JPS6254033A - Continuous annealing installation for steel strip - Google Patents
Continuous annealing installation for steel stripInfo
- Publication number
- JPS6254033A JPS6254033A JP19261185A JP19261185A JPS6254033A JP S6254033 A JPS6254033 A JP S6254033A JP 19261185 A JP19261185 A JP 19261185A JP 19261185 A JP19261185 A JP 19261185A JP S6254033 A JPS6254033 A JP S6254033A
- Authority
- JP
- Japan
- Prior art keywords
- zone
- heating
- steel strip
- burner
- cooling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Pre-Mixing And Non-Premixing Gas Burner (AREA)
- Heat Treatment Of Strip Materials And Filament Materials (AREA)
Abstract
Description
【発明の詳細な説明】 [産業上の利用分野] 本発明は鋼帯の連続焼鈍設備に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to continuous annealing equipment for steel strip.
[従来の技術]
連続焼鈍炉の加熱力式として、ラジアントチューブを利
用した間接加熱方式と直火加熱方式とが知られている。[Prior Art] As a heating power type of a continuous annealing furnace, an indirect heating method using a radiant tube and a direct heating method are known.
このうち、後者の直火加熱方式は、間接加熱方式に較べ
加熱能力に優れ、しかも冷間圧延油をバーンアウトでき
るためそのクリーニング設備を省略できる等の利点を有
しており。Of these, the latter direct heating method has superior heating ability compared to the indirect heating method, and has the advantage of being able to burn out the cold rolling oil, so cleaning equipment for it can be omitted.
広く溶融亜鉛メツキラインや電磁鋼板連続焼鈍ラインに
用いられている。Widely used in hot-dip galvanizing lines and continuous annealing lines for electrical steel sheets.
しかし、従来の直火加熱方式ては鋼帯の酸化が片しく、
これに」^囚したロールど−クア・ツブを生じるという
大きな問題かある。このような従前の直火加熱方式に対
し、所謂無酸化直火加熱方式なる方式か特公昭5B−4
4133号や特公昭59−29651号等において冷延
鋼帯の連続熱処理設備用として提案されている。この方
式は、ストリップ温度(Max、900℃)の上昇に応
じて各燃焼制御ゾーンの空気比を低減していく(1,4
未満→0.6)等の方法で鋼帯の酸化を抑えつつ加熱を
行うというものである。However, with the conventional direct flame heating method, the steel strip is easily oxidized,
There is a big problem with this, which is that if you use a locked roll, it will cause a kua tsubu. In contrast to the conventional direct fire heating method, the so-called non-oxidizing direct fire heating method was developed in the Special Publication No. 5B-4.
No. 4133, Japanese Patent Publication No. 59-29651, etc. have proposed this method for use in continuous heat treatment equipment for cold rolled steel strips. This method reduces the air ratio in each combustion control zone (1, 4
In this method, heating is performed while suppressing oxidation of the steel strip using a method such as less than 0.6).
しかしこの方式は無酸化式とはJうものの実際には弱酸
化式であり、空気比1.0未満の燃焼生成カス中にも酸
化性カスである(:02. I+20が多−1−に含ま
れているため、加熱後の酸化膜Jlみは原板の50A°
未満から500〜100OA”にも増大してしまう。こ
のため、このような方式を連続焼鈍設備に通用する場合
、加熱帯に続く均熱帯で水素を高濃度(約20%程度)
として還元したり、或いは直火加熱帯の出側に強還元帯
なる処理帯を設はル:1濃度水素(約50%以上)で還
元を行う等の方法を採らざるを得ない。However, although this method claims to be non-oxidizing, it is actually a weak oxidizing method, and there are oxidizing scum even in the combustion generated scum with an air ratio of less than 1.0 (:02. Because of this, the oxide film thickness after heating is 50A° of the original plate.
Therefore, if this method is used in continuous annealing equipment, hydrogen must be concentrated at a high concentration (approximately 20%) in the soaking zone following the heating zone.
There is no choice but to adopt a method such as reducing the hydrogen as a gas, or setting up a treatment zone called a strong reduction zone on the outlet side of the direct flame heating zone and reducing with hydrogen at a concentration of 1:1 (approximately 50% or more).
また最近の連続焼鈍設備は、製造コストの低減を目的と
して大型設備化する傾向にあるが、このような設備にお
いては、上記のような直火加熱帯を1バスで構成した場
合炉高が高くなり、鋼帯のハタツキを生じたり炉圧:t
++制御に困難を生したりする問題があり、このため2
パス或いはそれ以上の複雑パスとせざるを1:tない。In addition, recent continuous annealing equipment tends to be larger in order to reduce manufacturing costs, but in such equipment, if the direct-fired heating zone is configured with one bath as described above, the furnace height will be high. This may cause the steel strip to fluctuate or the furnace pressure: t
++There is a problem that causes difficulty in control, and for this reason, 2
There is no choice but to make a pass or a more complex pass.
しかし、このような複数パスの直火加熱帯では加熱炉内
ロールでロールピックアップを生じてしまい、この結果
鋼帯の表面品質が著しく損われてしまう。このような炉
内ロールでロールピックアップを防止するためには、例
えば、特開昭53−54100号において示されるよう
な炉内ロールを収容する隔離室を設け、この隔離室内を
保護雰囲気にする等というような煩雑手段を採らなけれ
ばならない。またこのようなロール保護方式を採る場合
でも、直火加熱炉のような高温条件ドにおいてロール隔
離室を直火炉内とを適切にツールすることは非常に難し
く、隔離室を1−分な保護′SD#1気とするためには
、膨大な:11の保J雰囲気ガスを供給する必要があり
、実用的ではない。However, in such a multiple-pass direct-fire heating zone, roll pickup occurs in the rolls in the heating furnace, and as a result, the surface quality of the steel strip is significantly impaired. In order to prevent roll pickup with such furnace rolls, for example, an isolation chamber is provided to accommodate the furnace rolls as shown in Japanese Patent Application Laid-Open No. 53-54100, and a protective atmosphere is created inside this isolation chamber. Such complicated measures must be taken. Furthermore, even if such a roll protection method is adopted, it is very difficult to properly connect the roll isolation chamber to the inside of the direct-fired furnace under high-temperature conditions such as in a direct-fired heating furnace, and it is difficult to properly connect the roll isolation chamber to the inside of the direct-fired furnace. In order to achieve SD #1, it is necessary to supply a huge amount of J-holding atmosphere gas of 11:1, which is not practical.
[問題を解決するためのF段]
本発明者はこのような従来の問題に鑑み検討を屯ねたも
のであり、この結果火炎中に非NV−衡領域、すなわち
燃焼中間生成物(中間イオン、ラジカル等)が存/+’
シ11一つ遊離酸素が存在しない領域を形成し得る加
熱バーナか鋼帯無酸化加熱に極めて有効であり、これを
加熱帯に所定条件で配置することにより鋼帯を無酸化還
元状態で加熱できることを見い出した。本発明は直火加
熱帯にこのような還元型加熱バーナを適用し、さらにこ
のような加熱帯と特定の冷却方式による冷却帯を組み合
せることにより、鋼帯を酸化11Q等による問題を生じ
させることなく、しかも設備の簡略化と省エネルギーを
図りつつ効率的に連続燃焼し得る設備としたものである
。[F-stage for solving the problem] The present inventor conducted extensive studies in view of such conventional problems, and as a result, the non-NV-equilibrium region in the flame, that is, combustion intermediate products (intermediate ion , radicals, etc.) exist/+'
(11) A heating burner that can form a region where free oxygen does not exist is extremely effective in non-oxidizing heating of steel strips, and by placing it in the heating zone under predetermined conditions, it is possible to heat steel strips in a non-oxidizing and reducing state. I found out. The present invention applies such a reduction type heating burner to a direct-fired heating zone, and further combines such a heating zone with a cooling zone using a specific cooling method, thereby eliminating problems caused by oxidation 11Q etc. of the steel strip. The aim of the present invention is to provide equipment that can efficiently perform continuous combustion without any problems, while simplifying the equipment and saving energy.
すなわち本願第1の発明は、入側から直火加熱帯、均熱
帯及びロール冷却を1体とした冷JJI帯が順に没けら
れるとともに、最終処理帯の出側に調質圧延機が配置さ
れ、1[つ11η記直火加熱帯には、その少なくとも出
側領域に燃焼中間反応生成物を有し11.つ遊離酸素を
有しない非平衡領域を火炎中に形成し得る複数の加熱バ
ーナを配置したことをその基本的特徴とする。That is, in the first invention of the present application, a cold JJI zone that includes a direct-fired heating zone, a soaking zone, and a roll cooling zone is sunk in order from the input side, and a temper rolling mill is arranged on the output side of the final processing zone. . Its basic feature is the arrangement of a plurality of heating burners capable of forming non-equilibrium regions in the flame, which do not have free oxygen.
