JPS6254035A - Continuous heat treatment of steel strip - Google Patents

Continuous heat treatment of steel strip

Info

Publication number
JPS6254035A
JPS6254035A JP19261385A JP19261385A JPS6254035A JP S6254035 A JPS6254035 A JP S6254035A JP 19261385 A JP19261385 A JP 19261385A JP 19261385 A JP19261385 A JP 19261385A JP S6254035 A JPS6254035 A JP S6254035A
Authority
JP
Japan
Prior art keywords
heating
steel strip
burner
zone
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19261385A
Other languages
Japanese (ja)
Other versions
JPH0149774B2 (en
Inventor
Michio Nakayama
道夫 中山
Shiro Fukunaka
福中 司郎
Masahiro Abe
阿部 正広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP19261385A priority Critical patent/JPS6254035A/en
Priority to US07/027,224 priority patent/US4760995A/en
Priority to CA000513536A priority patent/CA1255897A/en
Priority to BR8606772A priority patent/BR8606772A/en
Priority to CN 86104502 priority patent/CN1011982B/en
Priority to PCT/JP1986/000352 priority patent/WO1987000555A1/en
Priority to AU61432/86A priority patent/AU598981B2/en
Priority to AT86904373T priority patent/ATE61416T1/en
Priority to EP86904373A priority patent/EP0233944B1/en
Priority to DE8686904373T priority patent/DE3677959D1/en
Publication of JPS6254035A publication Critical patent/JPS6254035A/en
Publication of JPH0149774B2 publication Critical patent/JPH0149774B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

PURPOSE:To effect continuous heat treatment of a steel strip without forming an oxide film, etc., by heating the steel strip respectively by non-reduction type heating burners in the heating region on the inlet side of each burner of a direct firing heating zone and by reduction type heating burners which can form non-equil. regions in flames. CONSTITUTION:The steel strip S is subjected to the continuous heat treatment consisting in heating in the direct firing heating zone, holding for >=5sec in a radiation tube type holding zone, then quick cooling at a cooling rate of >=40 deg.C/min. Part of the heating in the direct firing heating zone is executed by the non-reduction type heating burners, i.e., the heating burners capable of forming the non-equil. regions where an intermediate product of combustion exists and free O2 does not exist, in the direct firing heating zone. The steel strip is heated by the reduction type heating burners in the heating region on the outlet side of the direct firing heating zone. The steel strip is partly oxidized by the heating in the heating region on the inlet side of each region by adopting such direct firing heating method, but the oxide films are reduced by the reduction heating in the heating regions on the outlet side. The steel strip is thus delivered in a non-oxidizing state from each pass to the holding zone of the next pass or succeeding holding zone.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は11嘗の連続熱処理方法に関する。[Detailed description of the invention] [Industrial application fields] The present invention relates to a continuous heat treatment method for 11 years.

[従来の技術及びその問題点コ 従来、連続焼鈍設備の加熱炉では、鋼帯酸化防止のため
輻射管による間接加熱方式が一般に採られている。しか
し、この間接加熱方式は一般の直火加熱方式のような鋼
帯の酸化という問題を生じなくて済む反面、以下のよう
な特有の問題を有している。
[Prior art and its problems] Conventionally, in the heating furnace of continuous annealing equipment, an indirect heating method using a radiant tube has been generally adopted in order to prevent steel strip oxidation. However, although this indirect heating method does not have the problem of oxidation of the steel strip unlike the general direct heating method, it does have the following specific problems.

イ)炉温か最大900℃と低いため、必要な加熱能力を
確保するためには炉長を大きくする必要があり、設備が
高くつく。
b) Because the furnace temperature is low, at a maximum of 900°C, the furnace length must be increased to ensure the necessary heating capacity, making equipment expensive.

口)間接加熱であるために熱応答が悪い、したがって鋼
帯のサイズ変更や処理熱サイクルの変更に迅速に対応で
きない。
口) Due to indirect heating, the thermal response is poor, and therefore it is not possible to respond quickly to changes in the size of the steel strip or changes in the processing heat cycle.

ハ)冷延鋼帯表面に付着する冷間圧延油等を熱処理前に
洗浄除去する必要があり、そのための設備費と運転費の
増大を招く。
c) It is necessary to wash and remove cold rolling oil and the like adhering to the surface of the cold rolled steel strip before heat treatment, which increases equipment costs and operating costs.

このような間接加熱方式に対し、所謂無酸化直火加熱方
式なる方式が特公昭58−44133号や特公昭59−
29651号等において冷延鋼帯の連続熱処理設備用と
して提案され、また広く溶融亜鉛メツキラインや電磁鋼
板連続焼鈍ラインに用いられている。この方式は、スト
リップ温度(Max。
In contrast to this indirect heating method, a so-called non-oxidizing direct flame heating method is proposed in Japanese Patent Publication No. 58-44133 and Japanese Patent Publication No. 59-1989.
No. 29651 etc., it was proposed for continuous heat treatment equipment for cold rolled steel strips, and it is also widely used in hot-dip galvanizing lines and continuous annealing lines for electrical steel sheets. This method is based on the strip temperature (Max.

900℃)の上昇に応じて各燃焼制御ゾーンの空気比を
低減してい< (1,4未満→0.6)等の方法で鋼帯
の酸化を抑えつつ加熱を行うというもので。
As the temperature rises (900℃), the air ratio in each combustion control zone is reduced (from less than 1.4 to 0.6) to suppress oxidation of the steel strip while heating.

直火方式であるため上記イ)〜ハ)の問題も回避できる
利点がある。
Since it is an open flame method, it has the advantage of avoiding the above-mentioned problems (a) to (c).

しかしこの方式は無酸化式とは言うものの実際には微酸
化式であり、空気比1.0未満の燃焼生成ガス中にも酸
化性ガスであるC02.H2Oが多量に含まれているた
め、加熱後の酸化膜厚みは原板の50A未満から500
−1000人にも増大してしまう。したがってこの方式
でも次のような間厘がある。
However, although this method is said to be non-oxidizing, it is actually a slight oxidizing method, and even in the combustion generated gas with an air ratio of less than 1.0, there is CO2, which is an oxidizing gas. Because it contains a large amount of H2O, the thickness of the oxide film after heating varies from less than 50A on the original plate to 500A on the original plate.
-The number of people will increase to 1,000. Therefore, this method also has the following drawbacks.

