JPS6254007A - Production of molten chromium iron - Google Patents

Production of molten chromium iron

Info

Publication number
JPS6254007A
JPS6254007A JP19275185A JP19275185A JPS6254007A JP S6254007 A JPS6254007 A JP S6254007A JP 19275185 A JP19275185 A JP 19275185A JP 19275185 A JP19275185 A JP 19275185A JP S6254007 A JPS6254007 A JP S6254007A
Authority
JP
Japan
Prior art keywords
chromium
furnace
tuyeres
ore
blown
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19275185A
Other languages
Japanese (ja)
Other versions
JPH0453922B2 (en
Inventor
Katsuhiro Tanaka
勝博 田中
Tomiya Fukuda
福田 富也
Fumiaki Orimo
下茂 文秋
Yoshiaki Nishimoto
西本 義明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP19275185A priority Critical patent/JPS6254007A/en
Publication of JPS6254007A publication Critical patent/JPS6254007A/en
Publication of JPH0453922B2 publication Critical patent/JPH0453922B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture Of Iron (AREA)

Abstract

PURPOSE:To execute melt reduction with good thermal efficiency in a melt reduction method of chromium ore using a vertical furnace by controlling the rate of blowing the high-temp. air enriched with oxygen to be blown from two stages of upper and lower tuyeres to a specific value or above. CONSTITUTION:Iron sources, carbonaceous materials and slag forming materials and, it necessary, chromium sources are charged through a raw material charging port 1 into the vertical furnace in the stage of producing the molten chromium iron by using the vertical furnace having the port 1 in the upper part of the furnace and two stages of the upper and lower tuyeres 2, 3 near the lower part. The high-temp. air enriched with oxygen is blown through the upper and lower tuyeres 2, 4, at the same time, the powdery chromium ore and powdery slag forming materials are supplied into the furnace through the upper tuyere 2. The molten chromium iron is produced while the powdery chromium ore is subjected to melt reduction. The rate of blowing the high-temp. air enriched with oxygen to be blown through the tuyeres 2, 3 is controlled to >=100m/sec.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、電力を製練用のエネルギーとして使用するこ
となく含クロム溶銑を製造する方法において、クロム源
の一部としてクロム鉱石を使用しこのクロム鉱石の溶融
還元も同時に行えるようにした熱経済的な含クロム溶銑
の製造法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is a method for producing chromium-containing hot metal without using electricity as energy for smelting, in which chromium ore is used as part of the chromium source. The present invention relates to a thermoeconomic method for producing chromium-containing hot metal in which smelting and reduction of chromium ore can be carried out at the same time.

〔従来の技術〕[Conventional technology]

従来より、ステンレスmi1!造用の含クロム溶銑の製
造法としては、電気炉による方法が一つの技術体系を形
成している。この方法は、製鋼用アーク炉に、クロム源
、コークス、フラックスおよび必要に応じて副材料を装
入して溶解し、含クロム溶銑を得るものである。そのさ
いのクロム源としては、高炭素フェロクロムが使用され
るのが通常である。この高炭素フェロクロムを製造する
のにも電気炉が使用され、この場合にはクロム鉱石の半
還元ペレット等が使用されたり焼結鉱が使用されたりす
る。この従来法によると電力消費量が非常に大きいので
、近年、クロム鉱石を炭材等の還元材によって直接的に
溶融還元する方法の開発が推進されている。その傾向と
しては、転炉によってクロム鉱石の溶融還元を行う方向
に注力されているようである。例えば特開昭58−77
548号公報。
From before, stainless steel mi1! One of the technological systems for producing chromium-containing hot metal for steel production is the method using an electric furnace. In this method, a chromium source, coke, flux, and optionally auxiliary materials are charged into a steelmaking arc furnace and melted to obtain chromium-containing hot metal. High carbon ferrochrome is usually used as the chromium source. An electric furnace is also used to produce this high carbon ferrochrome, and in this case semi-reduced pellets of chromium ore or sintered ore are used. Since this conventional method consumes a very large amount of electricity, in recent years there has been a push to develop a method for directly melting and reducing chromium ore using a reducing agent such as carbonaceous material. The trend seems to be to focus on smelting and reducing chromium ore using converters. For example, JP-A-58-77
Publication No. 548.

