JPS6253997B2 - - Google Patents

Info

Publication number
JPS6253997B2
JPS6253997B2 JP53025642A JP2564278A JPS6253997B2 JP S6253997 B2 JPS6253997 B2 JP S6253997B2 JP 53025642 A JP53025642 A JP 53025642A JP 2564278 A JP2564278 A JP 2564278A JP S6253997 B2 JPS6253997 B2 JP S6253997B2
Authority
JP
Japan
Prior art keywords
circuit
signal
frequency
detection
excitation signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53025642A
Other languages
Japanese (ja)
Other versions
JPS54118133A (en
Inventor
Hiroshi Sawara
Tooru Kumagai
Hideo Hatada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2564278A priority Critical patent/JPS54118133A/en
Publication of JPS54118133A publication Critical patent/JPS54118133A/en
Publication of JPS6253997B2 publication Critical patent/JPS6253997B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Video Image Reproduction Devices For Color Tv Systems (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はカラーテレビジヨン受像機に於ける地
磁気に依るミスランデイングを補正するカラーテ
レビジヨン受像機のランデイング補正装置に関
し、特にカラーテレビジヨン受像機自身の発生す
る磁界に影響されることなく、地磁気によるミス
ランデイングを補正することが出来る様にしたも
のである。 一般にカラーテレビジヨン受像機のカラー陰極
線管は放送局からの信号に応じて赤、緑、青の三
原色に発光する螢光体を刺激する3つの電子ビー
ムの電流値を変調して三色の発光輝度を調節し色
度図上、これらの三色の成す三角形内に含まれる
任意の色彩の再現をする様にするものである。と
ころが電子ビームは地磁気の影響でカラーテレビ
ジヨン受像機の設置場所及びカラー陰極線管の画
面の向きによりこれらの電子ビームが曲げられ螢
光面上所定の位置よりも少しずれミスランデイン
グが起る。即ち、第1図は東京に於けるミスラン
デイングの状態を示すもので、この第1図に示す
様にテレビジヨン受像機の画面の向きに依つて異
なつたミスランデイングを生じる。この第1図中
破線は地磁気の水平分力の作用によつて電子ビー
ムが当る部分を示すもので実線(電子ビームが正
しく当つている場合)とこの破線との差がミスラ
ンデイング量である。この第1図より明らかな如
くこの地磁気に依るミスランデイングには一定の
規則性があり、カラー陰極線管が東及び西方向で
は電子ビームのずれは台形であり、南及び北方向
では平行四辺形であり、又北東、南東、北西、南
西の位置はこれら東及び西方向と南及び北方向と
の形状の合成された形状を成す様なものである。
斯る地磁気に依るミスランデイングを自動的に補
正する場合地磁気の量を正確に検出する地磁気検
出装置を必要とする。 一般にカラーテレビジヨン受像機に於いては水
平偏向磁界、電源、水平出力トランス、フライバ
ツクトランス等から磁束が漏れておりこれら水平
偏向磁界、電源、水平出力トランス、フライバツ
クトランス等から漏れている磁束による磁界は地
磁気による磁界よりも強いので地磁気による磁界
を正確に検出することは極めて困難であつた。 本発明は斯る点に鑑み地磁気による磁界を正確
に検出し、自動的に地磁気によるミスランデイン
グを補正出来る様にしたものである。 以下図面を参照しながら本発明カラーテレビジ
ヨン受像機のランデイング補正装置の一実施例に
つき説明しよう。 本例に於いては第2図に示す如くカラー陰極線
管1の管軸方向aの水平面に対して夫々45度方向
及び−45度方向の磁界を検出する如く2個の磁界
検出装置S1及びS2を配する。即ちこの場合磁界検
出装置S1及びS2は夫々互いに90度異なる方向の磁
界を検出する如く設置する。この磁界検出装置S1
及びS2としては第3図に示す如き磁性線より成る
センサーを使用する。このセンサーは0.1φの銅
線2の周囲にパーマロイの如き磁性体3を約20μ
蒸着し、この磁性体3上に銅線2に対し、直交す
る関係に検出コイル4を巻回したものである。こ
のセンサーは銅線2に励磁電流が流れている時に
は磁性体3が飽和して外部磁界を検出しないが銅
線2に流れる励磁電流がほぼ零となつた時にこの
磁性体3に銅線2に平行な方向の磁界Hに応じた
磁束が流れ、検出コイル4の両端間にこの磁性体
3に流れる磁束に応じた電圧を発生するものであ
る。この場合検出コイル4の両端間には磁性体3
を流れる磁束に応じた微分波形が得られるもので
ある。 本発明に於いてはカラー陰極線管1の水平偏向
コイルに流れる電流の周波数例えば15.75kHzとは
非同期の例えば35kHzの第4図Aに示す如き正弦
波電流をこのセンサーS1及びS2に励磁電流として
流すものである。又地磁気に依るミスランデイン
グを補正するのにカラー陰極線管1のパネル部に
第5図に示す如く、このカラー陰極線管1の裏面
より見て夫々の四角部に対応して四つの補正コイ
ル5a,5b,5c及び5dを配設する。この場
合補正コイル5a及び5bが互いに上下関係にな
る様にすると共に、この補正コイル5a及び5b
のコイル巻回方向を互いに逆として直列に接続
し、この端子6a及び6b間に電流を流した時に
はこの補正コイル5a及び5bが互いに逆方向の
磁界を発生する如くする。又補正コイル5c及び
5dを夫々上下方向に配しこのコイルの巻回方向
を互いに逆とし、この補正コイル5c及び5dを
直列に接続しその電源供給端子6c及び6d間に
流れる電流に依りこの補正コイル5c及び5dに
依り互いに逆方向の磁界を発生する如くなす。こ
の場合補正コイル5a及び5cに依り生じる磁界
が電子ビームに及ぼす力Fは第6図に示す如くな
る。即ち補正コイル5a及び5cに正方向に電流
を流すと紙面に垂直な磁界が生じこれに依り矢印
Fで示す方向の力が電子ビームに与えられ、電子
ビームは破線に示す様に曲げられカラー陰極線管
の正面から見た場合にはこの電子ビームは右側に
ずれることになる。補正コイル5b及び5dに依
る場合も同様にして電子ビームをずらすことが出
来る。この第6図はカラー陰極線管1の上面から
見た図である。本例に於いてカラー陰極線管1の
水平地磁気に依るミスランデイングを補正するの
に下の表に示す如き電流
