5
A preferable range is 4.5 parts by weight, and within this range the bending strength and electrical insulation properties of the mica laminate reach their maximum values. However, in this case, if the average fiber length and average fiber diameter of the potassium titanate fibers are smaller than the above values, that is, about 50 microns or 1 micron, the bending strength of the mica laminate will not improve; This is because the adhesiveness of the binder to the mica laminated plate is reduced, and the electrical insulation properties of the mica laminate do not exhibit good values.
When a binder with the above composition is applied to a laminated mica plate, it adheres more closely to the mica due to its improved adhesion than that of conventional binders, and some of it reacts with the mica and contains potassium titanate fibers, making it difficult to coat the laminated mica plate. Microscopic unevenness occurs on the surface of the binder layer formed on the surface of the mica plate. In this way, the laminated mica board coated with the above binder is dried at 60°C for 60 minutes to form a mica veneer, and alcoholic water consisting of 50 to 60 parts by weight of alcohol and 50 to 10 parts by weight of water is applied to the mica veneer. When applying 1 to 6 parts by weight to 100 parts by weight of veneer,
Part of the dry film on the surface of the binder layer of the mica veneer is dissolved in the alcohol water, and during the next heating and pressure molding, the alcohol content in the alcohol water carries the water that has dissolved the dry film and evaporates, so that it is bonded here. effect occurs. In particular, the surface of the binder layer of the mica veneer has an uneven structure as mentioned above, so during heating and pressure forming, the bonding of the upper and lower overlapping mica veneers becomes an irregular bond, producing a strong adhesive effect. It turns out. As mentioned above, for hot-pressure molding of mica veneers that have been coated with alcohol water as a preliminary treatment, the required number of mica veneers are overlapped and heated to
190-300℃, preferably 200℃, pressure 100-150
Kg/ cm2 preferably 120-130Kg/ cm2 for 40-70 minutes,
By performing the molding in a hot press, preferably for 60 minutes, a mica laminate with significantly improved bending strength and electrical insulation properties at high temperatures can be obtained. The alcoholic water above is 100% by adding alcohol and water.
However, if the alcohol content is less than 50 parts by weight, there will be too much water, which will dissolve all the dried film on the surface of the binder layer of the mica veneer, and the adhesion by heating and pressure forming will be insufficient. Close,
Furthermore, if the alcohol content exceeds 90 parts by weight, the alcohol content, which is a water carrier, will be too large and the amount of water remaining on the mica veneer will be small. in this way,
When alcohol water is applied to a mica veneer, the amount of water remaining on the mica veneer has an important meaning.If the amount of water remaining is large, the bending strength of the mica laminate will decrease, If the remaining amount is too small, the adhesion of the mica veneer will not be sufficient and the bending strength of the mica laminate will not be improved. That is, the required amount of alcoholic water is in the range of 1 to 6 parts by weight, preferably 1.5 to 2 parts by weight, per 100 parts by weight of mica veneer. The alcohol in this case is preferably methyl alcohol or ethyl alcohol. In addition, in hot-pressure forming, at temperatures below 190℃ and pressures below 100Kg/cm 2 , mica laminates have a low density and bending strength and electrical insulation properties decrease; when temperatures exceed 300℃, the surface layer of mica laminates decreases. This causes variations in internal strength and pressure
If it exceeds 150 Kg/cm 2 , the molding area will become smaller and therefore the manufacturing cost will increase. The mica laminate manufactured by the present invention has extremely high bending strength, making it easy to work with, and it also has excellent electrical insulation properties at high temperatures, making it ideal for heater plates in toasters, hair dryers, irons, etc. It is. Next, the present invention will be explained in more detail with reference to Examples. Examples First, preparation of the binder will be described. Orthophosphoric acid aqueous solution (n-H 3 PO 4 , reagent grade 1, concentration
85%) was heated (110°C), 3.2 g of aluminum hydroxide (Al(OH) 3 , 1st grade reagent) was added to this while stirring, and 72.9 g of water was further added while stirring to bring the liquid temperature up. When the temperature decreased to 20°C, 2.8 g of potassium titanate fiber (K 2 O 6TiO 2 1/2H 2 O, average fiber length 50 μm, average fiber diameter 1 μm) and 4.1 g of zinc borofusate were added. A binder was prepared by stirring well. Next, thickness 0.1mm, width 50mm, length 60mm, weight 3.0
Prepare 5 g laminated mica boards, uniformly apply 2.8 g of the binder on each, and heat at 60°C.
Dry for 60 minutes to create binder veneers, and add 80 parts by weight of ethyl alcohol and 20 parts by weight of water to these mica veneers.
Alcohol water consisting of parts by weight was applied uniformly so that the amount of alcohol water applied was 1.2% of the weight of the mica veneer. Immediately stack five mica veneers coated with alcohol water in this way and place them between the press molds.
A mica laminate having a thickness of 0.50 to 0.48 mm was obtained by heat-pressing molding at a temperature of 200° C. and a pressure of 130 Kg/cm 2 for 60 minutes. The properties of this mica laminate were measured and the results are shown in the table below. However, the bending strength is the value obtained by taking a test piece of original thickness 20 mm wide and 50 mm long from this mica laminate, and setting the distance between the supports at 40 mm, and the electrical insulation resistance value is the value obtained by taking this test piece in a desiccator at 30℃. This value was measured in accordance with JIS C2116/14 after being held for 24 hours. Comparative Example 1 In this comparative example, the mica veneer prepared in the example was used, and heat and pressure molding was performed under the same conditions as in the example without applying alcohol water to the mica veneer. . The properties of the obtained mica laminate were measured in the same manner as in the examples and are also listed in the following table. Comparative Example 2 This comparative example is a case in which the binder does not contain potassium titanate fibers. That is, 17.0 g of orthophosphoric acid aqueous solution (n-H 3 PO 4 , first grade reagent, concentration 85%) was heated (110°C) and aluminum hydroxide (Al
(OH) 3 , reagent grade 1) was added with stirring, and then 72.9 g of water was added while stirring, until the liquid temperature reached
When the temperature decreased to 20° C., 4.1 g of zinc borofluoride was added and thoroughly stirred to prepare a binder. The creation of a mica veneer by applying a binder, the application of alcohol water to the mica veneer, and the heating and pressure molding of the mica veneer coated with alcohol water were carried out in the same manner as in the example to form a mica laminate with a thickness of 0.48 to 0.50 mm. The characteristics were measured and listed in the table below. Comparative Example 3 In this comparative example, the mica veneer prepared in Comparative Example 2 was used, and heat and pressure molding was performed under the same conditions as Comparative Example 2 without applying alcohol water to this mica veneer. It is. The properties of the obtained mica laminate were measured and are also listed in the table below.