特開昭59−145758号公報、特開昭59−150
059号公報、特開昭59−150060号公報、特開
昭59−150061号公報、特開昭59−150(1
62号公報等は転炉によるクロム鉱石の溶融還元を開示
している。また特開昭50−116317号公報は特殊
な混合槽を使用してクロム鉱石の溶融還元を行う方法を
開示する。
JP-A-59-145758, JP-A-59-150
059, JP 59-150060, JP 59-150061, JP 59-150 (1)
Publication No. 62 and the like disclose melting and reduction of chromium ore using a converter. Further, Japanese Patent Application Laid-Open No. 116317/1983 discloses a method for melting and reducing chromium ore using a special mixing tank.

一方1本願と同一出願人に係る特願昭59−18219
号において、特殊な竪型炉を使用し、この竪型炉の羽口
にクロム源の一部としての粉状のクロム鉱石を吹込むこ
とによってその溶融還元を図る方法を提案した。この出
願人の提案に係る竪型炉による方法の骨子は、炉の°上
部に原料装入口をそして炉の下部付近に上下二段の羽口
をもつ竪型炉を用いて含クロム溶銑を製造するものであ
り、上部の原料装入口からクロム源、鉄源、炭材および
造滓材を装入し、該上下の羽口から熱風を吹込むと同時
に1羽口から粉状クロム鉱石1発熱材および粉状造滓材
を炉内に供給することにより、この粉状クロム鉱石を溶
融還元しながら含クロム溶銑を得るものである。
On the other hand, Japanese Patent Application No. 18219/1989 filed by the same applicant as the present application
In this issue, we proposed a method for melting and reducing powdered chromium ore as part of the chromium source by using a special vertical furnace and injecting powdered chromium ore as part of the chromium source into the tuyeres of this vertical furnace. The gist of the method using a vertical furnace proposed by the applicant is to produce chromium-containing hot metal using a vertical furnace that has a raw material charging port in the upper part of the furnace and two upper and lower tuyeres near the bottom of the furnace. The chromium source, iron source, carbon material, and slag material are charged from the upper raw material charging port, and hot air is blown from the upper and lower tuyeres, and at the same time, powdered chromium ore is heated from each tuyere. By supplying the powdered chromium ore and powdered slag forming material into the furnace, chromium-containing hot metal is obtained while the powdered chromium ore is melted and reduced.

〔発明の目的〕[Purpose of the invention]

本発明は、前記の特願昭59−18219号に提案した
竪型炉によるクロム鉱石の溶融還元法の一層の改善を図
ったものである。特に、この竪型炉の二段羽口付近での
反応挙動について未解決であった問題を解決して、クロ
ム鉱石を良好な熱効率のもとて溶融還元する方法を提供
しようとするものである。
The present invention is an attempt to further improve the method for melting and reducing chromium ore using a vertical furnace, which was proposed in the above-mentioned Japanese Patent Application No. 18219/1982. In particular, we aim to solve unresolved problems regarding the reaction behavior near the two-stage tuyere of this vertical furnace and provide a method for melting and reducing chromium ore with good thermal efficiency. .

〔目的を達成する手段〕[Means to achieve the purpose]

本発明は、炉の上部に原料装入口をそして炉の下部”付
近に上下二段の羽口をもつ竪型炉を用いて含クロム溶銑
を製造するにさいし、該上部の原料装入口からクロム源
、鉄源、炭材および造滓材を装入し、該上下の羽口から
高温酸素富化空気を吹込むと同時に、上段羽口から粉状
クロム鉱石1発熱材および粉状造滓材を炉内に供給する
ことにより、この粉状クロム鉱石を溶融還元しながら含
クロム溶銑を製造する方法において、該上下二段の羽口
から吹込む高温酸素富化空気の吹込み速度をLoom/
s以上に制御することを特徴とする。
The present invention provides a method for producing chromium-containing hot metal using a vertical furnace having a raw material charging port in the upper part of the furnace and upper and lower tuyeres near the bottom of the furnace. At the same time, high-temperature oxygen-enriched air is blown into the upper and lower tuyeres, and at the same time, powdered chromium ore, 1 heating material, and powdered slag-making material are charged from the upper tuyeres. In the method of producing chromium-containing hot metal while melting and reducing the powdered chromium ore by supplying it into the furnace, the blowing speed of the high-temperature oxygen-enriched air blown from the upper and lower two stages of tuyeres is set to Loom/
It is characterized by controlling more than s.