The present invention relates to a landing correction device for a color television receiver that corrects mislanding caused by the earth's magnetism in the color television receiver, and in particular, the present invention relates to a landing correction device for a color television receiver that corrects mislanding caused by the earth's magnetism. This makes it possible to correct mislanding. Generally, color cathode ray tubes in color television receivers emit light in three colors by modulating the current values of three electron beams that stimulate phosphors that emit light in the three primary colors of red, green, and blue in response to signals from broadcasting stations. The brightness is adjusted to reproduce any color contained within the triangle formed by these three colors on the chromaticity diagram. However, due to the influence of the earth's magnetic field, the electron beams are bent depending on the installation location of the color television receiver and the orientation of the screen of the color cathode ray tube, and the electron beams are slightly deviated from a predetermined position on the phosphor surface, resulting in mislanding. That is, FIG. 1 shows the state of mislanding in Tokyo, and as shown in FIG. 1, different mislandings occur depending on the orientation of the screen of the television receiver. The broken line in FIG. 1 indicates the area where the electron beam hits due to the action of the horizontal force of the earth's magnetism, and the difference between the solid line (when the electron beam hits correctly) and this broken line is the amount of mislanding. As is clear from Figure 1, there is a certain regularity to this mislanding caused by the geomagnetic field; when the color cathode ray tube is in the east and west directions, the electron beam has a trapezoidal deviation, and when the color cathode ray tube is in the south and north directions, it is a parallelogram. Also, the positions of the northeast, southeast, northwest, and southwest directions form a composite shape of the shapes of these east and west directions and the south and north directions.
In order to automatically correct such mislanding due to the earth's magnetism, a geomagnetism detection device that accurately detects the amount of earth's magnetism is required. Generally, in a color television receiver, magnetic flux leaks from the horizontal deflection magnetic field, power supply, horizontal output transformer, flyback transformer, etc. Since the magnetic field caused by the Earth's magnetism is stronger than the magnetic field caused by the Earth's magnetism, it has been extremely difficult to accurately detect the magnetic field caused by the Earth's magnetism. In view of this, the present invention is designed to accurately detect the magnetic field caused by the earth's magnetism and automatically correct mislanding caused by the earth's magnetism. Hereinafter, an embodiment of the landing correction device for a color television receiver according to the present invention will be described with reference to the drawings. In this example, as shown in FIG. 2, two magnetic field detection devices S1 and S1 are used to detect magnetic fields in the 45 degree direction and -45 degree direction, respectively, with respect to the horizontal plane in the tube axis direction a of the color cathode ray tube 1 . Arrange S 2 . That is, in this case, the magnetic field detection devices S 1 and S 2 are installed so as to detect magnetic fields in directions 90 degrees different from each other. This magnetic field detection device S 1