また本願第2の発明は、上記直火加熱帯の前面にe熱帯
を設けたことを特徴とし、さらに本願第3の発明は、直
火加熱帯の前面に鋼帯表面のクリーニング設備及びP熱
帯を設けたことを特徴とする。Further, the second invention of the present application is characterized in that an e-tropic is provided in front of the above-mentioned open-fire heating zone, and the third invention of the present application is characterized in that an e-tropic is provided in front of the open-fire heating zone. It is characterized by having the following.
[作用]
本発明の直火加熱帯では、火炎中の非平衡領域、すなわ
ち燃焼中間生成物が存在し往つ遊離酸素が存在しない領
域(非゛ト衡領域)が形成され11#る加熱バーナが用
いられる。このような加熱バーナテハ、火炎中ホホ燃焼
が完−f’ L/ CO2,H2(]、 N2゜11□
、 CO等を含む領域、すなわち準・ト衡領域が酸化性
であるのに対し、中間イオン、ラジカル等を含む上記−
Jl−ト衡領域は還元性を示し、この火炎な非・V衡領
域で鋼帯に衝突させることにより鋼帯な還元状態で加熱
することができる。[Function] In the direct-fired heating zone of the present invention, a non-equilibrium region in the flame, that is, a region where combustion intermediate products often exist and free oxygen does not exist (non-equilibrium region), is formed in the heating burner. is used. In such a heating burner, combustion in the flame is completed - f' L/ CO2, H2 (], N2゜11□
, the region containing CO, etc., i.e., the quasi-to-equivalent region, is oxidizing, whereas the region containing intermediate ions, radicals, etc., is oxidizing.
The Jl-to-equilibrium region exhibits reducing properties, and by colliding with the steel strip in this non-V-equilibrium region, the steel strip can be heated in a reduced state.
本発明の連続燃焼設備では鋼帯は直火加熱帯で加熱され
るが、この加熱帯では少なくとも出側領域に配設される
還元型加熱バーナにより還元加熱され、鋼帯はl無酸化
状態で均熱帯送り出される。In the continuous combustion equipment of the present invention, the steel strip is heated in a direct heating zone, and in this heating zone, it is reductively heated by a reduction type heating burner disposed at least in the outlet area, so that the steel strip is kept in a non-oxidized state. Sent out to soaking zone.
この直火加熱帯では加熱とともに鋼帯表面に付着した圧
延油が燃焼除去される。続く均熱帯では還元性雰囲気で
均熱されるが、鋼帯はこの均熱帯にほとんど無酸化の状
態で送り込まれるため、その雰囲気は、無酸化状態を保
持する程度の弱還元性(H2:3〜10%)で足りる。In this direct-fired heating zone, rolling oil adhering to the surface of the steel strip is burned and removed while heating. In the subsequent soaking zone, the steel strip is soaked in a reducing atmosphere, but since the steel strip is sent into this soaking zone in an almost non-oxidized state, the atmosphere is weakly reducing (H2: 3~ 10%) is sufficient.
続く冷却帯では冷却ロールが設けられ、ロール冷却を1
体とした冷却がなされる。冷却帯の後面には通常過時効
処理帯が設けられており、鋼帯はこの適時処理帯後面の
最終冷却帯を出た後、調質圧延機によりテラ椀圧延がな
される。このような設備では、的火による加熱帯を設け
しかもこの加熱帯における無酸化加熱が可能となる結果
、続く均熱帯におけるH2濃度を極く低く抑えることが
でき、しかもロール冷却により過時効温度まて鋼帯を急
冷てきるため過時効処理のための+lF加熱を必要とせ
ず、これらのため、従来方式の連続焼鈍炉に較ベニネル
キーな大幅に節減した操業がi+7能となる。また、無
酸化加熱の採用と水冷ロールによる冷却方式のため、鋼
帯が酸化膜1トーされ、酸洗設備を全く不費ならしめる
。さらに熱負荷応答性に優れた直火加熱方式と冷却サイ
クルの調整が容易な水冷ロール方式を採るため、材料や
所望材質に合せて熱サイクルを的確][つ応答性良く変
えることかでき、連続焼鈍のサイクルフリー化、すなわ
ち炉温2、板Jソ、板幅等に関係なく処理する操業を実
質的にII)能ならしめる。A cooling roll is installed in the following cooling zone, and the roll cooling is
The body is cooled down. An overaging treatment zone is usually provided at the rear of the cooling zone, and after the steel strip exits the final cooling zone at the rear of this timely treatment zone, it is subjected to terra bowl rolling in a temper rolling mill. In this type of equipment, a heating zone is provided using a target fire, and non-oxidation heating is possible in this heating zone. As a result, the H2 concentration in the subsequent soaking zone can be kept extremely low, and furthermore, the roll cooling allows the temperature to be lowered to over-aging temperature. Since the steel strip is rapidly cooled in the process, there is no need for +1F heating for overaging treatment, resulting in a significantly reduced operation compared to conventional continuous annealing furnaces. In addition, due to the non-oxidizing heating and cooling method using water-cooled rolls, the steel strip is coated with an oxide film, making pickling equipment completely unnecessary. Furthermore, since it uses a direct flame heating method with excellent heat load response and a water-cooled roll method with easy adjustment of the cooling cycle, it is possible to accurately change the heat cycle according to the material and desired material, and continuously. Cycle-free annealing, that is, substantially enables processing operations regardless of furnace temperature, sheet J, sheet width, etc. II).
また1本願第2の発明では上記直火加熱帯の前面にr熱
帯が設けられ、鋼帯はこのP熱帯において、直火加熱炉
等から導入される排ガスによりr熱された後、直火加熱
帯に導かれる。連続加熱焼鈍では加熱時間が短いため加
熱の時間的効果が少なく、バッチ焼鈍に較べ加熱温度を
相対的に高めに設定して操業を行っており、特に本願発
明のような還元直火加熱帯を備えた設備では、高速焼鈍
を目的とした操業が行われるため加熱温度をより高11
に設定する傾向が強い。したかっIて、このような鋼帯
の連続焼鈍処理において鋼帯のr熱を行うことにより、
直火加熱帯での加熱のための負荷を軽減し、適切な高温
、高速焼鈍がLj■能となる。In addition, in the second invention of the present application, a r-tropic is provided in front of the direct-fired heating zone, and the steel strip is heated in this p-tropic by exhaust gas introduced from a direct-fired heating furnace or the like, and then heated by the direct-fired heating zone. Taken to the tropics. In continuous heating annealing, the heating time is short, so the heating time effect is small, and the heating temperature is set relatively high compared to batch annealing. The equipment equipped with this equipment is operated for the purpose of high-speed annealing, so the heating temperature is higher than 11.
There is a strong tendency to set Therefore, by performing r-heating of the steel strip in such continuous annealing treatment of the steel strip,
The load for heating in the direct flame heating zone is reduced, and appropriate high temperature and high speed annealing becomes possible.
またr熱により鋼帯表面がある程度酸化されても、これ
を還元できる直火加熱帯を備えているため、予熱帯にお
いて250〜500℃の高温を熱を行い鋼帯表面に付着
した圧延油を燃焼除去することができ、直火加熱帯での
圧延油除去と合せバーンオフ性が良好なものとなる。In addition, even if the surface of the steel strip is oxidized to some extent due to r-heat, it is equipped with a direct heating zone that can reduce this oxidation, so it heats up to a high temperature of 250 to 500 degrees Celsius in the preheating zone and removes the rolling oil that has adhered to the surface of the steel strip. It can be removed by combustion, and in combination with the removal of rolling oil in the direct heating zone, good burn-off properties can be achieved.
また直火加熱方式による加熱帯では加熱速度が大きいた
め間接加熱方式による場合に較べ加熱温度(加熱最終温
度)が高11になる傾向があり、それだけ余分なエネル
ギーを必要とするが、子熱帯を設けて鋼帯の予熱を行う
ことにより、57.温の勾配を低くし、加熱温度を必要
風」二に」二げなくて済むという利点が得られる。In addition, since the heating rate in the heating zone using the direct heating method is high, the heating temperature (final heating temperature) tends to be higher than that using the indirect heating method, which requires extra energy. 57. by preheating the steel strip. The advantage is that the temperature gradient is lowered and the heating temperature does not need to be increased twice.
さらに、本願第3の発明は、1−記f熱帯の+1f面に
さらに鋼帯表面のクリーニング設備が設けられ、このク
リーニング設備では七として鋼帯表面に付着した鉄粉が
除去される。冷間圧延を経た鋼帯表面には通常圧延油や
鉄粉(1ヒ延1d等)か付着している。このうち圧延油
は上述したように直火加熱帯や予熱帯で燃焼除去される
が、鉄粉は除去されず、炉内に堆積したり、炉内雰囲気
カスと共に炉内で循環してロールと鋼帯の間に挟まり、
製品表面に押疵を生じさせたりする。本発明ではこのよ
うな鉄粉か前記クリーニング設備で除去される。また高
Si 、P、Mn、Ti 、Cr等の鋼帯を連続焼鈍す
る場合、これらは還元されにくい酸化膜を生じるためt
熱及び直火加熱(還元加熱前の加熱)での酸化を軽減す
ることをll的として燃焼用ガスの空気比を下げること
がある。このようにした場合、r熱帯や直火加熱帯にお
ける鋼帯表面の圧延油のバーンオフ特性が若ト低下する
か、ト記りリーニング没備によりこのバーンオフ性の低
ドが補われ、適切な圧延油除去作用が得られる。Furthermore, in the third invention of the present application, cleaning equipment for the surface of the steel strip is further provided on the +1f side of the tropical zone 1-f, and in this cleaning equipment, iron powder adhering to the surface of the steel strip is removed. Rolling oil and iron powder (1D, etc.) are usually attached to the surface of the steel strip after cold rolling. As mentioned above, the rolling oil is burned and removed in the direct heating zone and preheating zone, but the iron powder is not removed and may accumulate in the furnace or circulate in the furnace together with the furnace atmosphere scum. Trapped between steel strips,
It may cause scratches on the product surface. In the present invention, such iron powder is removed by the cleaning equipment. Furthermore, when continuously annealing high-Si, P, Mn, Ti, Cr, etc. steel strips, these produce oxide films that are difficult to reduce.