第1図に本発明法を実施する竪型炉の例を示した。図示
のように、この竪型炉は全体としては縦長のシャフトか
らなり、この炉の上部には、原料装入口1が、また下部
には、上段羽口2と下段羽口3とからなる二段羽口が設
けられている。4は熱風炉であり、この熱風炉4で得ら
れた熱風が各羽口2と3に供給される。そのさい、酸素
源5によって熱風に酸素を富化することができるように
なっている。上段羽口2にはこの高温酸素富化空気と共
に容器6内の粉状クロム鉱石15と容器7内の粉状発熱
材16.さらには図示しないが粉状の造滓材がキャリヤ
ガス8によって供給され、これらが炉内に吹き込まれる
。粉状発熱材16としてはフェロアロイ粉例えば高炭素
フェロクロム粉やフェロシリコン粉、更にはSiCやC
aC等の酸素と反応して発熱する物質が使用さ、れる。
FIG. 1 shows an example of a vertical furnace for carrying out the method of the present invention. As shown in the figure, this vertical furnace has a vertically elongated shaft as a whole, and the upper part of the furnace has a raw material charging port 1, and the lower part has two parts, each consisting of an upper tuyere 2 and a lower tuyere 3. Tiered tuyeres are provided. 4 is a hot air stove, and hot air obtained from this hot air stove 4 is supplied to each tuyere 2 and 3. At this time, the hot air can be enriched with oxygen by the oxygen source 5. The upper tuyere 2 receives this high-temperature oxygen-enriched air as well as powdered chromium ore 15 in the container 6 and powdered heat generating material 16 in the container 7. Further, although not shown, powdered slag material is supplied by a carrier gas 8 and blown into the furnace. As the powder heat generating material 16, ferroalloy powder such as high carbon ferrochrome powder or ferrosilicon powder, SiC or C
A substance that generates heat by reacting with oxygen, such as aC, is used.

なお図において、10〜12は、クロム源としての高炭
素フェロクロム、鉄源としての鋼屑、炭材としてのコー
クス、造滓材としての石灰石や螢石などを収容する容器
群であり、これらの炉頂装入原料は計量器13によって
所定の量となるように計量されながら原、籾袋入口1か
ら炉内に装入される。17は出銑口。
In the figure, numerals 10 to 12 are containers containing high-carbon ferrochrome as a chromium source, steel scrap as an iron source, coke as a carbon material, and limestone and fluorite as a slag material. The raw material charged at the top of the furnace is weighed to a predetermined amount by a measuring device 13 and charged into the furnace from the raw rice bag entrance 1. 17 is the taphole.

1日は生成した炉内含クロム溶銑を示している。Day 1 shows the chromium-containing hot metal produced in the furnace.