And as S2 , a sensor made of magnetic wire as shown in FIG. 3 is used. This sensor has a magnetic material 3 such as permalloy around a 0.1φ copper wire 2 of approximately 20 μm.
A detection coil 4 is wound on this magnetic material 3 in a relationship perpendicular to the copper wire 2. In this sensor, when the excitation current is flowing through the copper wire 2, the magnetic body 3 is saturated and no external magnetic field is detected, but when the excitation current flowing through the copper wire 2 becomes almost zero, the magnetic body 3 A magnetic flux corresponding to the magnetic field H in the parallel direction flows, and a voltage corresponding to the magnetic flux flowing through the magnetic body 3 is generated between both ends of the detection coil 4. In this case, a magnetic body 3 is placed between both ends of the detection coil 4.
A differential waveform corresponding to the magnetic flux flowing through can be obtained. In the present invention, a sine wave current as shown in FIG. 4A of, for example, 35 kHz, which is asynchronous with the frequency of the current flowing through the horizontal deflection coil of the color cathode ray tube 1, for example, 15.75 kHz, is applied to the sensors S 1 and S 2 as an exciting current. It is something that is streamed as. In order to correct mislanding caused by earth's magnetism, four correction coils 5a are installed on the panel of the color cathode ray tube 1, as shown in FIG. 5b, 5c and 5d are arranged. In this case, the correction coils 5a and 5b are arranged in a vertical relationship with each other, and the correction coils 5a and 5b are
The correction coils 5a and 5b are connected in series with their winding directions opposite to each other, so that when a current is passed between the terminals 6a and 6b, the correction coils 5a and 5b generate magnetic fields in opposite directions. In addition, correction coils 5c and 5d are arranged in the vertical direction, and the winding directions of the coils are opposite to each other.The correction coils 5c and 5d are connected in series, and the correction is performed by the current flowing between the power supply terminals 6c and 6d. Magnetic fields in opposite directions are generated by the coils 5c and 5d. In this case, the force F exerted on the electron beam by the magnetic field generated by the correction coils 5a and 5c is as shown in FIG. That is, when a current is passed in the positive direction through the correction coils 5a and 5c, a magnetic field perpendicular to the plane of the paper is generated, which applies a force in the direction shown by arrow F to the electron beam, and the electron beam is bent as shown by the broken line to form a color cathode ray. When viewed from the front of the tube, this electron beam will shift to the right. The electron beam can be shifted in the same manner using the correction coils 5b and 5d. FIG. 6 is a top view of the color cathode ray tube 1. In this example, to correct the mislanding of the color cathode ray tube 1 due to horizontal geomagnetism, the current shown in the table below is used.