The air ratio of the combustion gas may be lowered to reduce oxidation caused by heat and direct heating (heating before reductive heating). In this case, the burn-off properties of the rolling oil on the surface of the steel strip in tropical or direct-fired heating zones will be slightly reduced, or the poor burn-off properties will be compensated for by the lack of leaning, resulting in proper rolling. Provides oil removal effect.
「実施例」
第1図及び第2図は本発明の一実施例を示すもので、人
f!!1から順に直火加熱帯(a)、均熱帯(b)、冷
却帯(C)、過時効処理帯(d)、最終冷却帯(e)か
設けられ、この最終冷却帯(e)の出n−1に出側ルー
バ(g)を介在させてテミ
ンパlル(f)か配設されている。"Embodiment" Figures 1 and 2 show an embodiment of the present invention. ! Direct fire heating zone (a), soaking zone (b), cooling zone (C), overaging treatment zone (d), and final cooling zone (e) are provided in order from 1, and the output of this final cooling zone (e) is A temin pallet (f) is disposed at n-1 with an outlet louver (g) interposed therebetween.
」二足直火加熱帯(a)では、その少なくとも出側領域
に11η記還元型加熱バーナか設けられ、これにより、
加熱帯の人(l−1において非還元型加熱バーナ(一般
に用いられている拡散型バーナ)によって鋼帯表面が酸
化されてもこれを5元し、無酸化状態で続く均熱炉に送
り出すことができる。5元型加熱バーナは加熱帯の全加
熱有効長に亘って設けることも可能であるが、この種の
バーナは、従来−・般に用いられている非還元型加熱バ
ーナに較へ熱害;1屯が小さく、必要な急速加熱を確保
するためには、バーナな密に配置する必要がある。この
ため還元型加熱バーナは必要最小限の範囲に配置するよ
うにすることが好しいとJえる。``In the two-leg open-fire heating zone (a), a reduction type heating burner is provided at least in the outlet area, and thereby,
Even if the surface of the steel strip is oxidized by a non-reducing heating burner (generally used diffusion burner) in the heating zone (l-1), it is converted to 5 yen and sent to the soaking furnace that continues in a non-oxidized state. Although it is possible to install a five-pronged heating burner over the entire effective heating length of the heating zone, this type of burner is far less efficient than the conventional non-reducing heating burner. Heat damage: 1 ton is small, and in order to ensure the necessary rapid heating, it is necessary to place burners closely together.For this reason, it is preferable to place reduction heating burners within the minimum necessary range. I can't believe it.
本実施例のように直火加熱帯(a)が複数パスからなる
場合、I−記5元型加熱バーナは複数あるパスの各出f
il領域より」し体的には、各パスの少なくとも出(!
−1通板ロール直IWfの加熱領域を含むパス柘
出俳1領域に配置することが好しい。1不したように複
数パスからなる直火加熱炉の場合、鋼帯の酸化により炉
内ロールそのものにおけるロールピックアップの問題を
生じるものであり、このような問題を回避しILつ鋼帯
を無酸化状態で均熱帯(b)に送り出すには、各パスの
出側領域に還元型加熱バーナを配し、鋼帯を無酸化状態
で通板ロールに接触させ且つ炉外に送り出すようにすれ
ばよ・い。When the direct-fired heating zone (a) consists of multiple passes as in this embodiment, the five-type heating burner described in I- is
From the il area, physically, at least the output (!) of each path.
- It is preferable to arrange it in the path 1 area including the heating area of the 1st sheet roll straight IWf. In the case of a direct-fired heating furnace that consists of multiple passes, as mentioned above, the oxidation of the steel strip causes the problem of roll pickup in the roll itself in the furnace. In order to send the steel strip to the soaking zone (b) in this condition, it is necessary to arrange a reduction type heating burner in the outlet area of each pass, bring the steel strip into contact with the threading roll in a non-oxidized state, and send it out of the furnace. ·stomach.
第4図はそのような直火加熱帯の構造を示すものである
。図において(I)は第1バス、(II )は第2パス
、(9a)〜(9d)は炉内の通板ロール、(S)は鋼
帯である。このような構成において、丼バスの出側通板
ロール(9b)及び(9d)直曲の加熱領域には、ト述
した還元型の加熱バーナ(10)をライン方向で複数備
えた加熱バーナ群(X)が配置されている。一方、桟用
熱領域には従来一般に用いられている非還元型の加熱バ
ーナによる加熱バーナ1(Y)が配置されている。FIG. 4 shows the structure of such an open-fire heating zone. In the figure, (I) is the first bus, (II) is the second pass, (9a) to (9d) are the passing rolls in the furnace, and (S) is the steel strip. In such a configuration, a heating burner group including a plurality of reduction-type heating burners (10) described above in the line direction is provided in the straight-curved heating area of the outlet passing rolls (9b) and (9d) of the rice bowl bus. (X) is placed. On the other hand, a heating burner 1 (Y), which is a non-reducing heating burner that is commonly used in the past, is arranged in the heat area for the crosspiece.
第8図はこのような直火加熱帯における第1パス(I)
での酸化膜厚及び鋼帯温度の推移を示しており、非還元
型加熱バーナが配置された領域(弱酸化加熱領域)にお
いて生成された酸化膜は、続く還元型加熱バーナが配置
された出側領域(還元加熱領域)において原板ベースの
酸化1模厚まで還元され略5p!:酸化状態で続く第2
バス(II)に送り出されていることが判る。Figure 8 shows the first pass (I) in such an open flame heating zone.
The graph shows the changes in oxide film thickness and steel strip temperature at In the side region (reduction heating region), the oxidation thickness of the original plate base is reduced to approximately 5p! :The second one that continues in the oxidized state
It can be seen that it is being sent out to bus (II).
第6図及び第7図は一ト記還元型バーナの一例を示すも
ので、この加熱バーナは、円筒ヘリのバーナタイル(1
)の内壁(6)に周方向で間隔を右いて複数の燃焼用空
気吐出孔(2)を設けるとともに、バーナ内方中心部に
燃料ガス吐出孔(3)を設け、しかも燃焼用空気吐出孔
(2)及び燃料ガス吐出孔(3)を次のような構成とし
たものである。Figures 6 and 7 show an example of a reduction type burner, and this heating burner has a cylindrical edge burner tile (1
) are provided with a plurality of combustion air discharge holes (2) at right intervals in the circumferential direction on the inner wall (6) of the burner, and a fuel gas discharge hole (3) is provided in the inner center of the burner. (2) and the fuel gas discharge hole (3) have the following configuration.
イ)空気吐出孔(2)の空気供給方向に前記バーナタイ
ル内周に関する接線に対して60”以トーの角度θを付
する。b) An angle θ of 60” or more is attached to the air supply direction of the air discharge hole (2) with respect to the tangent to the inner circumference of the burner tile.
口)燃料ガス吐出孔(3)と空気吐出孔(2)のバーナ
軸方回顧1iINを、燃料ガス吐出孔が空気用出孔より
もバーナタイル出11側にある場合を(=)、その逆を
(+)とした場合、−0,1D〜+0.25D (D
:バーナ内L1径)に設定する。1iIN for the burner axial direction of the fuel gas discharge hole (3) and air discharge hole (2), when the fuel gas discharge hole is closer to the burner tile outlet 11 than the air outlet (=), and vice versa. When is (+), -0.1D to +0.25D (D
:L1 diameter inside the burner).
ハ)空気吐出孔(2)からバーナタイル出[1(5)ま
での距離りを0.6D〜3Dとする。c) The distance from the air discharge hole (2) to the burner tile outlet [1 (5)] is 0.6D to 3D.