本発明者らは、このような竪型炉によるクロム鉱石の吹
き込みにさいし、上段羽口から炉内に吹込む粉状クロム
鉱石をどのようにしたら熱効率的に良好に溶融還元せし
めることができるかという点を重点項目にして実験を重
ねた。すなわち、粉状発熱材や粉状造滓材と共に上段羽
口から炉内に吹き込まれた粉状クロム鉱石は、上段羽口
前のコークス燃焼領域で溶融し、その溶融物がコークス
充填層を滴下する間に還元されることになるであろうが
、この還元反応は吸熱反応である。したがって、熱の媒
体である下段羽口前で生成されたコークスの燃焼ガスか
ら、溶融クロム鉱石が還元されている領域に向けて、熱
が効率よく供給されないと、クロム鉱石の溶融還元反応
は著しく阻害され、クロムの収率が低下すると共に安定
的な含クロム溶銑の製造が困難となる。このような現象
は本発明者らの変電なる実験検討の結果、上段羽口前で
溶融状態となったクロム鉱石が炉の断面に対して限られ
た狭い範囲を選択的に滴下するような条件のときに発生
することが判明した。
The present inventors investigated how to melt and reduce powdered chromium ore, which is injected into the furnace from the upper tuyere, in a thermally efficient manner when injecting chromium ore using such a vertical furnace. We conducted repeated experiments with this point in mind. In other words, the powdered chromium ore, which is injected into the furnace from the upper tuyere together with the powdered heat generating material and powdered slag material, melts in the coke combustion area in front of the upper tuyere, and the melt drips down the coke packed bed. This reduction reaction is endothermic. Therefore, if heat is not efficiently supplied from the coke combustion gas generated in front of the lower tuyere, which is the heat medium, to the area where the molten chromium ore is being reduced, the smelting reduction reaction of the chromium ore will be significantly affected. As a result, the yield of chromium decreases and it becomes difficult to produce stable chromium-containing hot metal. As a result of the inventors' experimental study of power transformation, this phenomenon is caused by conditions in which the molten chromium ore in front of the upper tuyere selectively drips in a narrow area with respect to the cross section of the furnace. It was found that this occurs when

本発明の骨子は、このような条件が生じないように、上
段羽口から炉内に吹き込まれて溶融状態となった溶融ク
ロム鉱石の滴下領域を炉の断面に対して巾広く分布させ
ることにある。これを達成するのに最も有効且つ簡易な
手段は1本発明者らの数多くの実験の結果、上下段羽口
から吹込む高温酸素富化空気の速度(Vb)を。
The gist of the present invention is to distribute the dripping area of the molten chromium ore, which has been blown into the furnace from the upper tuyere into a molten state, over a wide area with respect to the cross section of the furnace, in order to prevent such conditions from occurring. be. The most effective and simple means to achieve this is to increase the velocity (Vb) of high-temperature oxygen-enriched air blown from the upper and lower tuyeres, as a result of numerous experiments conducted by the present inventors.

(Vb)≧1100(/s) となるように制御することであることが明らかとなった
(Vb)≧1100(/s).

第2図は、実験炉を用いた含クロム溶銑製造実験の途中
において炉内の状況がそのまま保存できるように炉を急
冷し、その後に炉を解体して調査した結果、知見するこ
とができた羽口付近の炉内の状況を図解したものである
。第2図に示されるように、含クロム溶銑製造途中では
、上段羽口2および下段羽口3の炉内側前面に、冶金用
コークスス等の炭材が燃焼するレースウェイ20なる空
間が形成され、このレースウェイ20を取り巻くように
1上段羽口2から粉状発熱材や造滓材と共に吹き込まれ
溶融状態となったクロム鉱石が炭材の充填層を滴下する
領域21が存在する。この領域21においては、クロム
鉱石等の溶融酸化物中に存在するクロム酸化物や鉄酸化
物が炭材中の炭素によって還元され、クロム濃度の高い
溶融金属を生成すると共に、溶融酸化物中のクロム濃度
は低下する。この結果として、炉の底部にクロム濃度の
低い溶融酸化物とクロム濃度の高い溶融金属が滴下し、
また、炉上部より装入された鋼屑等の溶融物も滴下し最
終的に炉底に含クロム溶銑が溜まることになる。第2図
において、22は熔融酸化物が溜まっている領域を、2
3は含クロム溶銑が溜まっている領域を、そして24は
炉上部より装入した鋼屑等が熔融し滴下する領域を示し
ている。
Figure 2 shows that during an experiment to produce chromium-containing hot metal using an experimental furnace, the furnace was rapidly cooled so that the conditions inside the furnace could be preserved, and then the furnace was dismantled and investigated. This diagram illustrates the situation inside the furnace near the tuyere. As shown in FIG. 2, during the production of chromium-containing hot metal, a space called a raceway 20 in which carbonaceous materials such as metallurgical coke soot is burned is formed at the front of the upper tuyere 2 and the lower tuyere 3 inside the furnace. Surrounding this raceway 20, there is a region 21 in which molten chromium ore is blown into the upper tuyere 2 together with a powdered heat generating material and a slag-forming material and drips into a packed bed of carbon material. In this region 21, chromium oxides and iron oxides present in molten oxides such as chromium ore are reduced by carbon in the carbonaceous material, producing molten metal with a high chromium concentration, and Chromium concentration decreases. As a result, chromium-poor molten oxide and chromium-rich molten metal drip onto the bottom of the furnace.
In addition, molten material such as steel scraps charged from the upper part of the furnace drips down and chromium-containing hot metal eventually accumulates at the bottom of the furnace. In FIG. 2, 22 indicates the area where molten oxide is accumulated.
3 indicates a region where chromium-containing hot metal accumulates, and 24 indicates a region where steel scraps charged from the upper part of the furnace melt and drip.

