JPS6254123B2 - - Google Patents

Info

Publication number
JPS6254123B2
JPS6254123B2 JP3955579A JP3955579A JPS6254123B2 JP S6254123 B2 JPS6254123 B2 JP S6254123B2 JP 3955579 A JP3955579 A JP 3955579A JP 3955579 A JP3955579 A JP 3955579A JP S6254123 B2 JPS6254123 B2 JP S6254123B2
Authority
JP
Japan
Prior art keywords
weight
units
methylstyrene
diisobutylene
pentadiene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3955579A
Other languages
Japanese (ja)
Other versions
JPS55131009A (en
Inventor
Minoru Ishiguro
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeon Corp
Original Assignee
Nippon Zeon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Zeon Co Ltd filed Critical Nippon Zeon Co Ltd
Priority to JP3955579A priority Critical patent/JPS55131009A/en
Publication of JPS55131009A publication Critical patent/JPS55131009A/en
Publication of JPS6254123B2 publication Critical patent/JPS6254123B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は新規な炭化水素樹脂の製造方法に関
し、さらに詳しくは、1,3−ペンタジエン、ジ
イソブチレン、α−メチルスチレン及び所望によ
り1,3−ブタジエンから誘導された新規な炭化
水素樹脂の製造方法に関する。 従来から、1,3−ペンタジエンを主成分とす
る単量体混合物をカチオン重合することにより粘
着付与樹脂を製造する方法が盛んに研究されてお
り、例えば1,3−ペンタジエン、2−メチル−
2−ブテン、ジシクロペンタジエン及びα−メチ
ルスチレンを共重合する方法(特開昭48−80195
号)、炭素数5のモノオレフイン、ジオレフイン
及びシクロジエンの混合物にα−メチルスチレン
を共重合する方法(仏国特許第2144317号)、1,
3−ペンタジエン、シクロペンテン及びジイソブ
チレンを共重合する方法(特公昭50−29951号)、
1,3−ペンタジエン、シクロペンテン及びα−
メチルスチレンを共重合する方法(特公昭53−
47835号)などが知られている。 このように1,3−ペンタジエンと特定なコモ
ノマーとを組み合わせることによつて、生成する
樹脂の性能を大巾に改良することができ、とくに
後二者の方法で得られる樹脂は、1,3−ペンタ
ジエンの単独重合体はもとより前二者の方法で得
られる樹脂に比較しても溶融粘度が低い、ゴムや
樹脂との相溶性に優れる、粘着剤やホツトメルト
型接着剤に使用した際の粘着特性や接着特性に優
れるなどの利点があるため、各種ゴム系粘着剤、
ホツトメルト型接着剤、溶着型トラフイツクペイ
ントなどの分野でロジン系樹脂やテルペン樹脂に
代替しうる材料として注目を集めている。 しかし、このように改良された樹脂であつて
も、ロジン系樹脂やテルペン樹脂と比較すると未
だ粘着剤とした際の初期接着力(タツキネス)の
面でやや難があり、また原料の入手が比較的困難
なシクロペンテンを必須成分としなければならな
いという製造上の問題があつた。 そこで本発明者らは、かかる従来技術の欠点を
解消すべく鋭意検討を進めた結果、1,3−ペン
タジエンとジイソブチレン及びα−メチルスチレ
ンとを特定比率で共重合すると、意外にもこれら
の欠点を解消しうることを見い出し、本発明を完
成するに到つた。 本発明に主な目的は、ゴム系粘着剤を製造する
際に保持力及び接着力を大きく損なうことなく初
期接着力を改良しうる新規な炭化水素樹脂を効率
よく製造する方法を提供することにある。 本発明のこれらの目的は、30〜80重量%の1,
3−ペンタジエンと5〜40重量%のジイソブチレ
ンと5〜40重量%のα−メチルスチレンと0〜15
重量%の1,3−ブタジエンとを含有し、かつジ
イソブチレンとα−メチルスチレンとの重量比が
1:3〜3:1である単量体混合物を、希釈剤及
びフリーデル・クラフツ型触媒の存在下にカチオ
ン重合し、ポリマー鎖中に1,3−ペンタジエン
単位30〜85重量%、ジイソブチレン単位4〜32重
量%、α−メチルスチレン単位5〜40重量%及び
1,3−ブタジエン0〜12重量%を含有し、かつ
ジイソブチレン単位とα−メチルスチレン単位と
の重量比が1:4〜2:1である分子量500〜
2000、軟化点60〜140℃の炭化水素樹脂を製造す
ることによつて達成することができる。 本発明において使用される単量体混合物は、
1,3−ペンタジエン30〜80重量%、好ましくは
35〜75重量%、ジイソブチレン5〜40重量%、好
ましくは8〜30重量%、α−メチルスチレン5〜
40重量%、好ましくは8〜30重量%、及び1,3
−ブタジエン0〜15重量%、好ましくは2〜10重
量%とを含有するものである。単量体混合物中の
ジイソブチレン及びα−メチルスチレンの含有率
が増すにつれて、生成する炭化水素樹脂の軟化点
及び溶融粘度は低下し、ゴムや熱可塑性樹脂との
相溶性も良好になるが、それらの含有率が過度に
大きくなると生成する炭化水素樹脂の軟化点が低
下しすぎ、反応速度も低下するので、1,3−ペ
ンタジエンの含有率を少なくとも30重量%以上と
する必要がある。 また本発明においては、かかる単量体組成のな
かでもとくにジイソブチレンとα−メチルスチレ
ンとの重量比1:3〜3:1、好ましくは1:
2.5〜2.5:1とすることが必要であり、この範囲
外の場合にはたとえ両モノマーを併用しても本発
明の目的である初期接着力の相乗的な改良効果を
得ることはできない。 一方、単量体混合物の1,3−ペンタジエン含
有率が大きすぎると、重合系が不安定となつたり
ゲル状重合体が生成しやすくなり、また生成する
炭化水素樹脂の溶融粘度や他の熱可塑性樹脂との
相溶性にも難点が生じるため、1,3−ペンタジ