このように構成された加熱バーナは、空気比1.0以下
で使用されることにより、火炎中に所定の範囲で非゛ト
衡領域が形成される。すなわち、このような加熱バーナ
では空気吐出孔(2)からの燃焼用空気の旋回流とバー
ナ中央から吐出される燃料ガスとにより急速燃焼が実現
され、バーナjlirl外方の所定の範囲に1(って、
燃焼中間生成物 ゛を多i+kに含み1[つ未反応
の遊離酸素を含まない領域、すなわち非゛ト衡領域を形
成する。第10図は、このような加熱バーナによって形
成される火炎中非゛V、衡領域のイオン検出プローブに
よる一測定例を示すもので、プローブによる測定電流値
が高いのはイオン強度か大きく、したかって燃焼中間生
成物が多i+Lに4?在していることを意味している。When the heating burner configured in this manner is used at an air ratio of 1.0 or less, an unbalanced region is formed in the flame within a predetermined range. That is, in such a heating burner, rapid combustion is realized by the swirling flow of combustion air from the air discharge hole (2) and the fuel gas discharged from the center of the burner, and 1 ( So,
A region containing combustion intermediate products in a number i+k and containing no unreacted free oxygen, that is, a non-equilibrium region is formed. Figure 10 shows an example of measurement using an ion detection probe in the non-V, equilibrium region in the flame formed by such a heating burner. Once upon a time, the amount of combustion intermediate products was 4 in i+L? It means being present.
これによれば、バーナ出11に外方の所定の範囲にi′
jって非゛P−衡領域が形成され、その外方はほぼ反応
を完rしたに02.820 、 N2等を含む準十−衡
領域となっている。According to this, the burner outlet 11 is provided with i'
A non-P-equilibrium region is formed, and outside of this is a quasi-P-equilibrium region containing 02.820, N2, etc. even though the reaction has almost completed.
第11図はこのような加熱バーナの5元加熱特性、すな
わち、無酸化で加熱し得る限界温度(西通鋼の薄板に関
する限界温度)を示すものであり、空気比0.85〜0
.95の範囲において鋼帯を約900℃まで加熱できる
ことが示されている。Figure 11 shows the five-component heating characteristics of such a heating burner, that is, the limit temperature that can be heated without oxidation (the limit temperature for Nishitoshi Steel's thin plate).
.. It has been shown that the steel strip can be heated up to about 900° C. in the range of 95°C.
また、本発明は以上のような加熱バーナ以外に、例えば
所謂ラジアントカップバーナを用いることができる。こ
のバーナは急速燃焼反応を行なわせるため、空気と燃料
ガスとを−tめ混合した混合気体を、バーナタイルの半
球状四部で急速燃焼させ、バーナタイル内面を高温化し
て、放射伝熱を11.とじて加熱するもので、被加熱物
温度が、;;i温度の71域で高い熱流束が得られる特
性をイ」−シている。そしてこのバーナて、空気比を1
.0以ドで燃焼さけることにより、火炎中に非・ト衡領
域か形成される。Furthermore, in the present invention, in addition to the heating burner described above, for example, a so-called radiant cup burner can be used. In order to perform a rapid combustion reaction, this burner rapidly burns a -t mixture of air and fuel gas in the four hemispherical parts of the burner tile, increasing the temperature of the inner surface of the burner tile and reducing radiant heat transfer by 11%. .. It has the characteristic that a high heat flux can be obtained when the temperature of the heated object is in the 71 range of i temperature. And with this burner, the air ratio is 1
.. By avoiding combustion at temperatures below zero, an unbalanced region is formed in the flame.
但し、このラジアントバーナは燃焼用空気と燃料カスの
t混合方式であるため燃焼用空気の予熱ができないこと
、及びこのように空気のr熱かできないため無酸化加熱
は750℃程度か限度であり、より高温域での加熱を必
要とするような場合には適用できないこと等の難点があ
る。この点、第6、図に示すような加熱バーナてはt熱
空気を利用できることから900℃程度まで無酸化加熱
が可能であり、またこのようにr熱空気を利用すること
により火炎温度か高められるため、ラジアントバーナに
較べ中間反応生成物による還元作用そのものも効果的に
向−1ニさせることかできる。However, since this radiant burner uses a t-mixing method of combustion air and fuel residue, it is not possible to preheat the combustion air, and since it can only heat the air, non-oxidation heating is limited to about 750℃. However, there are drawbacks such as inapplicability to cases where heating in a higher temperature range is required. In this regard, the heating burner shown in Fig. 6 can use hot air, so it is possible to heat up to about 900°C without oxidation, and by using hot air in this way, the flame temperature can be increased. Therefore, compared to a radiant burner, the reducing action itself caused by intermediate reaction products can be effectively reversed.
直火加熱帯では以上のようなぷ元型の加熱バーナが、第
4図に示すようにその火炎が鋼帯(S)に対し略直角に
、しかもその非゛ト衡領域で鋼帯面に衝突するよう配置
される。従来の直火加熱炉、例えばNOF等に用いられ
る加熱バーナでは、ト記バーナのような非・P−衡領域
か他の領域と明確に区別されるような形では形成されな
い。従って、[1視しうる火炎が鋼帯に直接接触すると
鋼帯表面が芹しく酸化される。このムに一般的には、火
炎か直接鋼帯に触れないように、火炎が鋼帯幅方向と1
行に形成されるように配置されている。これに対し、本
発明ではバーナ火炎の長ト方向中間に形成される非平衡
領域により鋼帯を加熱することを(l的とし、このため
、火炎が鋼帯面に対し略直角に、しかもその非平衡領域
で衝突するようバーナを配置するものである。In the direct flame heating zone, the above-mentioned pupil type heating burner is used, as shown in Fig. 4, the flame is approximately perpendicular to the steel strip (S), and moreover, in the non-balanced region, it hits the steel strip surface. arranged to collide. Heating burners used in conventional direct-fired heating furnaces, such as NOF, are not formed in a shape that clearly distinguishes between the non-P-equilibrium region and other regions, as in the case of a burner. Therefore, if a visible flame comes into direct contact with the steel strip, the surface of the steel strip will be severely oxidized. Generally speaking, in order to prevent the flame from touching the steel strip directly, the flame should be aligned with the width direction of the steel strip.
arranged to form rows. In contrast, in the present invention, the steel strip is heated by a non-equilibrium region formed in the middle in the longitudinal direction of the burner flame. The burners are arranged so that they collide in a non-equilibrium region.
直火加熱帯(a)に続く均熱帯(b)はラジアントデユ
ープによる間接加熱方式であり、基本的には従来の均熱
帯と同様である。但し、本発明の連続焼鈍炉では直火加
熱帯(a)が還元能力を有し鋼帯は無酸化状態で均熱帯
(b)に送られてくるため、この均熱帯では鋼帯を酸化
させない程度の雰囲気、すなわち、H2:3〜10%、
通常好しくは4〜6%程度の雰囲気で足りる。The soaking zone (b) following the direct heating zone (a) uses an indirect heating method using a radiant duplex, and is basically the same as a conventional soaking zone. However, in the continuous annealing furnace of the present invention, the direct heating zone (a) has a reducing ability and the steel strip is sent to the soaking zone (b) in an unoxidized state, so the steel strip is not oxidized in this soaking zone. Atmosphere of degree, that is, H2: 3-10%,
Usually, an atmosphere of about 4 to 6% is sufficient.
ロール(8)の鋼帯(S)に対する接触長をI+丁変と
することにより、冷却終点温度を、#1整し得るように
している。By setting the contact length of the roll (8) to the steel strip (S) to be I+T, the cooling end point temperature can be adjusted to #1.
なおテンパーミル(f)はそのワークロールに硬7′〔
クロムロールを用いることが好しい。このようなロール
としては特願昭60−41009号、特願昭60−41
011号に示されるようなロールが特にりrしい。この
ロールは鋼帯エツジによる押し疵をは鋼帯エツジによる
押し疵を生じにくく、このためロール疵による鋼帯表面
の疵の発生が適切に防1■−でき、11つ鋼帯への粗度
のプリント率も保持でき、これにより鋼帯幅サイクルフ
リーの連続焼鈍を可能ならしめる。すなわち、従来ては
L記のようなエツジマークやロール疵による鋼帯への+
、+259を回避するため、処理する鋼帯は順次帽状と
なるよう接続していたものであるか、L記したような押
疵な生じない硬質クロムロールな川いることにより、そ
のような制約から解放されることになり、鋼帯を広狭に
関係なく接続する連続焼鈍操業かl’+丁能となる。In addition, the temper mill (f) has a hard 7' [
Preferably, chrome roll is used. Such rolls include Japanese Patent Application No. 60-41009 and Japanese Patent Application No. 60-41.
A roll such as that shown in No. 011 is particularly interesting. This roll is less likely to cause indentation flaws due to the edges of the steel strip, and therefore can appropriately prevent flaws on the surface of the steel strip due to roll flaws, and improve roughness of the steel strip. It is also possible to maintain a print rate of 100%, which enables cycle-free continuous annealing of the steel strip width. In other words, in the past, edge marks and roll flaws such as those shown in
, +259, the steel strips to be processed should be connected one after another to form a cap shape, or the steel strips to be processed should be made of hard chrome rolls that do not cause scratches, as shown in L, to overcome such constraints. This means that the continuous annealing operation that connects steel strips regardless of their width or width becomes 1' + 100 mm.