このような含クロム溶銑製造時の炉内状況において、上
下段羽口から炉内に吹込む高温酸素富化空気の速度(V
b)を、 ’(Vb) < 1100(/s)の条件と
じたときには、クロム鉱石の溶融物は、炉の断面に対し
て限られた狭い範囲を選択的に滴下していることがわか
った。このために下段羽口3の前で生成した炭材の燃焼
ガスから、この滴下領域21への。
Under such conditions inside the furnace during the production of chromium-containing hot metal, the velocity of high-temperature oxygen-enriched air (V
It was found that when b) was set to '(Vb) < 1100 (/s), the chromium ore melt was selectively dripping in a narrow area with respect to the cross section of the furnace. . For this purpose, from the combustion gas of the carbonaceous material generated in front of the lower tuyere 3 to this dripping area 21.

クロム鉱石の溶融還元に必要な反応熱が効率良く供給さ
れず、この結果として炉内でのクロム鉱石の溶融還元が
順調に進行せず、クロムの収率は不良となった。これに
対して、他の操業条件は同一にして、高温酸素富化空気
の速度(Vb)を、 (Vb)≧1100(/s)とし
た場合には、クロム鉱石の溶融物が滴下する流域が炉の
断面に対して幅広く分布していた。このために、この滴
下流域21へ炭材の燃焼ガスから効率的に熱が供給され
、第3図に示すように、炉内に供給された熱量のうち、
クロム鉱石の溶融還元に有効に利用された熱量の割合、
すなわち熱効率は、 (Vb) < 1100(/s)
の条件で実験を行った場合に比べて高くなり、クロムの
収率は高率を示すことがわかった。
The reaction heat necessary for melting and reducing the chromium ore was not efficiently supplied, and as a result, the melting and reducing of the chromium ore in the furnace did not progress smoothly, resulting in a poor chromium yield. On the other hand, if the velocity (Vb) of high-temperature oxygen-enriched air is set to (Vb)≧1100 (/s) with other operating conditions being the same, the area where the melted chromium ore drips were widely distributed across the cross section of the furnace. For this purpose, heat is efficiently supplied from the combustion gas of the carbonaceous material to this dripping region 21, and as shown in FIG. 3, out of the amount of heat supplied into the furnace,
Proportion of heat effectively utilized for smelting reduction of chromium ore,
In other words, the thermal efficiency is (Vb) < 1100 (/s)
It was found that the yield of chromium was higher than that when the experiment was conducted under the conditions of .

なお、炉内に吹き込む高温酸素富化空気の速度(Vb)
は1次式で算出できる。
In addition, the velocity (Vb) of high-temperature oxygen-enriched air blown into the furnace
can be calculated using a linear equation.

Vb = BV/  (rt  ・ (DT/2)21
酸素富化空気の流量(m’/s)、ロ、;羽口径(m)
Vb = BV/ (rt・(DT/2)21
Flow rate of oxygen-enriched air (m'/s); Tuyere diameter (m)
.

π;円周率である。π: Pi.

以下に実験炉による実施結果を述べる。The results of the experiment using the experimental reactor are described below.

実施例1 第1図に示したような炉内径がO,’6mの竪型炉の上
部から第1表に示すような量で炉頂装入原料を装入し、
内径がそれぞれ16mmの上下段羽口から。
Example 1 Top charging materials were charged from the top of a vertical furnace with a furnace inner diameter of 0.6 m as shown in Fig. 1 in the amounts shown in Table 1.
From the upper and lower tuyeres, each with an inner diameter of 16 mm.