【表】 を補正コイル5a,5b,5c及び5dに夫々流
すようにすればこのミスランデイングを補正する
ことが出来る。即ちこの表に於いて、Iaは補正コ
イル5aに流す電流、Ibは補正コイル5bに流す
電流、Icは補正コイル5cに流す電流、Idは補正
コイル5dに流す電流である。又Ioは所定の大き
さの電流を示す。この補正コイルに流す電流と方
向との関係を線図に示せば第7図に示す如くな
る。即ち第7図に示す関係の電流を夫々の補正コ
イルに流すことに依りカラー陰極線管1に発生す
る水平地磁気に依るミスランデイングを補正する
ことが出来る。この場合補正コイル5a及び5b
に夫々流す電流IaとIbとは互に逆位相であり又補
正コイル5c及び5dに夫々流す補正電流IcとId
とは互いに逆位相なので、第8図に示す如く磁界
検出装置S1に依り検出された磁界に応じた電流を
互いに逆に直列に接続された補正コイル5a及び
5dに供給すると共に磁界検出装置S2に得られる
磁界に応じた電流を互いに逆に直列に接続された
補正コイル5c及び5dに流す様にすればよい。
第8図に於いて、13a,13bは夫々電流駆動
回路を示す。 次に第9図を参照しながら本発明カラーテレビ
ジヨン受像機のランデイング補正装置の一実施例
につき説明しよう。 第9図に於いて7は水平偏向周波数例えば
15.75kHzと非同期の周波数で且つこの水平偏向周
波数の高調波の間の周波数例えば35kHzの正弦波
電流を発生する励磁信号発生回路を示し、この励
磁信号発生回路7の出力側に得られる励磁信号を
センサー駆動回路8に供給し、この駆動回路8の
出力信号を第3図に示す如きセンサーS1の銅線2
に供給する。このセンサーS1の検出コイル4に得
られる検出信号を2倍の励磁信号例えば70kHzに
共振する様に成された同調増幅器9の入力側に供
給する。尚、この同調増幅回路9の同調周波数は
水平偏向磁界の影響を受けて地磁気の検出が妨げ
られることのないような値に設定する。この場合
センサーS1としては第2図に示す如くカラー陰極
線管1の管軸aに対し45度方向の磁界を検出する
様に配置する。この同調増幅回路9の出力に得ら
れる2倍の励磁周波数の信号を同期検波回路10
の一方の入力端子に供給する。又励磁信号発生回
路7の出力信号を2倍の周波数にする2逓倍回路
11に供給し、この2逓倍回路11の出力に得ら
れる励磁信号に同期した2倍の励磁信号周波数例
えば70kHzの信号を基準信号として同期検波回路
10の他方の入力端子に供給する。この同期検波
回路10の出力に得られる直流電圧を直流増幅器
12(この直流増幅器12は積分回路をも兼ねて
いる。)を介して電流駆動回路13に供給し、こ
の電流駆動回路13の出力信号を第5図に示す如
く配置され互いに逆関係に直列に接続された補正
コイル5a及び5bの直列回路を介して接地す
る。 斯る第9図に示す如き回路に付き第4図を参照
しながら説明する。この第9図に於いてはセンサ
ーS1の銅線2に第4図Aに示す如き正弦波電流を
流しているのでこのセンサーS1の検出コイル4に
は第4図Bに示す如くセンサーS1の銅線2に流れ
る電流がほぼ零の時にセンサーS1の銅線2に平行
な磁界に応じた磁束が交差しこの検出コイル4の
出力には第4図Cに示す如きセンサーS1に平行な
磁界に応じた電圧が得られる。この第4図B及び
Cに於いて、実線で示すものは磁界が正方向の場
合を示し破線で示すものは磁界がこの逆方向の場
合を示す。従がつて同調増幅回路9の出力には第
4図Dに示す如くセンサーS1の検出コイル4に得
られる電圧に応じたレベルの2倍の励磁信号の周
波数例えば70kHzの正弦波信号が得られる。この
第4図Dに於いても実線は磁界が正方向の場合で
あり破線は磁界がこの逆方向の場合である。又2
逓倍回路11の出力には第4図Eに示す如き2倍
の励磁信号の周波数の正弦波信号が得られ、これ
が同期検波回路10に供給されているので同期検
波回路10の出力には同調増幅回路9の出力信号
とこの2逓倍回路11の出力の基準信号とに応じ
た第4図Fに示す如き直流電圧が得られる。第4
図Fに於いても実線は磁界が正方向の場合であり
破線は磁界がこの逆方向の場合である。この同期
検波回路10に得られる直流電圧を増巾器12及
び電流駆動回路13を介してこの電圧に応じた電
流に変換し補正コイル5a及び5bに供給する。
この場合センサーS1の検出コイル4に得られる電
圧に依り補正コイル5a及び5bを決定している
のでこの補正コイル5a及び5bに流す電流を第
7図に示す関係にすることが出来る。又第2図に
示す磁束検出装置S2に対応して上述同様の回路を
形成するようにすれば自動的に第7図に示す関係
の補正電流を補正コイル5a,5b,5c,5d
に流すことができ良好に地磁気に依るミスランデ
イングを自動的に補正することが出来る。又この
本発明に於いてはセンサーS1,S2の励磁周波数を
水平偏向周波数と非同期で且つこの水平偏向周波
数の高調波の間の周波数例えば35kHzとし、同調
増幅回路9の同調周波数をこの高調波の間で設定
した励磁周波数の2倍の周波数例えば70kHzとし
たことにより、同調増幅回路9では水平偏向周波
数及びその高調波を増幅することがなく、これに
より水平偏向磁界、電源、水平出力トランス、フ
ライバツクトランス等よりの漏れている磁束によ
る磁界を検出することがなく正確な地磁気を検出
することができる。さらに、センサーS1,S2の励
磁周波数を高く設定できるので、調整の際の感度
を向上させることができる。 以上述べた如く本発明に依ればセンサーS1,S2
に供給する励磁電流の周波数を水平偏向周波数と
非同期の周波数として水平磁界を検出しているの
でカラーテレビジヨン受像機が発生する磁束にか
かわりなく地磁気を正確に検出することができ、
本発明に依れば地磁気に依るミスランデイングを
良好に自動的に補正することが出来る利益があ
る。 尚上述実施例に於いては磁界検出装置として第
3図に示す如きセンサーを使用した例につき述べ
たがこの磁界検出装置としてその他のものが使用
出来ることは勿論である。又本発明は上述実施例
に限らず本発明の要旨を逸脱することなくその他
種々の構成が取り得ることは勿論である。
This mislanding can be corrected by flowing the following signals to the correction coils 5a, 5b, 5c, and 5d, respectively. That is, in this table, Ia is the current flowing through the correction coil 5a, Ib is the current flowing through the correction coil 5b, Ic is the current flowing through the correction coil 5c, and Id is the current flowing through the correction coil 5d. Also, Io indicates a current of a predetermined magnitude. The relationship between the current flowing through the correction coil and the direction is shown in a diagram as shown in FIG. That is, mislanding caused by horizontal geomagnetism occurring in the color cathode ray tube 1 can be corrected by flowing currents having the relationship shown in FIG. 7 through the respective correction coils. In this case, correction coils 5a and 5b
The currents Ia and Ib flowing through the correction coils 5c and 5d, respectively, are in opposite phase with each other, and the correction currents Ic and Id flowing through the correction coils 5c and 5d, respectively.
Since they are in opposite phase to each other, as shown in FIG . Currents corresponding to the magnetic field obtained in step 2 may be made to flow through the correction coils 5c and 5d connected in series in opposite directions.