第2図は本発明の他の実施例を示すもので、直火加熱帯
(a ) Q) l’tr面にr熱帯(h)(2バス)
が設けられている。このr熱帯(h)には直火加熱帯(
a)または均熱帯(b)かその燃焼排ガスが導入され、
鋼帯(S ) 0) ’f−熱が行われるようになって
いる。なお、本発明者等の検討によれば、鋼・nシの酸
化とはt熱温度と使用する燃焼排ガスが生成する際の空
気比とに支配され、を熱温度に応じ燃焼時の空気比が異
る燃焼排ガスを使用することにより、鋼帯をほとんど酸
化させることなくr熱できること、Jt一体的には、第
9図に示すように、鋼帯な280℃未満の範囲で予熱す
る場合には、1.0以上の空気比で生成した燃焼排ガス
を用い、鋼帯な280℃以トに以上する場合には1.0
、未満の空気比で生成した燃焼排ガスを用いることによ
り、鋼帯をt熱温度にかかわらず、はとんど無酸化の状
態で、しかも効率的に−r熱することかできることか判
った。Figure 2 shows another embodiment of the present invention, in which an open heating zone (a), a heating zone (a), a heating zone (h) (2 baths) on a
is provided. In this r tropics (h) there is an open heating zone (
a) or a soaking zone (b) or its combustion exhaust gas is introduced;
Steel strip (S) 0) 'f-heating is to be carried out. According to the studies of the present inventors, the oxidation of steel and steel is governed by the thermal temperature and the air ratio when the combustion exhaust gas used is generated; By using combustion exhaust gas with a different temperature, it is possible to heat the steel strip with almost no oxidation. is 1.0 when using combustion exhaust gas generated at an air ratio of 1.0 or more and heating the steel strip to 280°C or more.
It has been found that by using combustion exhaust gas produced at an air ratio of less than , it is possible to efficiently heat the steel strip in a non-oxidizing state, regardless of the heating temperature.
このようにr熱帯(h)では、燃焼用カスの空気比の規
制により無酸化r熱かn)能であるか、本発明では後続
の直火加熱帯(a)で酸化膜の還元作用か得られるため
、f熱帯(h)におけるある程度の酸化が許容され、こ
の結果、第9図の鎖線(イ)に示されるように約50℃
程度P熱許容温度を高めることができ、これにより空気
比1.0稈度でも400℃程度の予熱が1桂能となりt
熱帯(h)に鋼帯表面圧延油の燃焼除去作用をなさしめ
ることがてきる。In this way, in the tropics (h), depending on the regulation of the air ratio of the combustion scum, there is no oxidation (r) heat or (n) function, or in the present invention, the subsequent direct flame heating zone (a) has a reduction effect on the oxide film. Therefore, a certain degree of oxidation in the f tropics (h) is allowed, resulting in a temperature of about 50°C as shown by the dashed line (a) in Figure 9.
It is possible to increase the heat permissible temperature of degree P, and as a result, even with an air ratio of 1.0 culm degree, preheating of about 400℃ becomes 1 t.
Tropical heat (h) can be used to burn and remove rolling oil from the surface of the steel strip.
第3図は未発明の他の実施例を示すもので、を熱帯(h
)の前面に入側ルーパ(j)を介して鉄粉除去を主目的
としたクリーニング設備(i)を設けたものである。こ
のクリーニング設備(i)は鉄粉除去をLLJ的とした
ものであるため簡易な設備で足りる。第5図はこのよう
なりリーニング設備。−例を示すもので、(11)はア
ルカリ槽、(12)はスクラバ(ブラシロールシン、(
13)はそのバ・ツクアップロール、(14)は温水ス
プレーノズル、(15)は温水リンス糟、(16)はド
ライヤであり、この程度のクリーニング設備により鉄粉
に1−分に除去することができる。Figure 3 shows another uninvented embodiment, with tropical (h)
) is provided with cleaning equipment (i) whose main purpose is to remove iron powder via an inlet looper (j). Since this cleaning equipment (i) is designed to remove iron powder like LLJ, a simple equipment is sufficient. Figure 5 shows the leaning equipment like this. - For example, (11) is an alkaline bath, (12) is a scrubber (Brasilol Shin, (
13) is the back-up roll, (14) is a hot water spray nozzle, (15) is a hot water rinse pot, and (16) is a dryer, and these cleaning equipment can remove iron powder in 1 minute. I can do it.
第1表は以上のような本発明の連続焼鈍設備(第1図〜
第3図)による実施例を示すものである。なお、陽、7
は従来のNOF炉−遍元炉一ロール冷却による比較例で
ある。かかる比較例との、比較からも明らかなように、
本願発明の連続焼鈍設備によれば、従来のNOF方式に
較べ酸化1漠の生成が大幅に抑えられ、化成処理性等に
優れた製品が得られることが判る。また冷却帯における
ロール冷却により冷却速度を任意に変えられるため、同
一材料から穴なる材質の製品を容紡に製造し得ることが
示されている。Table 1 shows the continuous annealing equipment of the present invention as described above (Fig.
FIG. 3) shows an embodiment according to FIG. In addition, positive, 7
This is a comparative example of a conventional NOF furnace-bengen furnace with one roll cooling. As is clear from the comparison with such comparative examples,
It can be seen that according to the continuous annealing equipment of the present invention, the generation of oxidized particles is significantly suppressed compared to the conventional NOF method, and a product with excellent chemical conversion treatability etc. can be obtained. It has also been shown that since the cooling rate can be changed arbitrarily by roll cooling in the cooling zone, it is possible to manufacture products with holes from the same material in a continuous manner.
なお本発明の調質圧延機としては、テンパーミルのばか
テンシコンレベラーな用いることができ、或いはテンパ
ーミールとテンシコンレベラとを併没することもできる
。As the temper rolling mill of the present invention, a temper mill with a tensicon leveler can be used, or a temper mill and a tensicon leveler can be used together.
またロール冷却に続いて亜鉛メッキ等メッキ装置を設け
ることもiiJ能である。It is also possible to provide a plating device such as galvanizing after cooling the rolls.
なお、上記第6図及び第7図に示す加熱バーナに突設さ
れた燃料カスノズルであり、本実施例ではこの燃料ガス
ノズル(7)の同方向に間隔をおいて燃料ガス吐出孔(
3)か形成されている。The fuel gas nozzle (7) is a fuel gas nozzle protruding from the heating burner shown in FIGS. 6 and 7, and in this embodiment, the fuel gas discharge holes (
3) is formed.
このような加熱バーナにおいて、その空気吐出孔(2)
に空気供給角θを持たせるのは、バーナタイル内で燃焼
用空気に旋回流を生じさせるためて、この旋回流により
バーナ内側に負圧領域が形成され、この負圧によってガ
スが再循環することにより燃焼か促進され、もって適切
な非平衡領域を形成せしめることができる。この空気供
給角θは最大60°、好しくは20〜40°とすること
により空気流の旋回性が安定して得られる。In such a heating burner, its air discharge hole (2)
The reason why the air supply angle θ is set is to create a swirling flow in the combustion air within the burner tile.This swirling flow forms a negative pressure area inside the burner, and this negative pressure recirculates the gas. As a result, combustion can be promoted and an appropriate non-equilibrium region can be formed. By setting the air supply angle θ to a maximum of 60°, preferably from 20 to 40°, a stable swirling property of the airflow can be obtained.
燃料ガス吐出孔(3)と空気吐出孔(2)のバーナ軸方
同罪!INは、これが(−)側にある場合、ガス温度が
高く、しかも燃焼中間生成物も広範囲に高い分布状態に
あるが反面遊離02 (未反応02)か軸方向に長く分
布する傾向にある。本発明が目的とする非平衡領域を適
切に形成せしめるには、この遊11102のバーナ軸方
向残存距離を最小にする必要があり、その限界を求める
と一〇、IDとなる。The burner axis of the fuel gas discharge hole (3) and the air discharge hole (2) are the same! When IN is on the (-) side, the gas temperature is high and the combustion intermediate products are highly distributed over a wide range, but on the other hand, free 02 (unreacted 02) tends to be distributed long in the axial direction. In order to appropriately form the non-equilibrium region that is the object of the present invention, it is necessary to minimize the remaining distance of this play 11102 in the burner axial direction, and its limit is determined as 10 ID.
Nが(+ ) (!11にあれば適正な非(ト衡領域か
形成されるが、余り大きくなるとバーナタイル内端壁が
1400℃以上に加熱されるため好しくなく、バーナタ
イル内端壁のSiCの保護上+0.25Dが限界となる
。第12図は、燃料ガス吐出孔(14)と空気吐出孔(
13)のバーナ軸方同罪@Nを−0,25Dとした場合
のバーナ出l二1からのバーナ軸方向距離とバーナタイ
ル内のガス温度、02濃度及びイオン強度との各関係を
調へたものであり、これによればNがこのような(−)
0−1にある場合、遊離02の軸方向における残存距B
L。が大きく存在することか示されている。If N is (+) (!11), a proper non-equilibrium region will be formed, but if it becomes too large, the inner end wall of the burner tile will be heated to over 1400°C, which is undesirable. The limit is +0.25D for the protection of SiC.Figure 12 shows the fuel gas discharge hole (14) and the air discharge hole (
13) We investigated the relationship between the burner axial distance from the burner outlet 121, the gas temperature in the burner tile, the 02 concentration, and the ionic strength when the burner axial direction is equal to N = -0.25D. According to this, N is like this (-)
0-1, the remaining distance B in the axial direction of the free 02
L. It has been shown that there is a large presence of
第13図は燃料ガス孔と空気吐出孔のバーナ軸力自圧f
iNと、遊離02の軸方向残存距!11Loとの関係を
示すもので、これによればNが一〇、IDよりもぐ−)
側に大きくなると、Loか急激に大きくなっており、こ
のため(−)側では−0,1Dが限界となる。Figure 13 shows the burner axial force and natural pressure f at the fuel gas hole and air discharge hole.
iN and remaining axial distance of free 02! This shows the relationship with 11Lo, and according to this, N is 10, which is more than ID.)