各I Nm’/minの流量で、温度が800℃5酸素
濃度が28.5%の高温酸素富化空気を、 284mハ
の速度で炉内に吹き込み、且つ上段羽口からは、第2表
に示す粉末の混合物を炉内に吹き込んだ。この結果とし
て、出滓口から取り出されたスラグ中の未還元クロム濃
度は0.8%、またクロムの収率は97.9%と良好に
クロム鉱石の溶融還元を行うことができ、第3表に示す
ような組成の含クロム溶銑を得ることができた。
High-temperature oxygen-enriched air with a temperature of 800°C and an oxygen concentration of 28.5% was blown into the furnace at a speed of 284 mha at a flow rate of 1 Nm'/min, and from the upper tuyere, A mixture of powders shown in was blown into the furnace. As a result, the unreduced chromium concentration in the slag taken out from the slag was 0.8%, and the chromium yield was 97.9%, making it possible to melt and reduce chromium ore well. Chromium-containing hot metal with the composition shown in the table could be obtained.

第1表(炉頂装入原料) 第2表(上段羽口吹き込み物質) 第3表(含クロム溶銑の組成 重量%)実施例2(比較
例) 内径35mmの上下段羽口から高温酸素富化空気の速度
を68m/sとして吹き込んだ以外は前記実施例1と実
質上同じ条件で含クロム溶銑を製造した。
Table 1 (Materials charged at the top of the furnace) Table 2 (Materials blown into the upper tuyeres) Table 3 (Composition of chromium-containing hot metal, weight %) Example 2 (comparative example) High-temperature oxygen enrichment from the upper and lower tuyeres with an inner diameter of 35 mm Chromium-containing hot metal was produced under substantially the same conditions as in Example 1, except that the rate of oxidizing air was blown at 68 m/s.

この場合のスラグ中の未還元クロム濃度は3,3%であ
り、クロムの収率は91.6%であった。また得られた
含クロム溶銑の組成は第4表に示す結果となった。
In this case, the unreduced chromium concentration in the slag was 3.3%, and the chromium yield was 91.6%. The composition of the obtained chromium-containing hot metal was as shown in Table 4.

第4表(含クロム溶銑の組成 重量%)Table 4 (Composition of chromium-containing hot metal weight %)

【図面の簡単な説明】[Brief explanation of drawings]

第1回は本発明法に実施するのに好適な竪型炉の略断面
図、第2図は上下段羽口付近の炉内状況を示す略断面図
、第3図は高温酸素富化空気の吹き込み速度とエネルギ
ー効率との関係図であり。 同図におけるエネルギー効率は入熱に対してクロム鉱石
の溶融還元に有効に利用された熱量の割合を示すもので
ある。 1・・炉上部の原料装入0.2・・上段羽口。 3・・下段羽口、4・・熱風炉、5・・酸素源。 15・・粉状クロム鉱石、  20・・レースウェイ。 21・・溶融クロム鉱石の滴下領域、22・・溶融酸化
物が溜まっている領域、23・・含クロム溶銑の溜まっ
ている領域、24・・炉上部より装入した鋼屑等が溶融
し滴下する領域。
Part 1 is a schematic cross-sectional view of a vertical furnace suitable for implementing the method of the present invention, Figure 2 is a schematic cross-sectional view showing the inside of the furnace near the upper and lower tuyeres, and Figure 3 is a schematic cross-sectional view of the furnace with high-temperature oxygen-enriched air. This is a diagram showing the relationship between the blowing speed and energy efficiency. The energy efficiency in the figure indicates the ratio of the amount of heat effectively used for melting and reducing the chromium ore to the heat input. 1.Charging raw materials in the upper part of the furnace 0.2..Upper tuyere. 3. Lower tuyere, 4. Hot blast furnace, 5. Oxygen source. 15... Powdered chromium ore, 20... Raceway. 21... Dripping area of molten chromium ore, 22... Area where molten oxides accumulate, 23... Area where chromium-containing hot metal accumulates, 24... Steel scrap charged from the upper part of the furnace melts and drips. area.