イ)酸化膜がロール表面に移って成長する現象(ロール
ピックアップ)が生じロールやストリップ表面を傷める
b) A phenomenon in which the oxide film moves and grows on the roll surface (roll pickup) occurs, damaging the roll or strip surface.

口)直火加熱後、含H2雰囲気ガスによって表面を完全
に還元する必要があるが、酸化膜が厚いため高濃度のH
2を必要とし、且つ雰囲気の汚染が著しい。
After heating with direct flame, it is necessary to completely reduce the surface with H2-containing atmospheric gas, but since the oxide film is thick, it is necessary to reduce the surface with a high concentration of H2
2 is required, and the atmosphere is significantly contaminated.

ハ)酸化膜によるストリップ表面の輻射率変動が大きい
ため、輻射温度計による加熱温度測定とこれに基づく直
火炉燃焼制御が困薙である。
c) Since the emissivity of the strip surface fluctuates greatly due to the oxide film, it is difficult to measure the heating temperature using a radiation thermometer and control combustion in the direct-fired furnace based on this measurement.

[問題を解決するための手段] 本発明は、このような従来の問題点に鑑み、鋼帯を酸化
膜等による問題を生じさせることなく適切に連続熱処理
することができる方法を提供せんとするものである。
[Means for Solving the Problems] In view of these conventional problems, the present invention aims to provide a method that can appropriately and continuously heat-treat a steel strip without causing problems due to oxide films or the like. It is something.

このため本発明は、鋼帯を1パスまたは2パス以上から
なる直火加熱帯で加熱後、均熱帯で5秒以上均熱し、次
いで40℃/秒以上の冷却速度で急速冷却する連続熱処
理を行うとともに、前記直火加熱帯では各パスの入側加
熱領域において非還元型加熱バーナにより加熱し、各パ
スの出側加熱領域においては、燃焼中間生成物を有し且
つ遊兼酸素を有しない非平衡領域を火炎中に形成し得る
還元型加熱バーナにより加熱するようにしたことをその
基本的特徴とする。
For this reason, the present invention provides continuous heat treatment in which the steel strip is heated in a direct flame heating zone consisting of one pass or two or more passes, then soaked in a soaking zone for 5 seconds or more, and then rapidly cooled at a cooling rate of 40°C/second or more. At the same time, in the direct-fired heating zone, the inlet heating area of each pass is heated by a non-reducing heating burner, and the outlet heating area of each pass contains combustion intermediate products and does not contain free oxygen. Its basic feature is that the non-equilibrium region is heated by a reduction type heating burner that can be formed in a flame.

加熱バーナを空気比0.8〜0.95で燃焼させた生成
燃焼ガスは平衡論的には鋼帯表面に対し酸化性であるこ
とが知られている。しかし、本発明者等が検討を重ねた
ところ、バーナ構造の選択によって急速燃焼を行わせる
と、生成燃焼ガスは燃焼終了後短時間の間430〜90
0℃の鋼帯表面に対し強力な還元力を示すことを見出し
た。この還元力の原因は、燃焼後H2,Go、H20゜
CO□、N2等の平衡混合ガスになる前のごく短時間存
在する中間反応生成物(中間イオン、ラジカル等)によ
るもので、急速燃焼の結果、火炎中に遊諏酸素が残存せ
ずしかも上記中間反応生成物が存在する非平衡領域が平
衡ガス領域と ・明確に区別されるような形で形成され
ることによるものである。
It is known that the combustion gas generated by burning a heating burner at an air ratio of 0.8 to 0.95 is oxidizing to the surface of the steel strip in equilibrium theory. However, after repeated studies by the present inventors, we found that if rapid combustion is performed by selecting a burner structure, the generated combustion gas will remain between 430 and 90% for a short time after combustion ends.
It has been found that it exhibits a strong reducing power on the surface of the steel strip at 0°C. The cause of this reducing power is due to intermediate reaction products (intermediate ions, radicals, etc.) that exist for a very short time after combustion before becoming an equilibrium mixed gas such as H2, Go, H20°CO□, N2, etc., and are caused by rapid combustion. As a result, a non-equilibrium region in which no free oxygen remains in the flame and in which the intermediate reaction products are present is formed in a manner that is clearly distinguishable from the equilibrium gas region.

このようなことから本発明法では、直火加熱帯における
鋼帯の加熱において、一部の加熱を上記還元型加熱バー
ナ、すなわち燃焼中間生成物が存在し且つ遊兼酸素が存
在しない非平衡領域が形成され得る加熱バーナで行う。
For this reason, in the method of the present invention, when heating the steel strip in the direct-fired heating zone, part of the heating is performed using the reduction type heating burner, that is, in the non-equilibrium region where combustion intermediate products exist and free oxygen does not exist. It is carried out with a heating burner that can form.

このような加熱バーナでは、火炎中はぼ燃焼の完了した
Co、、H2O,N2.H2CO等を含む領域、すなわ
ち準平衡領域が酸化性であるのに対し、上記非平衡領域
は還元性を示し、この火炎を非平衡領域でrA帯に衝突
させることにより鋼帯を酸化させることなく加熱するこ
とができる。この領域は300人程度の酸化膜を1秒以
内に除去する程度の還元力を有している。第3図は、こ
のような加熱バーナによって形成される火炎中非平衡領
域のイオン検出プローブによる一測定例を示すもので、
プローブによる測定電流値が高いのはイオン強度が大き
く、したがって燃焼中間生成物が多量に存在しているこ
とを意味している。これによれば、バーナ出口外方の所
定の範囲に亘って非平衡領域が形成され、その外方はほ
ぼ燃焼が完了したCo2.H2O,N2等を含む準平衡
領域となっている。
In such a heating burner, completely burned Co, H2O, N2, . While the region containing H2CO, etc., that is, the quasi-equilibrium region, is oxidizing, the non-equilibrium region is reducing, and by colliding this flame with the rA band in the non-equilibrium region, the steel strip can be heated without oxidizing it. Can be heated. This region has enough reducing power to remove the oxide film of about 300 people within one second. FIG. 3 shows an example of measurement using an ion detection probe of the non-equilibrium region in the flame formed by such a heating burner.
A high current value measured by the probe means that the ionic strength is high and therefore a large amount of combustion intermediate products are present. According to this, a non-equilibrium region is formed over a predetermined range outside the burner outlet, and the outside of the non-equilibrium region is composed of Co2. It is a quasi-equilibrium region containing H2O, N2, etc.