【表】 上表から明らかであるように、実施例で得られ
たマイカ積層板は比較例1〜3のマイカ積層板よ
り曲げ強度及び電気絶縁性においてすぐれてい
る。
[Table] As is clear from the above table, the mica laminates obtained in Examples are superior to the mica laminates of Comparative Examples 1 to 3 in terms of bending strength and electrical insulation.

Claims (1)

【特許請求の範囲】[Claims] 1 集成マイカ板にバインダーを塗布して作成し
たマイカ単板を加熱加圧成形することによりなる
マイカ積層板の製造方法において、該バインダー
として水75〜80重量部、正リン酸12.0〜20.0重量
部、ホウフツ化亜鉛3.0〜5.0重量部、水酸化アル
ミニウム2.0〜6.0重量部およびチタン酸カリウム
繊維1.0〜5.0重量部よりなる組成物を用いかつ該
加熱加圧成形直前に該マイカ単板に該マイカ単板
100重量部に対しアルコール50〜90重量部および
水50〜10重量部よりなるアルコール水1〜6重量
部を塗布することを特徴とするマイカ積層板の製
造方法。
1. A method for producing a mica laminate by heating and press-molding a mica veneer prepared by applying a binder to a laminated mica board, in which 75 to 80 parts by weight of water and 12.0 to 20.0 parts by weight of orthophosphoric acid are used as the binder. , 3.0 to 5.0 parts by weight of zinc borofluoride, 2.0 to 6.0 parts by weight of aluminum hydroxide, and 1.0 to 5.0 parts by weight of potassium titanate fibers, and the mica monomer was applied to the mica veneer immediately before the heat and pressure molding. board
1. A method for manufacturing a mica laminate, which comprises applying 1 to 6 parts by weight of alcoholic water consisting of 50 to 90 parts by weight of alcohol and 50 to 10 parts by weight of water per 100 parts by weight.
JP2088180A 1980-02-21 1980-02-21 Method of manufacturing mica laminated plate Granted JPS56118203A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2088180A JPS56118203A (en) 1980-02-21 1980-02-21 Method of manufacturing mica laminated plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2088180A JPS56118203A (en) 1980-02-21 1980-02-21 Method of manufacturing mica laminated plate

Publications (2)

Publication Number Publication Date
JPS56118203A JPS56118203A (en) 1981-09-17
JPS6254210B2 true JPS6254210B2 (en) 1987-11-13

Family

ID=12039528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2088180A Granted JPS56118203A (en) 1980-02-21 1980-02-21 Method of manufacturing mica laminated plate

Country Status (1)

Country Link
JP (1) JPS56118203A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0734756Y2 (en) * 1987-09-24 1995-08-09 日立化成工業株式会社 Section Insulator

Also Published As

Publication number Publication date
JPS56118203A (en) 1981-09-17

Similar Documents

Publication Publication Date Title
CN107172821A (en) The method for manufacturing cover clad laminate of 2.2≤Dk of one kind < 6.5
CN105507550B (en) The material of built-in heating layer electric heating solid wooden compound floor
CN110734735A (en) high-branched polymer wood adhesive and preparation method and application thereof
JPS6254210B2 (en)
CN105672611B (en) Preparation technology of built-in heating layer electric heating solid wooden compound floor and products thereof
CN111763492A (en) Modified melamine phenolic resin adhesive
CN114143920B (en) Low-voltage electric heating veneer and preparation method thereof
CN112457053B (en) Modified calcium silicate board and surface treatment method and application thereof
CN108676187A (en) A kind of preparation method of fast-assembling fire prevention crown wall plate
JPS61236665A (en) Manufacture of porous carbon sheet
CN107099011B (en) Graphene amine aldehyde resin for impregnation and preparation method and application thereof
JPS60231470A (en) Manufacture of accurate carbon material
DE1569950A1 (en) Adhesive mixtures
CN113733285B (en) Manufacturing method of fireproof formaldehyde-free plywood
JPS621664B2 (en)
CN116890378B (en) Sheet material and preparation method and application thereof
JPH01253164A (en) Fuel cell board resistant against corrosion and its manufacture
US1597168A (en) Electric insulation board and method of making same
CN110181616B (en) Activated carbon sheet material with high VOC adsorption performance and preparation method thereof
JP2620470B2 (en) Method for manufacturing thermosetting resin sandwich type composite steel sheet
KR810000543B1 (en) Methods of making plywood
CN117484620A (en) Preparation method of low-moisture-absorption flame-retardant plywood and prepared plywood
CN115720432A (en) Black high radiating insulation board
CN117774061A (en) Multifunctional fireproof and antiriot plate and preparation method thereof
JPS6054860B2 (en) Copper-clad phenolic resin laminate