Claims (1)

【特許請求の範囲】[Claims] 炉の上部に原料装入口をそして炉の下部付近に上下二段
の羽口をもつ竪型炉を用いて含クロム溶銑を製造するに
さいし、該上部の原料装入口からクロム源、鉄源、炭材
および造滓材を装入し、該上下の羽口から高温酸素富化
空気を吹込むと同時に、上段羽口から粉状クロム鉱石、
発熱材および粉状造滓材を炉内に供給することにより、
この粉状クロム鉱石を溶融還元しながら含クロム溶銑を
製造する方法において、該上下二段の羽口から吹込む高
温酸素富化空気の吹込み速度を100m/s以上に制御
することを特徴とする含クロム溶銑の製造法。
When producing chromium-containing hot metal using a vertical furnace with a raw material charging port in the upper part of the furnace and two upper and lower tuyeres near the bottom of the furnace, a chromium source, an iron source, Charcoal material and slag material are charged, and high-temperature oxygen-enriched air is blown from the upper and lower tuyeres, and at the same time, powdered chromium ore is poured from the upper tuyeres.
By supplying heat generating material and powdered slag material into the furnace,
This method for producing chromium-containing hot metal while melting and reducing powdered chromium ore is characterized by controlling the blowing speed of the high temperature oxygen-enriched air blown from the upper and lower two stages of tuyeres to 100 m/s or more. A method for producing chromium-containing hot metal.
JP19275185A 1985-09-01 1985-09-01 Production of molten chromium iron Granted JPS6254007A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19275185A JPS6254007A (en) 1985-09-01 1985-09-01 Production of molten chromium iron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19275185A JPS6254007A (en) 1985-09-01 1985-09-01 Production of molten chromium iron

Publications (2)

Publication Number Publication Date
JPS6254007A true JPS6254007A (en) 1987-03-09
JPH0453922B2 JPH0453922B2 (en) 1992-08-28

Family

ID=16296444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19275185A Granted JPS6254007A (en) 1985-09-01 1985-09-01 Production of molten chromium iron

Country Status (1)

Country Link
JP (1) JPS6254007A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60162718A (en) * 1984-02-06 1985-08-24 Nisshin Steel Co Ltd Production of chromium-containing molten iron by vertical furnace

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60162718A (en) * 1984-02-06 1985-08-24 Nisshin Steel Co Ltd Production of chromium-containing molten iron by vertical furnace

Also Published As

Publication number Publication date
JPH0453922B2 (en) 1992-08-28

Similar Documents

Publication Publication Date Title
KR100325652B1 (en) Production method of metallic iron
US5946340A (en) Process for melting of metal materials in a shaft furnace
JPS6023182B2 (en) Melting method for medium carbon high chromium molten metal
ES8506101A1 (en) A method and arrangement for producing metals, in particular molten pig iron, steel pre-material or ferroalloys.
JPH04107206A (en) Production process of chromium-incorporated molten steel
RU2005126707A (en) IMPROVED METHOD OF Smelting for iron production
JPS6254007A (en) Production of molten chromium iron
JPS62224619A (en) Method for supplying carbon material to melting reduction furnace
JPS6036613A (en) Production of raw molten nickel-containing stainless steel
JPS62167808A (en) Production of molten chromium iron
RU2756057C2 (en) Method for obtaining vanadium cast iron from iron-vanadium raw materials
JPS62167809A (en) Production of molten chromium iron
JPH06940B2 (en) Method for smelting reduction refining of high manganese iron alloy
SU729251A1 (en) Method of steel casting in hearth steel-melting set
JPS63103012A (en) Production of molten iron containing chromium
JP3121894B2 (en) Metal melting furnace
JP2897362B2 (en) Hot metal production method
JPS59113159A (en) Method for refining high chromium alloy by melting and reduction
JPH0362767B2 (en)
JPH04128307A (en) Production of chromium-containing molten iron
JPH01294812A (en) Production of base metal for stainless steel
JPH0313291B2 (en)
JP2837282B2 (en) Production method of chromium-containing hot metal
JPH02282410A (en) Smelting reduction method for ore
JPH01195211A (en) Method for melting and reducing iron oxide