In FIG. 8, 13a and 13b indicate current drive circuits, respectively. Next, an embodiment of the landing correction device for a color television receiver according to the present invention will be described with reference to FIG. In Figure 9, 7 is the horizontal deflection frequency, e.g.
An excitation signal generation circuit that generates a sine wave current with a frequency asynchronous to 15.75kHz and a frequency between the harmonics of this horizontal deflection frequency, for example 35kHz, is shown, and the excitation signal obtained at the output side of this excitation signal generation circuit 7 is shown. The output signal of the drive circuit 8 is supplied to the sensor drive circuit 8, and the output signal of the drive circuit 8 is connected to the copper wire 2 of the sensor S1 as shown in FIG.
supply to. The detection signal obtained by the detection coil 4 of this sensor S1 is supplied to the input side of a tuned amplifier 9 configured to resonate at a double excitation signal, for example, 70kHz. Note that the tuning frequency of the tuning amplifier circuit 9 is set to a value such that detection of earth's magnetism is not hindered by the influence of the horizontal deflection magnetic field. In this case, the sensor S1 is arranged so as to detect a magnetic field oriented at 45 degrees with respect to the tube axis a of the color cathode ray tube 1, as shown in FIG. A signal with twice the excitation frequency obtained at the output of the tuned amplifier circuit 9 is transmitted to the synchronous detection circuit 10.
is supplied to one input terminal of the Further, the output signal of the excitation signal generation circuit 7 is supplied to a doubling circuit 11 which doubles the frequency, and a signal of twice the excitation signal frequency, for example 70 kHz, is synchronized with the excitation signal obtained from the output of the doubling circuit 11. It is supplied to the other input terminal of the synchronous detection circuit 10 as a reference signal. The DC voltage obtained from the output of this synchronous detection circuit 10 is supplied to a current drive circuit 13 via a DC amplifier 12 (this DC amplifier 12 also serves as an integrating circuit), and the output signal of this current drive circuit 13 is is connected to ground through a series circuit of correction coils 5a and 5b arranged as shown in FIG. 5 and connected in series in an inverse relationship to each other. The circuit shown in FIG. 9 will be explained with reference to FIG. 4. In FIG. 9, since a sine wave current as shown in FIG. 4A is flowing through the copper wire 2 of sensor S 1 , the detection coil 4 of sensor S 1 is connected to sensor S as shown in FIG. When the current flowing through the copper wire 2 of sensor S 1 is almost zero, the magnetic flux corresponding to the magnetic field parallel to the copper wire 2 of sensor S 1 intersects, and the output of this detection coil 4 is generated by sensor S 1 as shown in FIG. 4C. A voltage corresponding to a parallel magnetic field is obtained. In FIGS. 4B and 4C, solid lines indicate the case where the magnetic field is in the positive direction, and broken lines indicate the case where the magnetic field is in the opposite direction. Therefore , as shown in FIG. 4D, the output of the tuned amplifier circuit 9 is a sine wave signal with an excitation signal frequency of, for example, 70kHz, which is twice the level corresponding to the voltage obtained at the detection coil 4 of the sensor S1. . Also in FIG. 4D, the solid line indicates the case where the magnetic field is in the positive direction, and the broken line indicates the case where the magnetic field is in the opposite direction. Also 2
At the output of the multiplier circuit 11, a sine wave signal having twice the frequency of the excitation signal as shown in FIG. According to the output signal of the circuit 9 and the reference signal of the output of the doubler circuit 11, a DC voltage as shown in FIG. 4F is obtained. Fourth