以下、本発明をより具体的に説明する。鋼帯は、1パス
または2パス以上の直火加熱帯で所定の温度まで直火加
熱されるが、本発明では、1または複数あるパスにおい
てパスの入側加熱領域(パスの全加熱領域を任意の位置
で2分したときの入側加熱領域)において従来一般に用
いられている非還元型加熱バーナ(波数型バーナ)を用
い、一方パスの出側加熱領域(パスの全加熱領域を任意
の位置で2分したときの出側加熱領域)においては、上
記還元型加熱バーナを用い鋼帯を加熱するものである。
The present invention will be explained in more detail below. A steel strip is directly heated to a predetermined temperature in one or more direct-fired heating zones, but in the present invention, in one or more passes, the heating area on the entrance side of the pass (the entire heating area of the pass is A conventionally commonly used non-reducing heating burner (wave number type burner) is used in the input side heating area when divided into two at an arbitrary position, and on the other hand, the exit side heating area of the pass (the entire heating area of the pass is divided into two at an arbitrary position) is used. In the exit side heating area (divided into two), the steel strip is heated using the reduction type heating burner.

直火加熱帯が複数パスからなる場合には、各パス毎につ
いて上記のような態様で加熱を行う。このような直火加
熱方法を採ることにより、鋼帯は各パスの入側加熱領域
における加熱により一定程度酸化されるが出側加熱領域
における還元加熱によりその酸化膜が還元され、各パス
から次のパスまたは後続の均熱帯に無酸化状態で送り出
される。
When the direct fire heating zone consists of multiple passes, heating is performed in the manner described above for each pass. By adopting such a direct flame heating method, the steel strip is oxidized to a certain extent by heating in the inlet heating area of each pass, but the oxide film is reduced by reductive heating in the outlet heating area, and the steel strip is heated from each pass to the next. pass or subsequent soaking zone in an unoxidized state.

上記のような還元型加熱バーナによる加熱は、直火加熱
方法パスの全加熱領域で行うことにより鋼帯を終始無酸
化状態で加熱することが可能であるが、この種のバーナ
は一般に使用されている非還元型バーナ(拡散型バーナ
)に較べ熱容量が小さく、これで全加熱領域の加熱を行
う場合多数のバーナを用いなければ十分な熱量を確保で
きない。一方、鋼f酸化に基づくロールピックアップは
、直火加熱帯を構成するパスの出側通板ロール直前で鋼
帯が無酸化状態であれば防止できるものである。このよ
うなことから本発明では、直火加熱帯を構成する各パス
についてその入側加熱領域において熱容量の大きい非還
元型加熱バーナにより加熱することにより熱量を十分確
保するとともに、出側加熱領域において、入側加熱領域
で鋼帯表面に形成された酸化膜を還元型加熱バーナによ
り還元し、鋼帯を無酸化状態で次のパス、または均熱帯
に送り出すようにしたものである。
Heating with a reduction type heating burner as described above can heat the steel strip in a non-oxidizing state from beginning to end by performing heating in the entire heating region of the direct heating method pass, but this type of burner is generally not used. It has a smaller heat capacity than a non-reducing burner (diffusion type burner), and if the entire heating area is to be heated with this burner, a sufficient amount of heat cannot be secured unless a large number of burners are used. On the other hand, roll pickup due to steel f oxidation can be prevented if the steel strip is in a non-oxidized state immediately before the exit-side passing roll of the pass that constitutes the direct-fired heating zone. For this reason, in the present invention, each pass constituting the direct-fired heating zone is heated by a non-reducing heating burner with a large heat capacity in the inlet side heating area, thereby ensuring a sufficient amount of heat, and in the outlet side heating area. The oxide film formed on the surface of the steel strip in the inlet heating region is reduced by a reduction heating burner, and the steel strip is sent to the next pass or soaking zone in an unoxidized state.

鋼帯は続く均熱帯で5秒以上所定の温度域に保持される
。鋼帯は加熱帯後半で再結晶温度を超えた時点で結晶粒
の核が発生し粒成長が開始されるが、上記均熱時間はこ
のような結晶粒が所定の粒径まで成長するのに要する最
小時間である。
The steel strip is maintained in a predetermined temperature range for 5 seconds or more in the subsequent soaking zone. In steel strips, grain nuclei are generated and grain growth begins when the recrystallization temperature is exceeded in the latter half of the heating zone, but the soaking time described above is long enough for these grains to grow to a predetermined grain size. This is the minimum time required.

さらに、このようにして加熱均熱された鋼帯は必要に応
じて所定の温度まで保持された後、急冷帯において40
℃/秒以上の冷却速度で急冷される。製品の時効性を改
菩するためには、均熱帯で固溶した[C]を急冷に続く
過時効帯においてできるだけ短時間に析出させる必要が
あり、上記冷却速度はこれを実現させるため過飽和状態
に固溶した[C]の状態を作り出すために必要である。
Furthermore, the steel strip heated and soaked in this way is maintained at a predetermined temperature as necessary, and then placed in a quenching zone for 40 minutes.
It is rapidly cooled at a cooling rate of ℃/second or more. In order to improve the aging properties of products, it is necessary to precipitate [C] dissolved in the soaking zone as quickly as possible in the overaging zone following rapid cooling, and the above cooling rate is set to a supersaturated state in order to achieve this. This is necessary to create a state in which [C] is dissolved in solid solution.