As it increases toward the side, Lo increases rapidly, and for this reason, -0 and 1D are the limits on the (-) side.
方、第14図はNを十〇、IDとした場合のバーナ出に
1からのバーナ1油方向距離と02濃度、イオン強度及
びガス温度との各関係を調べたものである。On the other hand, FIG. 14 shows the relationship between the distance in the direction of burner 1 oil from burner outlet 1, 02 concentration, ion strength, and gas temperature when N is 10 and ID is assumed to be 100 and ID.
この第13図及び第14図によれば、Nが(+ ) f
llであれば、0゜濃度にも問題がなく、バーナ出[1
からの距離が0.5D以上のところに通雨な非ゝVii
i領域か形成されている。According to FIGS. 13 and 14, N is (+) f
1, there is no problem with the 0° concentration, and the burner output [1
Rain can pass through the area at a distance of 0.5D or more from
An i-area has been formed.
然しなからNを(+)側に大きくすると、バーナタイル
内端壁(4)が加熱されるために、第15図の距離Nと
バーナタイル内端壁(4)の温度Tbとの関係グラフに
示されるように、+0.25DでTbか1400℃以」
−となり、このため内端壁の材質の材質がSiCである
ことを考慮し、+0.25D以ト°とするのが耐熱限界
上好ましい。以上のことから燃焼ガス吐出孔と空気吐出
孔のバーナ中心軸距tsNに関しては、−〇、ID〜0
.25Dの範囲とすることが好ましい。However, if N is increased to the (+) side, the burner tile inner end wall (4) is heated, so the relationship graph between the distance N and the temperature Tb of the burner tile inner end wall (4) in FIG. As shown in , Tb at +0.25D is 1400℃ or higher.
Therefore, considering that the material of the inner end wall is SiC, it is preferable to set the temperature to +0.25D or more in view of the heat resistance limit. From the above, regarding the burner center axis distance tsN of the combustion gas discharge hole and the air discharge hole, -〇, ID ~ 0
.. It is preferable to set it as the range of 25D.
空気吐出孔(2)からバーナタイル出[1(5)までの
距11iLは非平衡領域の形成範囲と密接な関係を11
−シている。すなわちLが3Dを超えると非平衡領域が
バーナタイル出[I直後の部分にしか形成されず好しく
ない。一方、Lか0.6D未満の場合は火炎がバーナタ
イル出1−1直後で花びら状の火炎となりバーナ中心軸
りに適正な非・ト衡領域が安定して得られない。従って
0.6D〜3.0Dの範囲にLを定めることが好ましい
。The distance 11iL from the air discharge hole (2) to the burner tile outlet [1 (5)] has a close relationship with the formation range of the non-equilibrium region.
-I'm looking forward to it. That is, if L exceeds 3D, the non-equilibrium region will be formed only in the part immediately after the burner tile exit [I], which is not preferable. On the other hand, if L is less than 0.6D, the flame becomes a petal-shaped flame immediately after the burner tile 1-1 comes out, and an appropriate unbalanced region cannot be stably obtained around the center axis of the burner. Therefore, it is preferable to set L in the range of 0.6D to 3.0D.
薄鋼板を連続加熱する場合、バーナタイル出口(5)と
鋼板との距離を一定以上(通常、100mm程度以上)
とらないと、通板中に、鋼板がバーナに接触する恐れが
ある。したがって、火炎中の非・ド衡領域は、バーナ出
[1側から所定の距離に位置する鋼帯通板位置を含むな
るべく広い範囲に形成させることが好しいことになる。When continuously heating a thin steel plate, the distance between the burner tile outlet (5) and the steel plate must be at least a certain distance (usually about 100 mm or more).
If not, there is a risk that the steel plate will come into contact with the burner during threading. Therefore, it is preferable that the unbalanced region in the flame be formed in as wide a range as possible, including the steel strip passing position located at a predetermined distance from the burner exit side.
第16図は距BLとバーナ出[1から非・P衡領域の末
端(反バーナ(jillの末);;1、例えば第14図
中のA点)までの距離L 11との関係についてよ1べ
たものである。これによれば、Lか3Dを越えると非゛
P−衡領域の形成はバーナタイル出[I直後のみとなり
、それよりも面方側にはほとんど形成されない。Lが小
さくなるにしたがい非゛ト衡領域の形成範囲は拡大する
が、Lか0.6D未満の領域(X)では、火炎はバーナ
タイル出[1直後で、花びら状の放射状の火炎となり、
バーナ軸心トに適正な非平衡領域が安定して形成されな
い。以上のことから、空気吐出孔(2)からバーナタイ
ル出口(5)までの距jllLは0.6D〜3.0Dの
範田1とすることが望ましい。Figure 16 shows the relationship between the distance BL and the distance L11 from the burner exit [1 to the end of the non-P balance region (the end of the anti-burner (end of jill); 1, for example, point A in Figure 14). It is one solid thing. According to this, when L exceeds 3D, the non-P-equilibrium region is formed only immediately after the exit of the burner tile [I, and is hardly formed on the surface side beyond that. As L becomes smaller, the range in which the unbalanced region is formed expands, but in the region (X) where L is less than 0.6D, the flame becomes a petal-shaped radial flame immediately after the burner tile exits.
An appropriate non-equilibrium region cannot be stably formed at the burner axis. From the above, it is desirable that the distance jllL from the air discharge hole (2) to the burner tile outlet (5) be set to range 1 of 0.6D to 3.0D.
なお、以上のような加熱バーナーの構造において、燃焼
用空気吐出孔(2)から吐出される空気の旋回流が強過
ぎるとバーナ出側の燃焼ガスのバーナ径方向での温度分
イ11が不均一・になり、この結果、安定した広範囲の
非・V衡領域が形成されにくくなるような場合がある。In addition, in the structure of the heating burner as described above, if the swirling flow of the air discharged from the combustion air discharge hole (2) is too strong, the temperature of the combustion gas on the burner outlet side in the burner radial direction 11 will become insufficient. As a result, it may become difficult to form a stable and wide range of non-V equilibrium regions.
このような場合には、空気旋回流を緩和して温度分布の
均一化を図るため、燃料ガス吐出孔(3)を、その1l
rl射方向が燃料ノズル外周に関する接線に対してJ1
直角で、しかもこれによる燃料ガス流か燃焼用空気吐出
孔(2)からの空気流と逆向きの旋回流、すな □わ
ち空気旋回流と逆向きから衝突するような旋回流となる
よう形成する構造、或いは、燃料カス吐出孔(3)を、
その噴射方向がバーナ軸線方向またはバーナ軸線方向に
対して傾斜した方向となるようにする構造、さらには空
気吐出孔(2)にバーナタイル径方向に対しバーナ開口
方向への傾斜角(ねじれ角)を付与するような構造等を
学独または、それぞれを組み合せた形で採用することが
できる。In such a case, in order to reduce the air swirling flow and make the temperature distribution uniform, the fuel gas discharge hole (3) should be
The rl radiation direction is J1 with respect to the tangent to the outer circumference of the fuel nozzle.
A swirling flow that is perpendicular to the fuel gas flow or the airflow from the combustion air discharge hole (2), that is, a swirling flow that collides with the air swirling flow from the opposite direction. The structure to be formed or the fuel waste discharge hole (3),
A structure in which the injection direction is in the burner axis direction or a direction inclined to the burner axis direction, and an inclination angle (torsion angle) in the burner opening direction with respect to the burner tile radial direction in the air discharge hole (2). It is possible to adopt a structure that imparts the following characteristics independently or in combination.
またバーナによる加熱面積を拡大するためバーナタイル
(1)の少なくとも燃焼用空気吐出孔形成部位より先端
開口側の内壁に、バーナ内111径か先端間ml側に拡
径するような広がり角をf・1した構造、さらには空気
吐出孔(2)の形成を容易にするため、筒状バーナタイ
ルの壁体内に、バーナ周方向に沿った燃焼用空気の旋回
流路を設け、該旋回流路をバーナ内部と連通させる複数
の燃焼用空気吐出孔を設けた構造等も採用することがで
きる。In addition, in order to expand the heating area by the burner, at least the inner wall of the burner tile (1) on the tip opening side from the combustion air discharge hole formation part is provided with a divergence angle f that increases the diameter toward the burner inner diameter 111 or the tip distance ml side.・In order to facilitate the formation of the air discharge hole (2), a swirling flow path for combustion air along the circumferential direction of the burner is provided in the wall of the cylindrical burner tile, and the swirling flow path It is also possible to adopt a structure in which a plurality of combustion air discharge holes are provided to communicate the combustion air with the inside of the burner.