Also in Figure F, the solid line shows the case where the magnetic field is in the positive direction, and the broken line shows the case where the magnetic field is in the opposite direction. The DC voltage obtained by this synchronous detection circuit 10 is converted into a current corresponding to this voltage via an amplifier 12 and a current drive circuit 13, and is supplied to correction coils 5a and 5b.
In this case, since the correction coils 5a and 5b are determined based on the voltage obtained at the detection coil 4 of the sensor S1 , the currents flowing through the correction coils 5a and 5b can have the relationship shown in FIG. Furthermore, if a circuit similar to that described above is formed corresponding to the magnetic flux detection device S2 shown in FIG. 2, the correction currents shown in FIG.
It is possible to automatically correct mislanding caused by the earth's magnetic field. Further, in the present invention, the excitation frequency of the sensors S 1 and S 2 is asynchronous with the horizontal deflection frequency and is set to a frequency between the harmonics of this horizontal deflection frequency, for example, 35 kHz, and the tuning frequency of the tuned amplifier circuit 9 is set to this harmonic. By setting the frequency, for example 70 kHz, twice the excitation frequency set between the waves, the tuned amplifier circuit 9 does not amplify the horizontal deflection frequency and its harmonics. It is possible to accurately detect the earth's magnetism without detecting the magnetic field due to magnetic flux leaking from a flyback transformer or the like. Furthermore, since the excitation frequency of the sensors S 1 and S 2 can be set high, the sensitivity during adjustment can be improved. As described above, according to the present invention, the sensors S 1 and S 2
Since the horizontal magnetic field is detected using the frequency of the excitation current supplied to the horizontal deflection frequency as a frequency asynchronous to the horizontal deflection frequency, the earth's magnetism can be detected accurately regardless of the magnetic flux generated by the color television receiver.
According to the present invention, there is an advantage that mislanding caused by the earth's magnetism can be automatically corrected in a good manner. In the above-mentioned embodiment, a sensor as shown in FIG. 3 is used as the magnetic field detection device, but it is of course possible to use other types of magnetic field detection device. Furthermore, it goes without saying that the present invention is not limited to the above-described embodiments, and can take various other configurations without departing from the gist of the present invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第4図及び第7図は夫々本発明の説明
に供する線図、第2図はカラー陰極線管と磁界検
出装置との関係を示す線図、第3図は磁界検出装
置の一例を示す構成図、第5図はカラー陰極線管
と補正コイルとの関係を示す線図、第6図は電子
ビームの補正を説明するための線図、第8図は磁
界検出装置と補正コイルとの関係を示す線図、第
9図は本発明カラーテレビジヨン受像機のランデ
イング補正装置の一実施例を示す接続図である。 1はカラー陰極線管、5a,5b,5c及び5
dは夫々補正コイル、7は励磁信号発生回路、9
は同調増幅回路、10は同期検波回路、11は2
逓倍回路、S1及びS2は夫々センサーである。
1, 4, and 7 are diagrams for explaining the present invention, FIG. 2 is a diagram showing the relationship between a color cathode ray tube and a magnetic field detection device, and FIG. 3 is an example of a magnetic field detection device. Fig. 5 is a line diagram showing the relationship between the color cathode ray tube and the correction coil, Fig. 6 is a line diagram to explain the correction of the electron beam, and Fig. 8 is a diagram showing the relationship between the magnetic field detection device and the correction coil. FIG. 9 is a connection diagram showing an embodiment of a landing correction device for a color television receiver according to the present invention. 1 is a color cathode ray tube, 5a, 5b, 5c and 5
d is a correction coil, 7 is an excitation signal generation circuit, 9
is a tuned amplifier circuit, 10 is a synchronous detection circuit, 11 is 2
The multiplier circuits, S 1 and S 2 are each a sensor.