すなわち、冷却速度は速いほうが固溶EC]の過飽和度
は高く、過時効処理の時間は少なくて済むので、最少の
冷却速度が規制される。
That is, the faster the cooling rate is, the higher the degree of supersaturation of the solid solution EC is, and the shorter the overaging treatment time is required, so the minimum cooling rate is regulated.

そして、このような一連の熱処理を経た鋼帯は必要に応
じ過時効処理−最終冷却等を経て製品とされる。一般に
Ti、Nb添加購は過時効処理が不要とされるが、本発
明はこのような場合の熱処理にも適用可能であることは
言うまでもない。
The steel strip that has undergone a series of heat treatments as described above is then subjected to overaging treatment, final cooling, etc., as required, and is made into a product. Generally, overaging treatment is not required when Ti and Nb are added, but it goes without saying that the present invention can also be applied to heat treatment in such cases.

なお、直火加熱炉での還元型加熱バーナによる加熱は、
バーナ火炎の長手方向中間に形成される非平衡領域によ
り鋼帯を加熱することを目的にしており、このため火炎
は鋼帯面に対し略直角に、しかもその非平衡領域で衝突
するよう当てられる。
In addition, heating with a reduction type heating burner in a direct-fired heating furnace is
The purpose is to heat the steel strip by a non-equilibrium region formed in the longitudinal middle of the burner flame, and for this purpose, the flame is applied almost perpendicularly to the surface of the steel strip, and so as to collide in the non-equilibrium region. .

[実 施 例] 以下、本発明の一実施例を第1図に基づいて説明する。[Example] An embodiment of the present invention will be described below with reference to FIG.

第1図は本発明の実施に供される設備を示すもので、(
a)は予熱帯、(b)は直火加熱帯(1パス)、(C)
は輻射管式加熱均熱帯、(d 、’)はガスジェット冷
却帯、(e)はロール冷却帯、(f)は過時効処理帯、
(g)は最終冷却帯であり、本実施例では、鋼帯は予熱
−直火加熱−輻射管式(加熱)均熱−ガスジェット冷却
による徐冷−ロール冷却による急冷−過時効処理−最終
冷却という一連の熱処理がなされる。その具体的な内容
は以下の通りである。
Figure 1 shows the equipment used for carrying out the present invention.
a) Preheating zone, (b) Direct fire heating zone (1 pass), (C)
is a radiation tube type heating soaking zone, (d,') is a gas jet cooling zone, (e) is a roll cooling zone, (f) is an overaging treatment zone,
(g) is the final cooling zone, and in this example, the steel strip consists of preheating, direct flame heating, radiation tube type (heating) soaking, slow cooling by gas jet cooling, rapid cooling by roll cooling, overaging treatment, and final cooling. A series of heat treatments called cooling are performed. The specific contents are as follows.

(1)予熱帯:直火予熱帯から出る1200〜1400
℃の高温燃焼排ガスを用いて 冷却鋼帯を250〜330°Cに予熱する。
(1) Preheating zone: 1200 to 1400 from the direct fire preheating zone
The cooled steel strip is preheated to 250-330°C using high temperature combustion exhaust gas at 250°C to 330°C.

(2)直火加熱帯:予熱後の冷延期帯を直火加熱バーナ
を用いて430〜800℃ま で還元加熱する。直下加熱パーナ は3〜6群に分けられ、出側1〜 2群では上記還元型バーナによる 加熱を、また残りの入側ゾーンで は従来の非還元バーナによる加熱 を行う。全バーナとも燃焼後の生 成ガス温度は1300〜1600℃で、この高温ガスを
鋼帯に直角に200〜 500mmの距離から5〜20m/sの速度で吹き付け
る。
(2) Direct-fired heating zone: After preheating, the cooling zone is reductively heated to 430 to 800°C using a direct-fired heating burner. The direct heating burner is divided into 3 to 6 groups, and the first and second groups on the outlet side are heated by the above-mentioned reducing burners, and the remaining inlet zones are heated by conventional non-reducing burners. The temperature of the gas produced after combustion in all burners is 1300 to 1600°C, and this high temperature gas is blown perpendicularly to the steel strip from a distance of 200 to 500 mm at a speed of 5 to 20 m/s.

第2図は、予熱帯及び直火加熱 帯を通過する鋼帯表面の酸化膜厚 の推移を示すもので、鋼帯は1パ スからなる直火加熱帯の出口で十 □ 分に還元されていることが判る。Figure 2 shows the preheating area and direct heat heating. Oxide film thickness on the surface of the steel strip passing through the strip This shows the transition of the steel strip. At the outlet of the open heating zone consisting of It can be seen that it has been reduced to minutes.

(3)輻射管式加熱均熱帯 ;直火加熱帯での加熱には900°C という上限があるため、これ以上 の加熱が必要がある場合は加熱を 行う。一方、鋼帯が加熱上限に達 した後は弱還元性雰囲気中で5〜 120秒程度胸熱を行う。(3) Radiant tube heating soaking area ; 900°C for heating in an open heating zone Since there is an upper limit of If it is necessary to heat the conduct. On the other hand, the steel strip reaches its heating limit. After that, it is heated in a weakly reducing atmosphere for 5~ Perform chest heat for about 120 seconds.

(4)ガスジェット冷却帯 :均熱帯の鋼帯を後続のロール冷 即事による急速冷却開始温度(550 〜750℃)まで緩速冷却する。(4) Gas jet cooling zone : The steel strip in the soaking zone is cooled by subsequent rolls. Immediate rapid cooling start temperature (550 -750°C).

(5)ロール冷却帯 :鋼帯を水冷ロールに接触させて 250〜400℃まで40℃/S以上の高速で急冷し焼
入を行う。
(5) Roll cooling zone: The steel strip is brought into contact with a water-cooled roll and quenched from 250 to 400°C at a high speed of 40°C/S or higher to perform quenching.

(6)過時効処理帯 :400°C〜150℃の範囲で30秒以上保持して過
時効処理を行う。
(6) Overaging treatment zone: Overaging treatment is performed by holding the temperature in the range of 400°C to 150°C for 30 seconds or more.