[発明の効果]
以1−述べた本発明によれば鋼帯を直火加熱方式により
無酸化加熱することができ、ロールピックアップ等の鋼
帯酸化に基つくトラブルを適切に回避せしめることかで
きる。また加熱帯が直火加熱11式であり、しかも加熱
帯における無酸化加熱が11丁能となる結果、続く均熱
帯におけるH2濃度が棒く低く抑えることができ、しか
もロール冷却により過時効温度まで鋼帯な急冷できるた
め過時効処理のための+lT加熱を必要とせず、これら
のことから、従来方式の連続焼鈍炉に較ベエネルギーを
大幅に節減した操業が可能となる。また、無酸化加熱の
採用と水冷ロールによる冷却方式をとるため、鋼帯の酸
化が防止され、酸洗設備を全く不要ならしめる。さらに
熱f′J荷応答性に優れた直火加熱方式と冷却サイクル
の調整か容易な水冷ロール方式を採るため、材料や所望
材質に合せて熱サイクルを的確且つ応答性良く変えるこ
とができ、連続焼鈍のサイクルフリー化すなわち炉温、
板厚、板幅等に関係なく処理する操業を可能ならしめる
効果を有する。[Effects of the Invention] According to the present invention described in 1-1 above, a steel strip can be heated without oxidation by a direct flame heating method, and troubles caused by oxidation of the steel strip such as roll pickup can be appropriately avoided. . In addition, the heating zone is 11 types of direct flame heating, and as a result of the non-oxidation heating in the heating zone being 11 types, the H2 concentration in the subsequent soaking zone can be kept extremely low, and furthermore, by roll cooling, it can reach the overaging temperature. Since the steel strip can be rapidly cooled, there is no need for +1T heating for overaging treatment, and for these reasons, it is possible to operate with a significant energy saving compared to conventional continuous annealing furnaces. In addition, the use of non-oxidizing heating and cooling method using water-cooled rolls prevents oxidation of the steel strip, making pickling equipment completely unnecessary. Furthermore, since it uses a direct flame heating method with excellent heat f'J load response and a water-cooled roll method that allows easy adjustment of the cooling cycle, the heat cycle can be changed accurately and responsively according to the material and desired material quality. Cycle-free continuous annealing, i.e. furnace temperature,
This has the effect of enabling processing operations regardless of plate thickness, plate width, etc.
また、本願第2の発明では、以上の効果に加え、高速焼
鈍における直火加熱帯での加熱負荷を軽減し、適切な高
温、高速焼鈍がii)能となる。Moreover, in addition to the above-mentioned effects, the second invention of the present application reduces the heating load in the direct flame heating zone during high-speed annealing, and ii) enables appropriate high-temperature and high-speed annealing.
また、還元型の直火加熱炉との組み合せにより、を熱に
よるある程度の酸化が許容され、このためf熱帯におい
て250〜500℃の高温予熱を行い鋼帯表面に付着し
た圧延油を燃焼除去することができ、直火加熱帯での圧
延油除去と合せバーンオフ性が良好なものとなる。In addition, in combination with a reduction type direct-fired heating furnace, a certain degree of oxidation due to heat is allowed, so the rolling oil adhering to the surface of the steel strip is burned off by preheating at a high temperature of 250 to 500 degrees Celsius in the f-tropics. This, combined with the removal of rolling oil in the direct heating zone, results in good burn-off properties.
また直火加熱方式による加熱帯では加熱速度が大きいた
め間接加熱方式による場合に較べ加熱温度(加熱最終温
度)が高目になる傾向があり、それだけ余分なエネルギ
ーを必要とするが、予熱帯を設けて鋼帯のを熱を行うこ
とにより、昇温の勾配を低くし、加熱温度を必要量−F
にトげなくて済むという利点が得られる。In addition, since the heating speed in the heating zone using the direct heating method is high, the heating temperature (final heating temperature) tends to be higher than when using the indirect heating method, which requires extra energy. By heating the steel strip, the gradient of temperature rise is lowered and the heating temperature is reduced to the required amount -F.
The advantage is that you don't have to worry about it.
さらに本願第3の発明では以上の効果に加え、加熱燃焼
ては除去されない鋼帯而付着鉄粉を効果的に除去てき、
この鉄粉に基因したロールピックアップに似た2次トラ
ブルを適切に防ILすることかでき、またr熱帯や直火
加熱帯での圧延油除去作用を補強し得る効果もある。Furthermore, in addition to the above-mentioned effects, the third invention of the present application effectively removes iron powder adhering to the steel band, which cannot be removed by heating and combustion.
It is possible to appropriately prevent secondary troubles similar to roll pickup caused by iron powder, and it also has the effect of reinforcing the rolling oil removal effect in tropical regions and direct fire heating zones.
第1図ないし第3図はそれぞれ本発明の実施例を示す説
明図である。第4図は本発明膜゛備の直火加熱帯の一例
を示す説明図である。第5図は本発明設備のクリーニン
グ設備を示す説明図である。
第6図及び第7図は本発明は本発明設備で用いられる還
元加熱バーナの一例を示すもので、第6図は縦断面図、
第7図は第6図中■−■線に沿う断面図である。第8図
は第4図に示す直火加熱帯の第1パスにおける酸化膜厚
及び鋼帯温度の推移な/I(すものである。第9図はr
熱帯における燃焼排ガスの空気比と無酸−p熱限界温度
との関係をボすものである。第10図は第6図及び第7
図に示す加熱バーナにおける非洞衡領域形成範囲の一例
定例を示すものである。第11図は同じく加熱バーナの
還元加熱特性を示すものである。第12図ないし第16
図は第6図及び第7図に示す加熱バーナの特性を示すも
ので、第12図は燃料カス(吐出孔と空気吐出孔とのバ
ーナ軸方向における距1Nを−0,25Dとした場合の
バーナ出11からの距離とガス温度、02濃度、イオン
強度との関係、第13図は燃料ガス吐出孔と空気吐出孔
のバーナ軸方向における距離Nと遊#0□のバーナ軸方
向残Jr距tli Loとの関係、第14図は距fiN
を+1.0とした場合のバーナ出[1からの距fiLと
ガス温度02濃度、イオン強度との関係、第15国電
は燃料ガス吐出孔と空気吐出孔の距fiNとバーナタイ
ル後壁温度Tbとの関係、第16図は空気吐出孔からバ
ーナ出口までの距離りと非゛r衡領域の末端までの距離
LRとの関係な各示すものである。
図において(a)は直火加熱帯、(b)は均熱帯、(C
)は冷却帯、(d)は中間酸洗設備、(e)は過時効処
理帯、(f)はテンパーミル、(h)はr熱帯、(i)
はクリーニング装置、(8)は冷却ロール、(10)は
5元型加熱バーナを各示す。
第 9 図
燃妓、七宇プス生鍬埼っ隻民)ヒ
箪10g
5il !i!Q
7Bkl:、。FIGS. 1 to 3 are explanatory diagrams showing embodiments of the present invention, respectively. FIG. 4 is an explanatory diagram showing an example of an open heating zone equipped with a membrane of the present invention. FIG. 5 is an explanatory diagram showing the cleaning equipment of the equipment of the present invention. 6 and 7 show an example of a reduction heating burner used in the equipment of the present invention, and FIG. 6 is a longitudinal sectional view;
FIG. 7 is a sectional view taken along the line ■-■ in FIG. Figure 8 shows the changes in oxide film thickness and steel strip temperature during the first pass of the open-fire heating zone shown in Figure 4.
This study deals with the relationship between the air ratio of combustion exhaust gas and the acid-free p-thermal limit temperature in the tropics. Figure 10 is similar to Figures 6 and 7.
This figure shows an example of a non-equilibrium region forming range in the heating burner shown in the figure. FIG. 11 similarly shows the reduction heating characteristics of the heating burner. Figures 12 to 16
The figure shows the characteristics of the heating burner shown in Figures 6 and 7, and Figure 12 shows the characteristics of the fuel scum (when the distance 1N between the discharge hole and the air discharge hole in the burner axial direction is -0.25D). The relationship between the distance from the burner outlet 11, gas temperature, 02 concentration, and ionic strength, Figure 13 shows the distance N between the fuel gas discharge hole and the air discharge hole in the burner axial direction and the remaining Jr distance in the burner axial direction of free #0□. The relationship with tli Lo, Figure 14 shows the distance fiN
The relationship between the distance fiL from the burner output [1, gas temperature 02 concentration, and ionic strength, the 15th National Electric Power Company has the relationship between the distance fiN between the fuel gas discharge hole and the air discharge hole and the burner tile rear wall temperature Tb FIG. 16 shows the relationship between the distance from the air discharge hole to the burner outlet and the distance LR to the end of the unbalanced region. In the figure, (a) is an open heating zone, (b) is a soaking zone, and (C
) is a cooling zone, (d) is an intermediate pickling facility, (e) is an overaging treatment zone, (f) is a temper mill, (h) is a tropical zone, (i) is
(8) is a cooling roll, and (10) is a quinary heating burner. 9th illustration, 10g 5il! i! Q 7Bkl:.