エンの含有率は85重量%以下にすることが必要で
ある。 また、本発明においては所望により15重量%以
下、好ましくは2〜10重量%の1,3−ブタジエ
ンを混合して使用することもできる。1,3−ペ
ンタジエン、ジイソブチレン及びα−メチルスチ
レンの三成分に加えてさらに1,3−ブタジエン
を共重合すると、粘着剤やホツトメルト型接着剤
として使用する際に優れた粘着性や接着性を付与
する炭化水素樹脂が得られる。 さらに本発明において用いられる単量体混合物
は、他の共重合可能な不飽和炭化水素を本発明の
効果を本質的に妨げない範囲で包含することがで
きる。例えばブテン、ペンテン、ヘキセン、ヘプ
テンなどのような炭素数4〜10個を有する脂肪族
モノオレフインの場合は単量体混合物中に20重量
%程度まで包含していてもよいが、イソプレン、
シクロペンタジエン、メチルシクロペンタジエ
ン、ジシクロペンタジエンなどのジオレフインが
単量体混合物中に多量に存在すると、生成する炭
化水素樹脂の溶融粘度が高くなり、ゴムや熱可塑
性樹脂との相溶性にも難点を生ずるため、これら
の含有率は単量体混合物中の5重量%以下に保つ
のが好ましい。 本発明においては、このような単量体混合物を
フリーデル・クラフツ型触媒及び希釈剤の存在下
に常法に従つてカチオン重合する。使用される触
媒の例としては、ハロゲン化アルミニウム、ハロ
ゲン化ホウ素、ハロゲン化錫などが挙げられる
が、なかでもハロゲン化アルミニウム、とくに塩
化アルミニウムが賞用される。また希釈剤として
は、芳香族炭化水素、脂肪族炭化水素、脂環族炭
化水素及びハロゲン化炭化水素のいずれの溶剤も
有効に使用される。しかし、一般にペンタン、ヘ
キサンなどの脂肪族炭化水素を重合溶媒として使
用すると、単量体組成における1,3−ペンタジ
エン濃度が高い場合に炭化水素に不溶性のゲル状
重合体が生成しやすく、またジクロロメタン、四
塩化炭素などのハロゲン含有溶媒を使用すると、
同様にゲル状重合体を生成しやすかつたり、また
は軟化点の低い樹脂が生成する。従つて、本発明
においては、芳香族炭化水素を重合溶媒として使
用することが好ましく、他の溶剤と混合して使用
する場合でも少なくとも全重合溶媒中50重量%以
上は芳香族炭化水素とすることが有利である。こ
の溶媒は、通常単量体100重量部当たり20〜1000
重量部、好ましくは50〜500重量部の割合で使用
される。 重合は通常−20〜100℃、好ましくは0〜80℃
の温度で行なわれ、反応系の圧力は大気圧以上も
しくはそれ以上であつてもよい。反応時間も重要
ではなく、一般に数秒乃至12時間もしくはそれ以
上にわたつて変化することができる。このように
して得られた重合体は、常法に従つて処理し乾燥
する。 本発明によつて得られる炭化水素樹脂は、ポリ
マー鎖中に1,3−ペンタジエン単位30〜85重量
%、好ましくは35〜80重量%、ジイソブチレン単
位4〜32重量%、好ましくは6〜21重量%、α−
メチルスチレン単位5〜40重量%、好ましくは8
〜30重量%、及び1,3−ブタジエン単位0〜12
重量%、好ましくは2〜7重量%を含有し、かつ
ジイソブチレン単位とα−メチルスチレン単位と
の重量比が1:4〜2:1、好ましくは1:3.5
〜1.8:1であるASTM D−1544−63Tによつて
測定した6以下のガードナー色度、500〜2000の
数平均分子量、60〜140℃、好ましくは65〜120℃
のJIS K−2531に規定された軟化点を有するもの
であり、ペンタン、ヘキサン、ペンゼン、キシレ
ン、クロロホルム、四塩化炭素など脂肪族、芳香
族もしくはハロゲン化炭化水素溶媒に可溶性で、
かつ低溶粘度を示す樹脂状重合体である。この炭
化水素樹脂は、これらのモノマー単位の他に共重
合可能な他の不飽和モノマーの単位を含んでいて
もよいが、それらの含有量が増すにつれて樹脂の
性能は低下するので、脂肪族モノオレフインの場
合には全構成単位中の15重量%以下、さらには10
重量%以下、ジオレフインの場合には全単位中の
5重量%以下にすることが好ましい。 この炭化水素樹脂は、天然ゴムをはじめ各種の
合成ゴム、ポリエチレン、エチレン−酢酸ビニル
共重合体などの合成樹脂、ポリテルペン、ロジン
などの天然樹脂及び各種のワツクスなどとも良好
に相溶し、しかも撥水性、粘着性、保持力、剥離
力、耐熱老化性、耐紫外線性などに優れた性質を
示すため、天然ゴムや各種の合成ゴムと混合して
粘着テープなどの粘着剤として有用であり、未加
硫ゴムに粘着性を付与するための粘着付与剤とし
ても有用である。なかでも天然ゴムと配合した場
合には、常温での初期接着力ばかりでなく、低温
での初期接着力にも優れた粘着剤が得られる。 次に実施例を挙げて本発明をさらに具体的に説
明する。なお実施例及び参考例中に用いられてい
る部及び%は、とくに断わらない限り重量基準で
ある。 実施例 1 ガラス製フラスコにベンゼン100部と粒度約40
メツシユの塩化アルミニウム1部を仕込み、撹拌
して系の温度を40℃に維持した。次に上記液中に
第1表に示す組成を有する単量体混合物100部を
連続的に90分にわたり徐々に添加した。系は反応
による発熱により温度上昇するから、冷却して65
℃に保つた。添加終了後、重合系を65℃に保持し
て、さらに30分間撹拌した後、メタノールと28%
アンモニア水の等容量混合物を添加して塩化アル
ミニウムを分解した。分解によつて不活性化され
た触媒粒子は過して除去し、液をガラス製フ
ラスコに移し、窒素を吹き込みつつ加熱して未反
応炭化水素と溶媒を留出除去した後、230℃まで
温度上昇させた。次に重合反応によつて生じた低
重合体及び残存する溶媒を除去するべく系内に飽
和水蒸気を吹き込み、留出液中にほとんど油層が
存在しなくなつたことを確認した後、水蒸気の吹
き込みを停止して溶融した残渣をとり出し、室温
に放冷すると、黄色樹脂状物質が得られた。樹脂
中の平均構成単位は、仕込みモノマー組成と回収
した未反応モノマー組成の分析によつて算出し、
赤外線吸収スペクトル及び核磁気共鳴スペクトル
により確認した。 得られた各々の炭化水素樹脂について、軟化点
(JIS K−2531に規定された環球法により測定)、
数平均分子量(VPOにより測定)、ガードナー色
度(ASTM D 1544−63Tにより測定)を測定
した。結果を第2表に示す。