(7)最終冷却帯 :過時効処理後の鋼帯を150℃以 下まで冷却して大気中に出す。(7) Final cooling zone : Steel strip after overaging treatment is heated to 150℃ or higher. It is cooled to the bottom and released into the atmosphere.

次に本発明で使用する還元型バーナの一例を第4図及び
第5図に示すものについて説明する。
Next, an example of the reduction type burner used in the present invention shown in FIGS. 4 and 5 will be described.

図示する加熱バーナは、円筒形のバーナタイル(1)の
内壁(6)に、周方向で間隔をおいて複数の燃焼用空気
吐出孔(2)を設けるとともに、バーナ内方中心部に燃
料ガス吐出孔(3)バーナタイル内周に関する接線に対
して60°C以下の角度θを付する。
The illustrated heating burner has a plurality of combustion air discharge holes (2) provided at intervals in the circumferential direction on the inner wall (6) of a cylindrical burner tile (1), and a fuel gas Discharge hole (3) An angle θ of 60°C or less is attached to the tangent to the inner circumference of the burner tile.

口)燃料ガス吐出孔(3)と空気吐出孔(2)のバーナ
軸方内路1雌Nを、燃料ガス吐出孔が空気吐出孔よりも
バーナタイル出口側にある場合を(−)、その逆を(+
)とした場合、−0,1D〜+0.25D (D :バ
ーナ内口径)に設定する。
(-) indicates the burner axial inner path 1 female N of the fuel gas discharge hole (3) and the air discharge hole (2). Reverse (+
), set it to -0.1D to +0.25D (D: burner inner diameter).

ハ)空気吐出孔(2)からバーナタイル出口(5)まで
の距:4Lを0.6D〜3Dとする。
c) Distance from air discharge hole (2) to burner tile outlet (5): 4L is 0.6D to 3D.

このように構成された加熱バーナは、空気比1.0以下
で使用されることにより、火炎中に所定の範囲で非平衡
領域が形成される。すなわち、このような加熱バーナで
は空気吐出孔(2)からの燃焼用空気の旋回流とバーナ
中央から吐出される燃料ガスとにより急速燃焼が実現さ
れ、バーナ出口外方の所定の範囲に亘って、燃焼中間生
成物を多量に含み且つ未反応の遊離酸素を含まない領域
、すなわち非平衡領域を形成する。
When the heating burner configured in this way is used at an air ratio of 1.0 or less, a non-equilibrium region is formed in the flame within a predetermined range. In other words, in such a heating burner, rapid combustion is achieved by the swirling flow of combustion air from the air discharge hole (2) and the fuel gas discharged from the center of the burner, and the combustion is carried out over a predetermined range outside the burner outlet. , a region containing a large amount of combustion intermediate products and no unreacted free oxygen, that is, a non-equilibrium region is formed.

第6図はこのような加熱バーナの還元加熱特性、すなわ
ち、無酸化で加熱し得る限界温度(普通鋼の薄板に関す
る限界温度)を示すものであり、空気比0.85〜0.
95の範囲において鋼帯を約900℃まで加熱できるこ
とが示されている。
FIG. 6 shows the reductive heating characteristics of such a heating burner, that is, the limit temperature at which it can be heated without oxidation (the limit temperature for a thin plate of ordinary steel), and shows the reduction heating characteristics of such a heating burner.
It has been shown that the steel strip can be heated up to about 900° C. in the range of 95°C.

上記加熱バーナの構成をより具体的に説明する。The configuration of the heating burner will be explained in more detail.

図において、(7)はバーナタイル内端壁(4)に突設
された燃料ガスノズルであり、本実施例ではこの燃料ガ
スノズル(7)の周方向に間隔をおいて燃料ガス吐出孔
(3)が形成されている。
In the figure, (7) is a fuel gas nozzle protruding from the burner tile inner end wall (4), and in this embodiment, fuel gas discharge holes (3) are spaced apart in the circumferential direction of this fuel gas nozzle (7). is formed.

このような加熱バーナにおいて、その空気吐出孔(2)
に空気給角θを持たせるのは、バーナタイル内で燃焼用
空気に旋回流を生じさせるためで、この旋回流によりバ
ーナ内側に負圧領域が形成され、この負圧によってガス
が再循環することにより燃料が促進され、もって適切な
非平衡領域を形成せしめることができる。この空気給角
iは最大60℃、好しくは20〜40℃とすることによ
り空気流の旋回性が安定して得られる。
In such a heating burner, its air discharge hole (2)
The reason for having an air supply angle θ is to create a swirling flow in the combustion air within the burner tile.This swirling flow forms a negative pressure area inside the burner, and this negative pressure recirculates the gas. This promotes the fuel flow and allows the formation of a suitable non-equilibrium region. By setting this air supply angle i to a maximum of 60°C, preferably 20 to 40°C, a stable swirling property of the airflow can be obtained.

燃料ガス吐出孔(3)と空気吐出孔(2)のバーナ軸方
向距離Nは、これが(−)側にある場合、ガス温度が高
く、しかも燃焼中間生成物も広範囲に高い分布状態にあ
るが、 反面遊離02 (未反応02)が軸方向に長く
分布する傾向にある。非平衡領域を適切に形成せしめる
には、この遊離02のバーナ軸方向残存距離を最小にす
る必要があり、  その限界を求めると−0,1Dとな
る。
When the burner axial distance N between the fuel gas discharge hole (3) and the air discharge hole (2) is on the (-) side, the gas temperature is high and combustion intermediate products are also highly distributed over a wide range. , On the other hand, free 02 (unreacted 02) tends to be distributed long in the axial direction. In order to appropriately form the non-equilibrium region, it is necessary to minimize the remaining distance of the free 02 in the burner axial direction, and its limit is -0, 1D.

Nが(+)側にあれば適正な非平衡領域が形成されるが
、余り大きくなるとバーナタイル内端壁が1400℃以
上に加熱されるため好ましくなく、バーナタイル内端壁
のSiCの保護上+0.25Dが限界となる。
If N is on the (+) side, a proper non-equilibrium region will be formed, but if it becomes too large, the inner end wall of the burner tile will be heated to over 1400°C, which is undesirable, and it will be difficult to protect the SiC on the inner end wall of the burner tile. The limit is +0.25D.