Claims (1)

【特許請求の範囲】 1 カラー陰極線管の向きに関係して地磁気を検
出する地磁気検出装置の検出信号に基づいて電子
ビームのランデイング補正を行う補正コイルを駆
動するようにしたカラーテレビジヨン受像機のラ
ンデイング補正装置において、 このカラーテレビジヨン受像機の水平偏向周波
数と非同期の励磁信号を発生する励磁信号発生回
路と、上記励磁信号が入力され上記地磁気検出装
置を駆動する信号を出力する検出素子駆動回路
と、上記地磁気検出装置を構成し上記検出素子駆
動回路からの信号によつて上記地磁気を検出する
ようになす検出素子と、該検出素子より得られた
検出信号が上記励磁信号の2倍の周波数に共振す
るようになされた同調増幅回路と、上記励磁信号
発生回路の出力信号が供給される2逓倍回路と、
該2逓倍回路の出力信号と上記同調増幅回路の出
力信号を夫々入力する同期検波回路と、該同期検
波回路の出力信号により駆動される上記補正コイ
ルとを有し、 上記励磁信号の励磁周波数は上記水平偏向周波
数より高く、かつ上記水平偏向周波数の高調波と
該高調波より高い次数の高調波との間の周波数と
なるように選定し、上記同調増幅回路で上記水平
偏向周波数に関する信号が増幅されないようにし
たことを特徴とするカラーテレビジヨン受像機の
ランデイング補正装置。
[Scope of Claims] 1. A color television receiver that drives a correction coil that performs landing correction of an electron beam based on a detection signal of a geomagnetism detection device that detects geomagnetism in relation to the orientation of a color cathode ray tube. The landing correction device includes an excitation signal generation circuit that generates an excitation signal that is asynchronous with the horizontal deflection frequency of the color television receiver, and a detection element drive circuit that receives the excitation signal and outputs a signal that drives the geomagnetism detection device. and a detection element that constitutes the geomagnetism detection device and detects the geomagnetism by a signal from the detection element drive circuit, and a detection signal obtained from the detection element has a frequency twice that of the excitation signal. a tuned amplifier circuit configured to resonate with the above-mentioned excitation signal generation circuit; and a doubler circuit to which the output signal of the excitation signal generation circuit is supplied.
It has a synchronous detection circuit that inputs the output signal of the doubler and the tunable amplifier, respectively, and the correction coil that is driven by the output signal of the synchronous detection circuit, and the excitation frequency of the excitation signal is The frequency is selected to be higher than the horizontal deflection frequency and between a harmonic of the horizontal deflection frequency and a harmonic of a higher order than the harmonic, and the signal related to the horizontal deflection frequency is amplified by the tuned amplifier circuit. A landing correction device for a color television receiver, characterized in that the landing correction device prevents the landing from occurring.
JP2564278A 1978-03-07 1978-03-07 Landing corrector for color television picture receiver Granted JPS54118133A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2564278A JPS54118133A (en) 1978-03-07 1978-03-07 Landing corrector for color television picture receiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2564278A JPS54118133A (en) 1978-03-07 1978-03-07 Landing corrector for color television picture receiver

Publications (2)

Publication Number Publication Date
JPS54118133A JPS54118133A (en) 1979-09-13
JPS6253997B2 true JPS6253997B2 (en) 1987-11-12

Family

ID=12171481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2564278A Granted JPS54118133A (en) 1978-03-07 1978-03-07 Landing corrector for color television picture receiver

Country Status (1)

Country Link
JP (1) JPS54118133A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62104391A (en) * 1985-10-31 1987-05-14 Japan Radio Co Ltd Color shift correction system for color crt monitor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5247321A (en) * 1975-10-13 1977-04-15 Sony Corp Earth magnetism detection equipment of color tv receiver

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5247321A (en) * 1975-10-13 1977-04-15 Sony Corp Earth magnetism detection equipment of color tv receiver

Also Published As

Publication number Publication date
JPS54118133A (en) 1979-09-13

Similar Documents

Publication Publication Date Title
US3440483A (en) Color television display device
CS271332B2 (en) Circuit for pattern distortion correction
JPS6019188B2 (en) Display device using simple convergence
JPS6154784A (en) Electron beam position controller
US6424102B1 (en) Cathode ray tube of the index type
FI93414B (en) Magnetic field compensator for cathode ray tube
JPH07270507A (en) Terrestrial magnetism azimuth sensor
JPS6253997B2 (en)
KR100319063B1 (en) Cathode ray tube apparatus
US2254943A (en) Radio direction finding
JPH11186049A (en) Variable linearity coil
US3356879A (en) Beam positioning device for varying the effective origin of cathode-ray tube electron beam
CA1187542A (en) Coil device for image pickup tube
JPS584871B2 (en) color television station
JP3186055B2 (en) Magnetic field correction device for color cathode ray tubes
JPH05328374A (en) Color cathode ray tube device
JP2637229B2 (en) Electromagnetic focusing device for cathode ray tube
US3598906A (en) Fine tuning indicator
JPH02238790A (en) Magnetic field correction device
JPH03278788A (en) Magnetic field canceller
JP3807300B2 (en) Cathode ray tube equipment
US3444423A (en) Pincushion correction circuit
US20020121868A1 (en) Level shifter in a picture display device
JPH0434612Y2 (en)
US6633141B1 (en) Display device with deflection means and means for influencing the distance between electron beams