The present invention relates to a novel method for producing a hydrocarbon resin, and more particularly, a method for producing a novel hydrocarbon resin derived from 1,3-pentadiene, diisobutylene, α-methylstyrene, and optionally 1,3-butadiene. Regarding. Conventionally, methods for producing tackifier resins by cationic polymerization of monomer mixtures containing 1,3-pentadiene as a main component have been actively researched; for example, 1,3-pentadiene, 2-methyl-
Method for copolymerizing 2-butene, dicyclopentadiene and α-methylstyrene (Japanese Patent Application Laid-Open No. 48-80195
No.), Method of copolymerizing α-methylstyrene into a mixture of a monoolefin, a diolefin, and a cyclodiene having 5 carbon atoms (French Patent No. 2144317), 1,
A method for copolymerizing 3-pentadiene, cyclopentene and diisobutylene (Japanese Patent Publication No. 50-29951),
1,3-pentadiene, cyclopentene and α-
Method for copolymerizing methylstyrene (Special Publication 1973-
47835) are known. By combining 1,3-pentadiene and a specific comonomer in this way, the performance of the resulting resin can be greatly improved; in particular, the resin obtained by the latter two methods is - It has a lower melt viscosity than pentadiene homopolymers as well as resins obtained by the first two methods, has excellent compatibility with rubber and resins, and has excellent tackiness when used in pressure-sensitive adhesives and hot-melt adhesives. Various rubber-based adhesives,
It is attracting attention as a material that can replace rosin resins and terpene resins in fields such as hot melt adhesives and welding traffic paints. However, even with these improved resins, they still have some difficulty in terms of initial adhesive strength (tackiness) when used as adhesives compared to rosin-based resins and terpene resins, and raw materials are difficult to obtain. There was a manufacturing problem in that cyclopentene, which is difficult to identify, had to be an essential component. Therefore, the present inventors conducted intensive studies to solve the drawbacks of the prior art, and found that when 1,3-pentadiene, diisobutylene, and α-methylstyrene were copolymerized at a specific ratio, they surprisingly The inventors have discovered that the drawbacks can be overcome and have completed the present invention. The main object of the present invention is to provide a method for efficiently producing a novel hydrocarbon resin that can improve initial adhesive strength without significantly impairing holding power and adhesive strength when producing a rubber adhesive. be. These objects of the invention are based on 30 to 80% by weight of 1,
3-pentadiene, 5-40% by weight of diisobutylene, 5-40% by weight of α-methylstyrene, and 0-15
A monomer mixture containing 1,3-butadiene and a diisobutylene to α-methylstyrene weight ratio of 1:3 to 3:1 is added to a diluent and a Friedel-Crafts type catalyst. Cationic polymerization in the presence of 30-85% by weight of 1,3-pentadiene units, 4-32% by weight of diisobutylene units, 5-40% by weight of α-methylstyrene units, and 0% by weight of 1,3-butadiene units. -12% by weight, and the weight ratio of diisobutylene units to α-methylstyrene units is 1:4 to 2:1, with a molecular weight of 500 to