第7図は、燃料ガス吐出孔(3)と空気吐出孔(2)の
バーナ軸方向Nを−0,25Dとした場合の、バーナ出
口からのバーナ軸方向距離とバーナタイル内のガス温度
、02濃度及びイオン強度との各関係を調べたものであ
り、これによれば、Nがこのような(−)側にある場合
、遊離02の軸方向における残存距Mi。が大きく存在
することが示されている。
FIG. 7 shows the burner axial distance from the burner outlet and the gas temperature in the burner tile when the burner axial direction N of the fuel gas discharge hole (3) and the air discharge hole (2) is -0.25D. The relationship between the 02 concentration and the ionic strength was investigated, and according to this, when N is on the (-) side, the remaining distance Mi of free 02 in the axial direction. It has been shown that there is a large presence of

第8図は燃料ガス孔と空気吐出孔のバーナ軸方向距離N
と、遊離02の軸方向残存距離り。
Figure 8 shows the burner axial distance N between the fuel gas hole and the air discharge hole.
and the remaining distance in the axial direction of the free 02.

との関係を示すもので、これによればNが一〇、IDよ
りも(−)側に大きくなると、Loが急激に大きくなっ
ており、このため(−)側では−0,1Dが限界となる
According to this, when N becomes larger than 10 and ID on the (-) side, Lo increases rapidly, so on the (-) side, -0 and 1D are the limits. becomes.

二方、第9図はNを+0.1Dとした場合の、バーナ出
口からのバーナ軸方向距離と0□濃度、イオン強度及び
ガス温度との各関係を調べたものである。この第8図及
び第9図によれば、Nが(+)側であれば、0□濃度に
も問題がなく、バーナ出口からの距離が0.5D以上の
ところに適正な非平衡領域が形成されている。
On the other hand, FIG. 9 shows the relationship between the burner axial distance from the burner outlet, the 0□ concentration, the ion strength, and the gas temperature when N is +0.1D. According to Figs. 8 and 9, if N is on the (+) side, there is no problem with the 0□ concentration, and there is a proper non-equilibrium region at a distance of 0.5D or more from the burner outlet. It is formed.

然しなからNを(+)側に大きくすると、バーナタイル
内端壁(4)が加熱されるために、第1O図の距離Nと
バーナタイル内端壁(4)の温度Tbとの関係グラフに
示されるように、+0.25DでTbが1400°C以
上となり、このため内端壁の材質がSiCであることを
考慮し、+0.25D以下とするのが耐熱限界上好まし
い。以上のことから燃焼ガス吐出孔と空気吐出孔のバー
ナ中心距離Nに関しては、−0,1D〜0.25Dの範
囲とすることが好ましい。
However, if N is increased to the (+) side, the burner tile inner end wall (4) is heated, so the relationship graph between the distance N and the temperature Tb of the burner tile inner end wall (4) in Fig. 1O. As shown in , Tb becomes 1400°C or more at +0.25D, and therefore, considering that the material of the inner end wall is SiC, it is preferable to set it to +0.25D or less in terms of the heat resistance limit. From the above, the burner center distance N between the combustion gas discharge hole and the air discharge hole is preferably in the range of -0.1D to 0.25D.

空気吐出孔(2)からバーナタイル出口(5)までの距
giLは非平衡領域の形成範囲と密接な関係を有してい
る。すなわちLが3Dを超えると非平衡領域がバーナタ
イル出口直後の部分にしか形成されず好ましくない。一
方、Lが0.6D未満の場合は火炎がバーナタイル出口
直後で花びら状の火炎となりバーナ中心軸上に適正な非
平衡領域が安定して得られない。従って0.6D〜3.
0Dの範囲にLを定めることが好ましい。
The distance giL from the air discharge hole (2) to the burner tile outlet (5) has a close relationship with the formation range of the non-equilibrium region. That is, if L exceeds 3D, the non-equilibrium region will be formed only in the portion immediately after the burner tile exit, which is not preferable. On the other hand, if L is less than 0.6D, the flame becomes a petal-shaped flame immediately after the exit of the burner tile, and an appropriate non-equilibrium region cannot be stably obtained on the burner central axis. Therefore 0.6D~3.
It is preferable to set L in the range of 0D.

薄Sr4坂を連続加熱する場合、バーナタイル出口(5
)と鋼板との距離を一定以北(通常100mm程度以上
)とらないと、通板中に、ahがバーナに接触する恐れ
がある。したがって、火炎中の非平衡領域は、バーナ出
口側から所定の距離に位置する鋼帯通板位置を含むなる
べく広い範囲に形成させることが好ましいことになる。
When continuously heating a thin Sr4 slope, the burner tile outlet (5
) and the steel plate beyond a certain distance to the north (usually about 100 mm or more), there is a risk that ah will come into contact with the burner during threading. Therefore, it is preferable that the non-equilibrium region in the flame be formed in as wide a range as possible, including the steel strip passing position located at a predetermined distance from the burner outlet side.

第11図は距Aft Lとバーナ出口から非平衡領域の
末端(反バーナ側の末端、例えば第9図中のA点)まで
の距MLRとの関係について調べたものである。これに
よれば、Lが3Dを越えると非平衡領域の形成はバーナ
タイル出口直後のみとなり、それよりも前方側にはほと
んど形成されない。Lが小さくなるにしたがい非平衡領
域の形成範囲は拡大するが、Lが0.6D未満の領域(
X)では、火炎はバーナタイル出口直後で、花びら状の
放射状の火炎となり、バーナ軸心上に適正な非平衡領域
が安定して形成されない。
FIG. 11 shows an investigation of the relationship between the distance Aft L and the distance MLR from the burner outlet to the end of the nonequilibrium region (the end on the anti-burner side, for example, point A in FIG. 9). According to this, when L exceeds 3D, the non-equilibrium region is formed only immediately after the exit of the burner tile, and is hardly formed in front of it. As L becomes smaller, the range of non-equilibrium region formation expands, but the region where L is less than 0.6D (
In X), the flame becomes a petal-shaped radial flame immediately after the exit of the burner tile, and an appropriate non-equilibrium region is not stably formed on the burner axis.