Claims (3)
主体とした冷却帯が順に設けられるとともに、最終処理
帯の出側に、調質圧延機が配置され、且つ前記直火加熱
帯には、その少なくとも出側領域に、燃焼中間反応生成
物を有し且つ遊離酸素を有しない非平衡領域を火炎中に
形成し得る複数の加熱バーナを配置したことを特徴とす
る鋼帯の連続焼鈍設備。(1) A direct heat heating zone, a soaking zone, and a cooling zone mainly consisting of roll cooling are provided in this order from the entry side, and a temper rolling mill is placed on the exit side of the final processing zone, and A steel strip characterized in that a plurality of heating burners capable of forming a non-equilibrium region in the flame that contains combustion intermediate reaction products and does not have free oxygen is arranged at least in its outlet region. Continuous annealing equipment.
冷却を主体とした冷却帯が順に設けられるとともに、最
終処理帯の出側に、調質圧延機が配置され、且つ前記直
火加熱帯には、その少なくとも出側領域に、燃焼中間反
応生成物を有し且つ遊離酸素を有しない非平衡領域を火
炎中に形成し得る複数の加熱バーナを配置したことを特
徴とする鋼帯の連続焼鈍設備。(2) A preheating zone, a direct-fire heating zone, a soaking zone, and a cooling zone mainly consisting of roll cooling are provided in this order from the input side, and a temper rolling mill is placed on the exit side of the final processing zone, and A steel characterized in that the fire heating zone is provided with a plurality of heating burners capable of forming a non-equilibrium region in the flame that contains combustion intermediate reaction products and does not contain free oxygen, at least in its outlet region. Continuous annealing equipment for strips.
直火加熱帯、均熱帯、及びロール冷却を主体とした冷却
帯が順に設けられるとともに、最終処理帯の出側に、調
質圧延機が配置され、且つ前記直火加熱帯には、その少
なくとも出側領域に、燃焼中間反応生成物を有し且つ遊
離酸素を有しない非平衡領域を火炎中に形成し得る複数
の加熱バーナを配置したことを特徴とする鋼帯の連続焼
鈍設備。(3) Cleaning equipment for the steel strip surface from the entry side, preheating area,
A direct-fired heating zone, a soaking zone, and a cooling zone mainly consisting of roll cooling are provided in this order, and a temper rolling mill is disposed on the exit side of the final processing zone, and the direct-fired heating zone includes at least one of the following: 1. Continuous annealing equipment for steel strip, characterized in that a plurality of heating burners capable of forming a non-equilibrium region in the flame, which contains combustion intermediate reaction products and does not contain free oxygen, is arranged in the exit region.
Priority Applications (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19261185A JPS6254033A (en) | 1985-08-31 | 1985-08-31 | Continuous annealing installation for steel strip |
US07/027,224 US4760995A (en) | 1985-07-18 | 1986-07-10 | Continuously treating line for steel bands having a heating furnace by directly flaming |
PCT/JP1986/000352 WO1987000555A1 (en) | 1985-07-18 | 1986-07-10 | Continuous strip steel processing line having direct firing furnace |
EP86904373A EP0233944B1 (en) | 1985-07-18 | 1986-07-10 | Continuous strip steel processing line having direct firing furnace |
DE8686904373T DE3677959D1 (en) | 1985-07-18 | 1986-07-10 | SYSTEM FOR THE CONTINUOUS TREATMENT OF TAPE STEEL WITH A DIRECTLY HEATED OVEN. |
BR8606772A BR8606772A (en) | 1985-07-18 | 1986-07-10 | CONTINUOUS TREATMENT LINE FOR STEEL TAPES WITH A DIRECT FLAME HEATING OVEN |
CN 86104502 CN1011982B (en) | 1985-07-10 | 1986-07-10 | Steel strip continuous treatment production line with open fire furnace |
CA000513536A CA1255897A (en) | 1985-07-10 | 1986-07-10 | Continuously treating line for steel bands having a heating furnace by directly flaming |
AT86904373T ATE61416T1 (en) | 1985-07-18 | 1986-07-10 | PLANT FOR THE CONTINUOUS TREATMENT OF STRIP WITH A DIRECTLY HEATED FURNACE. |
AU61432/86A AU598981B2 (en) | 1985-07-18 | 1986-07-10 | Continuous strip steel processing line having direct firing furnace |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19261185A JPS6254033A (en) | 1985-08-31 | 1985-08-31 | Continuous annealing installation for steel strip |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6254033A true JPS6254033A (en) | 1987-03-09 |
JPH0368933B2 JPH0368933B2 (en) | 1991-10-30 |
Family
ID=16294137
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19261185A Granted JPS6254033A (en) | 1985-07-10 | 1985-08-31 | Continuous annealing installation for steel strip |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6254033A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9802578B2 (en) | 2015-09-11 | 2017-10-31 | Beck Manufacturing International, Inc. | Concrete mixer truck cleaning system |
CN111471887A (en) * | 2020-05-14 | 2020-07-31 | 保定立中东安轻合金部件制造有限公司 | Brake disc and manufacturing method and manufacturing device thereof |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55104432A (en) * | 1979-02-06 | 1980-08-09 | Nippon Steel Corp | Continuous annealing treating method of cold rolled steel plate |
JPS6077931A (en) * | 1983-10-05 | 1985-05-02 | Nippon Kokan Kk <Nkk> | Oxygen free heating method of steel strip |
JPS6077929A (en) * | 1983-10-04 | 1985-05-02 | Nippon Kokan Kk <Nkk> | Direct fire reduction of steel strip |
-
1985
- 1985-08-31 JP JP19261185A patent/JPS6254033A/en active Granted
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55104432A (en) * | 1979-02-06 | 1980-08-09 | Nippon Steel Corp | Continuous annealing treating method of cold rolled steel plate |
JPS6077929A (en) * | 1983-10-04 | 1985-05-02 | Nippon Kokan Kk <Nkk> | Direct fire reduction of steel strip |
JPS6077931A (en) * | 1983-10-05 | 1985-05-02 | Nippon Kokan Kk <Nkk> | Oxygen free heating method of steel strip |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9802578B2 (en) | 2015-09-11 | 2017-10-31 | Beck Manufacturing International, Inc. | Concrete mixer truck cleaning system |
US10737664B2 (en) | 2015-09-11 | 2020-08-11 | Beck Manufacturing International, Inc. | Concrete mixer truck cleaning system |
US11926291B2 (en) | 2015-09-11 | 2024-03-12 | Beck Manufacturing International, Inc. | Concrete mixer truck cleaning system |
CN111471887A (en) * | 2020-05-14 | 2020-07-31 | 保定立中东安轻合金部件制造有限公司 | Brake disc and manufacturing method and manufacturing device thereof |
Also Published As
Publication number | Publication date |
---|---|
JPH0368933B2 (en) | 1991-10-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4373702A (en) | Jet impingement/radiant heating apparatus | |
WO2007087973A2 (en) | Process for the heat treatment of steel strips in a continuous furnace with oxy-fuel burners | |
US4760995A (en) | Continuously treating line for steel bands having a heating furnace by directly flaming | |
JPS6254033A (en) | Continuous annealing installation for steel strip | |
JPH0368934B2 (en) | ||
JP2006144104A (en) | Apparatus and method for continuously annealing steel sheet for hot dip galvanizing | |
CN102399964B (en) | Steel pipe normalizing furnace | |
JP5268303B2 (en) | Method for lowering temperature of heating furnace and heating furnace | |
JPS6254031A (en) | Direct firing heating furnace of continuous annealing installation for steel strip | |
JPS6254035A (en) | Continuous heat treatment of steel strip | |
JPS6254032A (en) | Continuous annealing furnace for steel strip | |
JP4110584B2 (en) | Continuous heat treatment equipment for metal strip | |
JPH0230720A (en) | Method for heating steel sheet | |
CA1103569A (en) | Preheat and cleaning system | |
JPH062032A (en) | Method for annealing and pickling steel sheet | |
CN202322937U (en) | Steel tube normalizing furnace | |
JP3168753B2 (en) | Threading method in direct reduction heating equipment of continuous metal strip processing line | |
CN101435018A (en) | Hot dip galvanizing annealing process and high temperature annealing furnace | |
Suo et al. | Design, Development and Application of a Versatile Coating | |
JPH0336286A (en) | Descaling method and production of plated steel plate using the same | |
JP2733885B2 (en) | Continuous heat treatment of steel strip | |
JPS629165B2 (en) | ||
JPH0781167B2 (en) | Direct-fire continuous annealing method and apparatus for steel strip | |
Suo | DESIGN, DEVELOPMENT AND APPLICATION OF A VERSATILE COATING(Conference Paper) | |
JPS6233006Y2 (en) |