2000, which can be achieved by producing a hydrocarbon resin with a softening point of 60-140°C. The monomer mixture used in the present invention is
30-80% by weight of 1,3-pentadiene, preferably
35-75% by weight, diisobutylene 5-40% by weight, preferably 8-30% by weight, α-methylstyrene 5-40% by weight
40% by weight, preferably 8-30% by weight, and 1,3
- 0 to 15% by weight, preferably 2 to 10% by weight of butadiene. As the content of diisobutylene and α-methylstyrene in the monomer mixture increases, the softening point and melt viscosity of the resulting hydrocarbon resin decrease, and the compatibility with rubber and thermoplastic resin becomes better. If their content becomes too large, the softening point of the resulting hydrocarbon resin will drop too much and the reaction rate will also drop, so the content of 1,3-pentadiene must be at least 30% by weight. Furthermore, in the present invention, among such monomer compositions, the weight ratio of diisobutylene to α-methylstyrene is 1:3 to 3:1, preferably 1:
It is necessary to set the ratio to be 2.5 to 2.5:1, and if it is outside this range, even if both monomers are used together, it will not be possible to obtain the synergistic effect of improving the initial adhesive strength, which is the objective of the present invention. On the other hand, if the 1,3-pentadiene content of the monomer mixture is too high, the polymerization system becomes unstable and gel-like polymers are likely to be formed, and the melt viscosity of the resulting hydrocarbon resin and other heat Since there are also difficulties in compatibility with plastic resins, the content of 1,3-pentadiene needs to be 85% by weight or less. In addition, in the present invention, 1,3-butadiene may be mixed in an amount of 15% by weight or less, preferably 2 to 10% by weight, if desired. Copolymerizing 1,3-butadiene in addition to the three components of 1,3-pentadiene, diisobutylene, and α-methylstyrene provides excellent tack and adhesion when used as a pressure-sensitive adhesive or hot melt adhesive. A hydrocarbon resin is obtained. Furthermore, the monomer mixture used in the present invention may contain other copolymerizable unsaturated hydrocarbons within a range that does not essentially impede the effects of the present invention. For example, in the case of aliphatic monoolefins having 4 to 10 carbon atoms such as butene, pentene, hexene, heptene, etc., up to about 20% by weight may be included in the monomer mixture, but isoprene,
When diolefins such as cyclopentadiene, methylcyclopentadiene, and dicyclopentadiene are present in large amounts in the monomer mixture, the resulting hydrocarbon resin has a high melt viscosity and has difficulty in compatibility with rubber and thermoplastic resins. Therefore, it is preferable to keep their content below 5% by weight in the monomer mixture. In the present invention, such a monomer mixture is cationically polymerized in the presence of a Friedel-Crafts type catalyst and a diluent according to a conventional method. Examples of the catalyst used include aluminum halides, boron halides, tin halides, etc. Among them, aluminum halides, particularly aluminum chloride, are preferred. Further, as the diluent, any of aromatic hydrocarbons, aliphatic hydrocarbons, alicyclic hydrocarbons, and halogenated hydrocarbons can be effectively used. However, in general, when aliphatic hydrocarbons such as pentane and hexane are used as polymerization solvents, gel-like polymers that are insoluble in hydrocarbons tend to be formed when the 1,3-pentadiene concentration in the monomer composition is high; , when using halogen-containing solvents such as carbon tetrachloride,
Similarly, a gel-like polymer is easily produced, or a resin with a low softening point is produced. Therefore, in the present invention, it is preferable to use aromatic hydrocarbons as a polymerization solvent, and even when mixed with other solvents, aromatic hydrocarbons should account for at least 50% by weight of the total polymerization solvent. is advantageous. This solvent usually contains 20 to 1000 parts by weight per 100 parts by weight of monomer.
It is used in proportions of 50 to 500 parts by weight, preferably 50 to 500 parts by weight. Polymerization is usually carried out at -20 to 100°C, preferably 0 to 80°C.
The pressure of the reaction system may be at or above atmospheric pressure. The reaction time is also not critical and can generally vary from a few seconds to 12 hours or more. The polymer thus obtained is treated and dried according to conventional methods. The hydrocarbon resin obtained by the present invention has 30 to 85% by weight of 1,3-pentadiene units, preferably 35 to 80% by weight, and 4 to 32% by weight of diisobutylene units, preferably 6 to 21% by weight of diisobutylene units in the polymer chain. Weight%, α-
5 to 40% by weight of methylstyrene units, preferably 8
~30% by weight, and 0 to 12 1,3-butadiene units
% by weight, preferably 2 to 7% by weight, and the weight ratio of diisobutylene units to α-methylstyrene units is 1:4 to 2:1, preferably 1:3.5.
Gardner chromaticity of 6 or less as measured by ASTM D-1544-63T which is ~1.8:1, number average molecular weight of 500-2000, 60-140°C, preferably 65-120°C
It has a softening point specified in JIS K-2531, and is soluble in aliphatic, aromatic, or halogenated hydrocarbon solvents such as pentane, hexane, penzene, xylene, chloroform, and carbon tetrachloride.
It is also a resinous polymer that exhibits low solution viscosity. In addition to these monomer units, this hydrocarbon resin may also contain units of other unsaturated monomers that can be copolymerized, but as their content increases, the performance of the resin decreases. In the case of olefin, it is less than 15% by weight of the total constituent units, and even 10% by weight of the total constituent units.
It is preferably at most 5% by weight of the total units in the case of diolefins. This hydrocarbon resin is well compatible with various synthetic rubbers including natural rubber, synthetic resins such as polyethylene and ethylene-vinyl acetate copolymer, natural resins such as polyterpene and rosin, and various waxes, and is also repellent. It exhibits excellent properties such as water-based properties, adhesion, holding power, peeling power, heat aging resistance, and UV resistance, so it is useful as an adhesive for adhesive tapes when mixed with natural rubber and various synthetic rubbers. It is also useful as a tackifier for imparting tackiness to vulcanized rubber. In particular, when blended with natural rubber, a pressure-sensitive adhesive with excellent initial adhesive strength not only at room temperature but also at low temperature can be obtained. Next, the present invention will be explained in more detail with reference to Examples. Note that parts and percentages used in Examples and Reference Examples are based on weight unless otherwise specified. Example 1 100 parts of benzene and particle size approx. 40 in a glass flask
One part of mesh aluminum chloride was charged and stirred to maintain the system temperature at 40°C. Next, 100 parts of a monomer mixture having the composition shown in Table 1 was gradually added to the above solution continuously over 90 minutes. The temperature of the system rises due to the heat generated by the reaction, so it is cooled down 65
It was kept at ℃. After the addition was completed, the polymerization system was kept at 65°C and stirred for an additional 30 minutes, and then mixed with methanol and 28%
The aluminum chloride was decomposed by adding a mixture of equal volumes of aqueous ammonia. Catalyst particles inactivated by decomposition were removed by filtration, the liquid was transferred to a glass flask, heated while blowing nitrogen to distill off unreacted hydrocarbons and solvent, and then heated to 230°C. raised. Next, saturated steam was blown into the system to remove the low polymer produced by the polymerization reaction and the remaining solvent, and after confirming that almost no oil layer existed in the distillate, steam was blown into the system. The molten residue was taken out and allowed to cool to room temperature, yielding a yellow resinous substance. The average structural unit in the resin is calculated by analyzing the charged monomer composition and the recovered unreacted monomer composition,
Confirmed by infrared absorption spectrum and nuclear magnetic resonance spectrum. For each of the obtained hydrocarbon resins, the softening point (measured by the ring and ball method specified in JIS K-2531),
The number average molecular weight (measured by VPO) and Gardner chromaticity (measured by ASTM D 1544-63T) were measured. The results are shown in Table 2.

【表】【table】

【表】 実施例 2 第3表に示す組成の単量体混合物を使用するこ
と以外は実施例1と全く同様にして重合を行つ
た。結果を第3表に示す。
[Table] Example 2 Polymerization was carried out in exactly the same manner as in Example 1 except that a monomer mixture having the composition shown in Table 3 was used. The results are shown in Table 3.

【表】 参考例 実施例1及び2で得られた炭化水素樹脂の粘着
剤配合物への適用の有用性を評価するために、天
然ゴム(ペールクレープ、ムーニー粘度ML1+
4/100℃60)を用いて、次のような試験を行な
つた。 まずゴム100部に対して炭化水素樹脂80部及び
酸化防止剤1部を配合したのち、トルエンを加え
て固型分濃度15%の溶液とし、これを1ミル厚の
ポリエステルフイルム上に25μ厚となるように塗
付して粘着テープを作成し、その粘着力、接着力
及び保持力を測定した。比較のためにロジン誘導
体(水添ロジンのグリセリンエステル軟化点71
℃)についても同様にして粘着テープを作成し、
その物性を測定した。結果を第4表に示す。 なお、粘着力はJ・Dow法〔Proc.Inst.Rub.
Ind.,1105(1954)〕に準じ、傾斜30度のステン
レス板上の斜面に長さ10cmの粘着テープを貼りつ
け、斜面の上方10cmの位置より直径3/32インチか
ら1インチまでの30種類の大きさの鋼球を初速度
0でころがして粘着テープ上で停止する最大径の
球の大きさで表示し、接着力はJIS Z−1522に準
じ、280番の耐水研磨紙で研磨したステンレス板
に巾25mm×長さ100mmとして粘着テープを貼りつ
け、25℃において200mm/分の速度で180度の方向
に剥離して測定し、保持力はJIS Z−1524に準
じ、同様に処理したステンレス板に25mm×10mmの
面積が接するように粘着テープを貼りつけ、40℃
において1Kgの荷重を加えて粘着テープがステン
レス板より脱落するのに要する時間を測定した。
[Table] Reference example In order to evaluate the usefulness of applying the hydrocarbon resins obtained in Examples 1 and 2 to adhesive formulations, natural rubber (pale crepe, Mooney viscosity ML1+
4/100°C60), the following test was conducted. First, 80 parts of hydrocarbon resin and 1 part of antioxidant are mixed with 100 parts of rubber, then toluene is added to make a solution with a solid content concentration of 15%, and this is spread on a 1 mil thick polyester film with a thickness of 25μ. An adhesive tape was prepared by applying the adhesive tape, and its adhesive strength, adhesion strength, and holding power were measured. For comparison, rosin derivatives (hydrogenated rosin glycerin ester softening point 71
℃), make adhesive tape in the same way,
Its physical properties were measured. The results are shown in Table 4. In addition, the adhesive strength is determined by the J.Dow method [Proc.Inst.Rub.
Ind., 1105 (1954)], a 10 cm long adhesive tape was pasted on the slope of a stainless steel plate with a 30 degree inclination, and 30 types of tape from 3/32 inch to 1 inch in diameter were applied from a position 10 cm above the slope. The size of the steel ball is indicated by the size of the largest diameter ball that stops on the adhesive tape when rolled at an initial speed of 0, and the adhesive strength is based on JIS Z-1522. Adhesive tape was pasted on a board with a width of 25 mm x length of 100 mm, and the holding force was measured by peeling it in a 180 degree direction at a speed of 200 mm/min at 25°C. Paste adhesive tape so that an area of 25 mm x 10 mm is in contact with the board and heat it at 40℃.
The time required for the adhesive tape to fall off the stainless steel plate was measured under a load of 1 kg.

【表】 本発明によつて得られる炭化水素樹脂を天然ゴ
ムと混合して得られる粘着剤は、従来から賞用さ
れているロジン誘導体を使用して得られる粘着剤
(粘着剤8)に比較して同等もしくはそれ以上の
性能を有することがわかる。とくに1,3−ブタ
ジエンを共重合した樹脂の場合(粘着剤4)に高
い初期接着力が得られる。しかし、ジイソブチレ
ン及びα−メチルスチレンのいずれか一方を共重
合していない樹脂を用いる場合(粘着剤9〜12)
には、たとえ1,3−ブタジエンを共重合したも
のであつても初期接着力の改良効果が充分でな
い。
[Table] The adhesive obtained by mixing the hydrocarbon resin obtained according to the present invention with natural rubber is compared to the adhesive obtained using a conventionally used rosin derivative (Adhesive 8). It can be seen that the performance is equivalent to or better than that of the previous one. In particular, high initial adhesive strength can be obtained when using a resin copolymerized with 1,3-butadiene (adhesive 4). However, when using a resin that is not copolymerized with either diisobutylene or α-methylstyrene (adhesives 9 to 12)
Even if 1,3-butadiene is copolymerized, the initial adhesion strength is not sufficiently improved.

Claims (1)