以上のことから、空気吐出孔(2)からバーナタイル出
口(5)までの距、F、It Lは0.6D〜3.OD
の範囲とすることか望ましい。
From the above, the distance F, It L from the air discharge hole (2) to the burner tile outlet (5) is 0.6D to 3. O.D.
It is desirable that it be within the range of .

また、本発明では以上のような加熱バーナ以外に、例え
ば所謂ラジアントカップバーナを用いることができる。
Further, in the present invention, in addition to the heating burner described above, for example, a so-called radiant cup burner can be used.

このバーナは急速燃焼反応を行なわせるため、空気と燃
料ガスとを予め混合した混合気体を、バーナタイルの半
球状凹部で急速燃焼させ、バーナタイル内面を高温化し
て、放射伝熱を主として加熱するもので、被加熱物温度
が高温度の領域で高い熱流束が得られる特性を有してい
る。そしてこのバーナで、空気比を1.0以下で燃焼さ
せることにより、火炎中に非平衡領域が形成される。
In order to perform a rapid combustion reaction, this burner rapidly burns a pre-mixed gas mixture of air and fuel gas in the hemispherical recess of the burner tile, raising the temperature of the inner surface of the burner tile and heating mainly through radiant heat transfer. It has the characteristic that a high heat flux can be obtained in a region where the temperature of the heated object is high. By performing combustion in this burner at an air ratio of 1.0 or less, a non-equilibrium region is formed in the flame.

但し、このラジアントバーナは燃焼用空気と燃料ガスの
予混合方式であるため、燃焼用空気の予熱ができないこ
と、及びこのように空気の予熱ができないため無酸化加
熱は750℃程度が限度であり、より高温域での加熱を
必要とするような場合には適用できないこと等の難点が
ある。この点、第4図に示すような加熱バーナでは、予
熱空気を利用できることから900℃程度まで無酸化加
熱か可能であり、またこのように予熱空気を利用するこ
とにより火炎温度が高められるため、ラジアントバーナ
に較べ中間反応生成物による還元作用そのものも効果的
Cト向上させることができる。
However, since this radiant burner uses a premixing method for combustion air and fuel gas, it is not possible to preheat the combustion air, and since the air cannot be preheated in this way, non-oxidation heating is limited to about 750°C. However, there are drawbacks such as inapplicability to cases where heating in a higher temperature range is required. In this regard, in the heating burner shown in Fig. 4, since preheated air can be used, it is possible to heat up to about 900°C without oxidation, and by using the preheated air in this way, the flame temperature can be increased. Compared to a radiant burner, the reduction action itself by the intermediate reaction product can also be improved in terms of effective C.

[発明の効果] 以上述べた本発明によれば、鋼帯を直火加熱方式を用い
つつ鋼帯酸化及びこれによるロールピックアップ等の問
題を生ずることなく適切且つ経済的に連続熱処理するこ
とができるという効果がある。
[Effects of the Invention] According to the present invention described above, a steel strip can be appropriately and economically continuously heat-treated using a direct flame heating method without causing problems such as steel strip oxidation and roll pickup caused by this. There is an effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例に供された連続熱処理ライン
の一例を示す説明図である。第2図は上記実施例におい
て、予熱帯及び直火加熱帯での酸化膜の推移を示すもの
である。第3図は本発明における直火加熱において使用
される還元型加熱バーナの非平衡領域形成範囲の一例定
例を示すものである。第4図及び第5図は本発明の加熱
炉に適用すべき加熱バーナの一例を示すもので、第4図
は縦断図面、第5図は第4図中V−■線に沿う断面図で
ある。第6図は第4図及び第5図に示す加熱バーナの還
元加熱特性を示すものである。第7図ないし第11図は
同じく第4図及び第5図に示す加熱バーナの特性を示す
もので、第7図は燃料ガス2吐出孔と空気吐出孔とのバ
ーナ軸方向における距aNを−0,25Dとした場合の
バーナ出口からの距離とガス温度、0□濃度、イオン強
度との関係、第8図は燃料ガス吐出孔と空気吐出孔のバ
ーナ軸方向における距離Nと遊離02のバーナ軸方向残
存距離L0との関係、第9図は距4Nを+0.IDとし
た場合のバーナ出口からの距離りとガス温度ρ2濃度、
イオン強度との関係、第10図は燃料ガス吐出孔と空気
吐出孔の距離Nバーナタイル後壁温度Tbとの関係、第
11図は空気吐出孔からバーナ出口までの距離りと非平
衡領域の末端までの距離LRとの関係を各示すものであ
る。 第2図 f43図 g5  図 空八ル 謳7図 m8図
FIG. 1 is an explanatory diagram showing an example of a continuous heat treatment line used in an embodiment of the present invention. FIG. 2 shows the transition of the oxide film in the preheating zone and the direct heating zone in the above example. FIG. 3 shows an example of the non-equilibrium region forming range of the reduction type heating burner used in direct fire heating according to the present invention. 4 and 5 show an example of a heating burner to be applied to the heating furnace of the present invention. FIG. 4 is a longitudinal sectional view, and FIG. 5 is a sectional view taken along the line V-■ in FIG. 4. be. FIG. 6 shows the reduction heating characteristics of the heating burner shown in FIGS. 4 and 5. FIG. 7 to 11 show the characteristics of the heating burner shown in FIGS. 4 and 5, and FIG. 7 shows the distance aN between the fuel gas 2 discharge hole and the air discharge hole in the burner axial direction. The relationship between the distance from the burner outlet and gas temperature, 0□ concentration, and ionic strength when 0.25D is shown. Figure 8 shows the relationship between the distance N between the fuel gas discharge hole and the air discharge hole in the burner axial direction and the free 02 burner. The relationship with the remaining axial distance L0 is shown in FIG. 9 when the distance 4N is +0. Distance from burner outlet and gas temperature ρ2 concentration when ID is used,
Figure 10 shows the relationship between the distance N between the fuel gas discharge hole and the air discharge hole and the burner tile rear wall temperature Tb, and Figure 11 shows the relationship between the distance from the air discharge hole and the burner outlet and the non-equilibrium region. Each shows the relationship with the distance LR to the end. Figure 2 f43 Figure g5 Zuko Hachiru Uta Figure 7 m8 Figure