【特許請求の範囲】 1 1,3−ペンタジエン30〜80重量%、ジイソ
ブチレン5〜40重量%、α−メチルスチレン5〜
40重量%及び1,3−ブタジエン0〜15重量%を
含有し、かつジイソブチレンとα−メチルスチレ
ンとの重量比が1:3〜3:1である単量体混合
物をカチオン重合することを特徴とする、ポリマ
ー鎖が(A)1,3−ペンタジエン単位30〜85重量
%、(B)ジイソブチレン単位4〜32重量%、(C)α−
メチルスチレン単位5〜40重量%及び(D)1,3−
ブタジエン単位0〜12重量%とから構成されてお
り、かつ、ジイソブチレン単位とα−メチルスチ
レン単位との重量比が1:4〜2:1である分子
量500〜2000、軟化点60〜140℃の新規な炭化水素
樹脂の製造方法。 2 重合が希釈剤の存在下に実施されるものであ
る特許請求の範囲第1項記載の方法。 3 重合がハロゲン化アルミニウムの存在下に実
施されるものである特許請求の範囲第1項記載の
方法。
[Scope of Claims] 1 1,3-pentadiene 30-80% by weight, diisobutylene 5-40% by weight, α-methylstyrene 5-50% by weight
Cationically polymerizing a monomer mixture containing 40% by weight and 0 to 15% by weight of 1,3-butadiene, and having a weight ratio of diisobutylene to α-methylstyrene of 1:3 to 3:1. The polymer chain is characterized by having (A) 30 to 85% by weight of 1,3-pentadiene units, (B) 4 to 32% by weight of diisobutylene units, and (C) α-
5-40% by weight of methylstyrene units and (D)1,3-
It is composed of 0 to 12% by weight of butadiene units, and the weight ratio of diisobutylene units to α-methylstyrene units is 1:4 to 2:1.The molecular weight is 500 to 2000, and the softening point is 60 to 140°C. A novel method for producing hydrocarbon resin. 2. The method according to claim 1, wherein the polymerization is carried out in the presence of a diluent. 3. The method according to claim 1, wherein the polymerization is carried out in the presence of aluminum halide.
JP3955579A 1979-04-02 1979-04-02 Novel hydrocarbon resin and preparation thereof Granted JPS55131009A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3955579A JPS55131009A (en) 1979-04-02 1979-04-02 Novel hydrocarbon resin and preparation thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3955579A JPS55131009A (en) 1979-04-02 1979-04-02 Novel hydrocarbon resin and preparation thereof

Publications (2)

Publication Number Publication Date
JPS55131009A JPS55131009A (en) 1980-10-11
JPS6254123B2 true JPS6254123B2 (en) 1987-11-13

Family

ID=12556305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3955579A Granted JPS55131009A (en) 1979-04-02 1979-04-02 Novel hydrocarbon resin and preparation thereof

Country Status (1)

Country Link
JP (1) JPS55131009A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1298026C (en) * 1986-02-18 1992-03-24 Mary E. Ahner Light color, low softening point petroleum hydrocarbon resins and the pressure sensitive adhesives containing such resins

Also Published As

Publication number Publication date
JPS55131009A (en) 1980-10-11

Similar Documents

Publication Publication Date Title
US4038346A (en) Tackifier composition and rubber mixture
US3784530A (en) Hydrocarbon-derived resin
EP0120596B1 (en) Petroleum resins and pressure sensitive adhesive formulations utilizing same as tackifier
US4104327A (en) Adhesive compositions
US4714749A (en) Fully saturated petroleum resin and hot melt pressure sensitive adhesive formulations utilizing same as tackifier
US3880953A (en) Adhesive composition
EP0025004B1 (en) Adhesive composition and method of preparation
US3792005A (en) Low molecular weight block copolymers and coating compositions thereof
US3784587A (en) Adhesive composition containing an a-b-a block copolymer,poly alpha-methyl styrene and a tackifying resin
US3846352A (en) Pressure sensitive adhesive compositions comprising rubber and a resinous interpolymer
US4046838A (en) Adhesive compositions of a block copolymer and tackifying resin
US5135816A (en) Radiation-reactive phenylbutadiene multiblock copolymers
US4157363A (en) Rubber composition
US5066728A (en) Radiation-reactive phenylbutadiene multiblock copolymers
US5516835A (en) Isoprene-based hydrocarbon resin and adhesive composition containing the same
JPH0717808B2 (en) Petroleum resin manufacturing method
JP3453396B2 (en) Hot melt adhesive composition
JPH06330008A (en) Radiation-curable poly(alpha-olefin) adhesive
US4048424A (en) Novel hydrocarbon resins and process for preparation thereof
JPS6254123B2 (en)
US4020260A (en) Novel hydrocarbon resins comprising 1,3-pentadiene, 1,5,9-cyclododecatriene and optionally monoolefin
US3839243A (en) Dipentene/beta-pinene copolymers and elastomers
JP4430816B2 (en) Aliphatic hydrocarbon resins modified with aromatic compounds
JPS627207B2 (en)
EP0234856B1 (en) Light color, low softening point petroleum hydrocarbon resins and pressure sensitive adhesives containing such resins