Claims (1)

【特許請求の範囲】[Claims] 鋼帯を直火加熱帯で加熱後、均熱帯で5秒以上均熱し、
次いで40℃/秒以上の冷却速度で急速冷却する連続熱
処理を行い、前記直火加熱帯では、パスの入側加熱領域
において非還元型加熱バーナにより加熱し、パスの出側
加熱領域においては、燃焼中間生成物を有し且つ遊離酸
素を有しない非平衡領域を火炎中に形成し得る還元型加
熱バーナにより加熱するようにしたことを特徴とする鋼
帯の連続熱処理方法。
After heating the steel strip in a direct flame heating zone, soak it in a soaking zone for more than 5 seconds,
Next, a continuous heat treatment is performed in which rapid cooling is performed at a cooling rate of 40 ° C./sec or more, and in the direct heating zone, heating is performed using a non-reducing heating burner in the inlet heating region of the pass, and in the outlet heating region of the pass, 1. A method for continuous heat treatment of a steel strip, characterized in that heating is performed by a reducing heating burner capable of forming a non-equilibrium region in a flame that contains combustion intermediate products and does not contain free oxygen.
JP19261385A 1985-07-10 1985-08-31 Continuous heat treatment of steel strip Granted JPS6254035A (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP19261385A JPS6254035A (en) 1985-08-31 1985-08-31 Continuous heat treatment of steel strip
US07/027,224 US4760995A (en) 1985-07-18 1986-07-10 Continuously treating line for steel bands having a heating furnace by directly flaming
CA000513536A CA1255897A (en) 1985-07-10 1986-07-10 Continuously treating line for steel bands having a heating furnace by directly flaming
BR8606772A BR8606772A (en) 1985-07-18 1986-07-10 CONTINUOUS TREATMENT LINE FOR STEEL TAPES WITH A DIRECT FLAME HEATING OVEN
CN 86104502 CN1011982B (en) 1985-07-10 1986-07-10 Steel strip continuous treatment production line with open fire furnace
PCT/JP1986/000352 WO1987000555A1 (en) 1985-07-18 1986-07-10 Continuous strip steel processing line having direct firing furnace
AU61432/86A AU598981B2 (en) 1985-07-18 1986-07-10 Continuous strip steel processing line having direct firing furnace
AT86904373T ATE61416T1 (en) 1985-07-18 1986-07-10 PLANT FOR THE CONTINUOUS TREATMENT OF STRIP WITH A DIRECTLY HEATED FURNACE.
EP86904373A EP0233944B1 (en) 1985-07-18 1986-07-10 Continuous strip steel processing line having direct firing furnace
DE8686904373T DE3677959D1 (en) 1985-07-18 1986-07-10 SYSTEM FOR THE CONTINUOUS TREATMENT OF TAPE STEEL WITH A DIRECTLY HEATED OVEN.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19261385A JPS6254035A (en) 1985-08-31 1985-08-31 Continuous heat treatment of steel strip

Publications (2)

Publication Number Publication Date
JPS6254035A true JPS6254035A (en) 1987-03-09
JPH0149774B2 JPH0149774B2 (en) 1989-10-26

Family

ID=16294169

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19261385A Granted JPS6254035A (en) 1985-07-10 1985-08-31 Continuous heat treatment of steel strip

Country Status (1)

Country Link
JP (1) JPS6254035A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0472023A (en) * 1990-07-10 1992-03-06 Nippon Steel Corp Direct firing type continuous annealing method for steel strip and apparatus thereof
JPWO2013099483A1 (en) * 2011-12-27 2015-04-30 日本碍子株式会社 Combustion apparatus and heating furnace using the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6077931A (en) * 1983-10-05 1985-05-02 Nippon Kokan Kk <Nkk> Oxygen free heating method of steel strip

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6077931A (en) * 1983-10-05 1985-05-02 Nippon Kokan Kk <Nkk> Oxygen free heating method of steel strip

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0472023A (en) * 1990-07-10 1992-03-06 Nippon Steel Corp Direct firing type continuous annealing method for steel strip and apparatus thereof
JPWO2013099483A1 (en) * 2011-12-27 2015-04-30 日本碍子株式会社 Combustion apparatus and heating furnace using the same

Also Published As

Publication number Publication date
JPH0149774B2 (en) 1989-10-26

Similar Documents

Publication Publication Date Title
US9322598B2 (en) Process for the heat treatment of steel strips
JPS6254035A (en) Continuous heat treatment of steel strip
US4760995A (en) Continuously treating line for steel bands having a heating furnace by directly flaming
JP5000116B2 (en) Soaking furnace operation method in steel strip continuous treatment equipment
JPS6254031A (en) Direct firing heating furnace of continuous annealing installation for steel strip
JPS6254032A (en) Continuous annealing furnace for steel strip
JPS6077929A (en) Direct fire reduction of steel strip
JPS6254034A (en) Continuous annealing installation for steel strip
JPH0368933B2 (en)
US4595357A (en) Continuous annealing method and apparatus for cold rolled steel strips
JP2008001934A (en) Hot-dip galvanization equipment
JPS6252310A (en) Directly heating burner under reducing condition
JPH0368931B2 (en)
JPH0121853B2 (en)
JPH0553862B2 (en)
JPH0257639A (en) Method for continuously heating steel strip
JP5119787B2 (en) Operation method of continuous annealing line
JPH089157Y2 (en) Continuous decarburization annealing furnace
JPS6252313A (en) Directly heating burner under reducing condition
JPH062032A (en) Method for annealing and pickling steel sheet
JPH0230720A (en) Method for heating steel sheet
JPS6252311A (en) Directly heating burner under reducing condition
JPH01119628A (en) Heat treatment method for stainless steel cold rolled strip
JPH0741869A (en) Method for restraining meandering of steel strip
JPS63157819A (en) Heat treatment of steel strip

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees