JPS6253084B2 - - Google Patents

Info

Publication number
JPS6253084B2
JPS6253084B2 JP6338581A JP6338581A JPS6253084B2 JP S6253084 B2 JPS6253084 B2 JP S6253084B2 JP 6338581 A JP6338581 A JP 6338581A JP 6338581 A JP6338581 A JP 6338581A JP S6253084 B2 JPS6253084 B2 JP S6253084B2
Authority
JP
Japan
Prior art keywords
signal
level
input signal
nonlinear
passband width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6338581A
Other languages
Japanese (ja)
Other versions
JPS57180210A (en
Inventor
Tomozo Oota
Yoshio Tsutsumi
Yoshihiro Konishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Japan Broadcasting Corp
Original Assignee
Nippon Hoso Kyokai NHK
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Hoso Kyokai NHK, Oki Electric Industry Co Ltd filed Critical Nippon Hoso Kyokai NHK
Priority to JP6338581A priority Critical patent/JPS57180210A/en
Priority to CA000400870A priority patent/CA1190289A/en
Priority to AU82602/82A priority patent/AU551612B2/en
Priority to DE8282301963T priority patent/DE3268923D1/en
Priority to EP82301963A priority patent/EP0064819B1/en
Priority to US06/370,795 priority patent/US4563651A/en
Priority to MX192450A priority patent/MX151254A/en
Publication of JPS57180210A publication Critical patent/JPS57180210A/en
Publication of JPS6253084B2 publication Critical patent/JPS6253084B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G5/00Tone control or bandwidth control in amplifiers
    • H03G5/16Automatic control
    • H03G5/24Automatic control in frequency-selective amplifiers

Landscapes

  • Noise Elimination (AREA)
  • Circuits Of Receivers In General (AREA)

Description

【発明の詳細な説明】 本発明は、簡単な構成でFM変調波の復調信号
の雑音特性を改善する周波数復調方式に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a frequency demodulation method that improves the noise characteristics of a demodulated signal of an FM modulated wave with a simple configuration.

従来より、周波数変調された信号を復調する最
も簡単な方法として、L.C回路又は遅延線による
デイスクリミネータを用いた周波数復調方式が古
くから知られよく利用されている。
Conventionally, as the simplest method for demodulating a frequency-modulated signal, a frequency demodulation method using a discriminator using an LC circuit or a delay line has been known and widely used for a long time.

この場合のFM変調された入力信号のキヤリア
電力対雑音電力比C/N(以下C/Nと記す)に
対するFM復調(検波)された復調信号の信号対
雑音比S/N(以下S/Nと記す)はS/N=
(C/N)・FI(ここでFIはFM改善度を示す)と
して表わされ、復調信号のS/Nは入力信号の
C/Nに比例する。
In this case, the signal-to-noise ratio S/N (hereinafter referred to as S/N) of the FM demodulated (detected) signal to the carrier power-to-noise power ratio C/N (hereinafter referred to as C/N) of the FM-modulated input signal ) is S/N=
It is expressed as (C/N)·FI (here, FI indicates the degree of FM improvement), and the S/N of the demodulated signal is proportional to the C/N of the input signal.

一方、該入力信号のC/NはFM復調器の入力
側に用いられる雑音及び信号帯域制限用の帯域通
過波器の通過帯域幅で決定される。通常C/N
〓10dB程度まで前記C/N対S/Nの関係が保
持され、それ以下の入力信号のC/Nでは急激に
復調信号のS/Nは劣化する。この変化点はスレ
ツシユホールド点と呼ばれる。
On the other hand, the C/N of the input signal is determined by the noise used on the input side of the FM demodulator and the passband width of a bandpass filter for limiting the signal band. Normal C/N
The above-mentioned C/N vs. S/N relationship is maintained up to approximately 10 dB, and when the C/N of the input signal is lower than that, the S/N of the demodulated signal deteriorates rapidly. This point of change is called the threshold point.

一般にTV信号を伝送する通信、例えば衛星通
信においては、その信号の伝送にFM変調方式が
用いられる。この場合、通信回線の衛星の送信電
力の制限、安定な衛星通信伝搬路の問題から、受
信信号レベルは前記スレツシユホールド点付近に
設定される場合が多い。その為、雨雪等の環境状
態の変動で受信入力が減少し、復調信号の雑音が
急激に増加し、時には復調画像の得られない状態
にまで至る。従つて衛星受信に際して、簡単な方
法でこの雑音特性の改善を行うことは非常に重要
な問題とされ、特に放送衛星通信などの簡易衛星
受信装置においては、この問題から簡単な構成に
よる雑音改善方法が極めて重要な課題とされてい
る。
Generally, in communications that transmit TV signals, such as satellite communications, an FM modulation method is used to transmit the signals. In this case, the received signal level is often set near the threshold point due to limitations on the transmission power of the satellite in the communication line and the problem of a stable satellite communication propagation path. Therefore, the received input decreases due to changes in environmental conditions such as rain and snow, and the noise in the demodulated signal increases rapidly, sometimes to the point where no demodulated image can be obtained. Therefore, it is considered to be a very important problem to improve the noise characteristics using a simple method when receiving satellites.Especially in simple satellite receiving equipment such as broadcasting satellite communication, this problem has led to the development of noise improvement methods using simple configurations. is considered an extremely important issue.

本発明は前記問題の一解決策を与えるもので、
共振回路と非直線抵抗を組合わせた非直線共振系
により、特に固定の基準帯域幅を持つ帯域通過
波器と上記非直線共振系とを接続して、入力信号
レベルが特定の値から低下するに従い自動的に信
号および雑音の通過帯域幅を狭め、周波数デイス
クリミネータに入るC/Nを改善し、復調信号の
S/N(復調画質)を改善するものである。
The present invention provides a solution to the above problem,
By using a non-linear resonant system that combines a resonant circuit and a non-linear resistor, the input signal level is reduced from a specific value by connecting a band-pass waver with a fixed reference bandwidth to the above-mentioned non-linear resonant system. Accordingly, the passband width of the signal and noise is automatically narrowed, the C/N entering the frequency discriminator is improved, and the S/N (demodulated image quality) of the demodulated signal is improved.

第1図は本発明の第1の実施例による復調系を
示す図であつて、1は固定の帯域内では平坦で帯
域外では急峻な減衰を与える帯域通過特性を持つ
基準帯域通過波器、2は入力信号レベルに応じ
てQ値が変化し通過帯域幅を変化させる非直線共
振系、3は周波数デイスクリミネータ、4は入出
力振幅特性がある程度非直線的に変わる増幅器、
ミキサ等の回路、5はAGC増幅器、リミツタ等
の回路、6はFM信号の入力端子、7はFM信号
の復調(検波)信号出力端子である。
FIG. 1 is a diagram showing a demodulation system according to a first embodiment of the present invention, in which reference numeral 1 denotes a reference bandpass waver having a bandpass characteristic that is flat within a fixed band and provides steep attenuation outside the band; 2 is a nonlinear resonant system whose Q value changes according to the input signal level and the passband width; 3 is a frequency discriminator; 4 is an amplifier whose input/output amplitude characteristics change nonlinearly to some extent;
A circuit such as a mixer, 5 a circuit such as an AGC amplifier or a limiter, 6 an FM signal input terminal, and 7 an FM signal demodulation (detection) signal output terminal.

FM入力信号は入力端子6より入り出力端子7
より復調信号として得られる。
FM input signal is input from input terminal 6 and output terminal 7
obtained as a demodulated signal.

先に説明したように、通常の衛星通信における
TV信号の伝送には、FM方式が用いられる。こ
の場合、衛星送信電力の制限および衛星通信回線
の安定性から、受信信号レベルは前記スレツシユ
ホールドレベルより高々数dB程度高い範囲内に
設定される。従つて雨雪等の影響により受信信号
レベルはときどき該スレツシユホールドレベル以
下になる場合がある。この時急激に復調信号の
S/Nは劣化し、モニタテレビ上の復調画質は著
しく劣化し、画像識別不可能となる。
As explained earlier, in normal satellite communication
The FM method is used to transmit TV signals. In this case, due to limitations on satellite transmission power and stability of satellite communication lines, the received signal level is set within a range that is several dB higher than the threshold level at most. Therefore, the received signal level may sometimes fall below the threshold level due to the influence of rain, snow, etc. At this time, the S/N of the demodulated signal rapidly deteriorates, and the quality of the demodulated image on the monitor television deteriorates significantly, making it impossible to identify the image.

該スレツシユホールドレベルは普通、入力信号
のC/Nが10dB程度の状態において生じ、これ
は復調系の前段において用いられる信号および雑
音の通過帯域幅を決める基準帯域通過波器1の
帯域幅Bpにより定まる。
This threshold level normally occurs when the C/N of the input signal is about 10 dB, and this is due to the bandwidth B of the reference bandpass converter 1, which determines the passband width of the signal and noise used in the previous stage of the demodulation system. Determined by p .

該帯域幅Bpは、変調信号エネルギーを充分に
通過させ、復調信号の波形歪み特性に良好に保つ
ため、通常Bp〓2(Δ+h)程度に設定さ
れる。ここでΔは最高周波数偏移、hは最高
変調周波数を表わす。
The bandwidth B p is normally set to about B p 〓2(Δ+h) in order to sufficiently pass the modulated signal energy and maintain good waveform distortion characteristics of the demodulated signal. Here, Δ represents the highest frequency deviation, and h represents the highest modulation frequency.

ところで、FM方式により伝送され、復調され
たTV信号のモニタ上の画質をみると、画質の良
さは主に復調系に入る熱雑音等による画質の劣化
と、伝送路の位相、振幅特性の歪みによる画像の
歪みにより決まり、前記帯域幅Bpに大きく影響
される。一般には該帯域幅Bpを狭くすると熱雑
音等による雑音の点では有利になるが、画質の歪
みは大きくなる。
By the way, when looking at the image quality on a monitor of a TV signal transmitted and demodulated using the FM method, the good image quality is mainly due to deterioration of image quality due to thermal noise etc. that enters the demodulation system, and distortion of the phase and amplitude characteristics of the transmission path. It is determined by the distortion of the image due to the distortion of the image, and is greatly influenced by the bandwidth B p . In general, narrowing the bandwidth B p is advantageous in terms of noise due to thermal noise, etc., but distortion in image quality increases.

今、該帯域幅BpがBp〓2(Δ+h)程度
に選ばれた場合において、前記スレツシユホール
ド点付近におけるTV入力信号の復調画質をみる
と、熱雑音による画質の劣化が支配的で、伝送路
歪みによる画質の劣化はほとんど目立たない。前
記スレツシユホールド点以下の信号レベルではそ
のレベル低下に伴う画質の劣化は著しく、画像は
熱雑音により急激に乱れ、識別出来ない状態にま
で至る。
Now, when the bandwidth B p is selected to be about B p 〓2(Δ+h), looking at the demodulated image quality of the TV input signal near the threshold point, it is found that the image quality deterioration due to thermal noise is dominant. , the deterioration of image quality due to transmission path distortion is hardly noticeable. When the signal level is below the threshold point, the image quality deteriorates significantly as the level decreases, and the image is rapidly disturbed by thermal noise, to the point where it becomes unrecognizable.

従つて、前記スレツシユホールド点付近で、入
力信号のレベル低下に対応させて信号の通過帯域
幅を狭くし入力信号のC/Nを改善してやれば、
画質歪みの増加の代償として熱雑音による画質劣
化を大きく改善し、総合的には良好な復調画質を
得ることになる。これは前記スレツシユホールド
以下における入力信号のC/Nに対する復調信号
のS/Nの劣化特性が急激なだけにその効果は非
常に大である。
Therefore, if the C/N of the input signal is improved by narrowing the passband width of the signal in response to the decrease in the level of the input signal near the threshold point,
At the cost of an increase in image quality distortion, image quality deterioration due to thermal noise is greatly improved, and overall good demodulated image quality is obtained. This effect is very large because the S/N of the demodulated signal deteriorates rapidly with respect to the C/N of the input signal below the threshold.

本発明の原理は、入力信号が基準帯域通過波
器1で決まるスレツシユホールド点およびそれ以
下となる点で、本発明の構成による非直線共振系
2によつて通過帯域幅を基準帯域通過波器1の
帯域幅より狭くなるように入力信号レベルを設定
し、信号レベルの低下に従つて自動的に通過帯域
幅を圧縮して、入力信号のC/Nを改善すること
により復調画質の雑音改善を計るものである。中
でも特に基準帯域通過波器1と非直線共振系2
の継続接続により、簡単な非直線共振系2を用い
ても総合帯域通過特性として急峻な帯域外減衰特
性の得られる特徴がある。
The principle of the present invention is that, at points where the input signal is at or below the threshold point determined by the reference bandpass transducer 1, the passband width is changed to the reference bandpass waveform by the nonlinear resonant system 2 having the configuration of the present invention. The input signal level is set to be narrower than the bandwidth of the receiver 1, and as the signal level decreases, the passband width is automatically compressed to improve the C/N of the input signal, thereby reducing noise in the demodulated image quality. It measures improvement. Among them, the reference bandpass wave generator 1 and the nonlinear resonant system 2
Due to the continuous connection of , even if a simple non-linear resonant system 2 is used, a steep out-of-band attenuation characteristic can be obtained as an overall band-pass characteristic.

第2図は非直線共振系2の一例であつて並列共
振回路で構成した場合を示す。
FIG. 2 shows an example of the non-linear resonant system 2, which is constructed from parallel resonant circuits.

8はコンデンサ、9はコイル、101,102
は非直線抵抗素子、11は伝送路、12は信号入
力端子、13は信号出力端子である。
8 is a capacitor, 9 is a coil, 101, 102
11 is a transmission line, 12 is a signal input terminal, and 13 is a signal output terminal.

この場合、共振周波数は信号周波数にほぼ一致
している。又本例の場合非直線抵抗素子101,
102として可変抵抗ダイオードを用いているが
トランジスタ等他の可変抵抗素子を用いることも
できる。
In this case, the resonant frequency approximately matches the signal frequency. In addition, in this example, the nonlinear resistance element 101,
Although a variable resistance diode is used as the variable resistance element 102, other variable resistance elements such as a transistor may also be used.

入力信号は信号入力端子12より入り、非直線
共振系2の影響を受けて信号出力端子13より送
出される。
An input signal enters through a signal input terminal 12, is influenced by the nonlinear resonance system 2, and is sent out from a signal output terminal 13.

2個の非直線抵抗素子101,102を第2図
に示すように並列接続した場合、該非直線抵抗素
子101,102の合成の電圧V対電流Iの総合
特性は第3図に示すようになる。又これを電圧V
対非直線抵抗素子101,102の抵抗値Rdで
示せば第4図のようになる。
When two nonlinear resistance elements 101 and 102 are connected in parallel as shown in FIG. 2, the overall characteristic of voltage V vs. current I of the nonlinear resistance elements 101 and 102 is as shown in FIG. 3. . Also, this is the voltage V
The resistance value Rd of the non-linear resistance elements 101 and 102 is expressed as shown in FIG.

第4図に示す非直線抵抗素子101,102の
抵抗特性において、同図の如く高周波の入力信号
16が印加された場合、該入力信号16のレベル
eが小さい時には非直線抵抗素子101,102
は高い実効負荷抵抗Rdeffを示す。又入力信号1
6のレベルeが大きくなると非直線抵抗素子10
1,102の実効負荷抵抗Rdeffは急激に低下す
る。
In the resistance characteristics of the nonlinear resistance elements 101 and 102 shown in FIG. 4, when a high frequency input signal 16 is applied as shown in the figure, when the level e of the input signal 16 is small, the nonlinear resistance elements 101 and 102
indicates a high effective load resistance Rdeff. Also, input signal 1
When the level e of 6 increases, the nonlinear resistance element 10
The effective load resistance Rdeff of 1,102 drops rapidly.

従つて入力信号16のレベルeに対する非直線
抵抗素子101,102の実効負荷抵抗Rdeffの
特性を示すと第5図の如くなる。一方、Cをコン
デンサ8の容量、ωpを共振回路の角周波数とす
ると、並列共振回路のQ値はQ=ωpCRdeffとし
て表される。したがつて入力信号16にレベルe
の小さい領域ではQ値は高く、入力信号16のレ
ベルeは増大するにつれてQ値は小さくなる。
Therefore, the characteristics of the effective load resistance Rdeff of the nonlinear resistance elements 101 and 102 with respect to the level e of the input signal 16 are shown in FIG. On the other hand, when C is the capacitance of the capacitor 8 and ω p is the angular frequency of the resonant circuit, the Q value of the parallel resonant circuit is expressed as Q=ω p CRdeff. Therefore, the input signal 16 has a level e
The Q value is high in a region where the value is small, and as the level e of the input signal 16 increases, the Q value decreases.

即ち、第2図の信号入力端子12から信号出力
端子13に至る信号の通過特性は、入力信号16
のレベルeに対応して変化し、伝送(通過)帯域
特性は第6図に示す如くなる。又第7図はこの時
の入力信号16のレベルeに対する通過帯域幅B
の特性を示す。
That is, the passage characteristic of the signal from the signal input terminal 12 to the signal output terminal 13 in FIG.
The transmission (pass) band characteristics are as shown in FIG. 6. Also, FIG. 7 shows the passband width B for the level e of the input signal 16 at this time.
shows the characteristics of

今第1図の復調系の基準帯域通過波器1の通
過帯域幅をBpとし、Bpできまるスレツシユホー
ル点の入力信号レベルを非直線共振系2の信号入
力端子12においてepとする。この時、非直線
共振系2は第7図の入力信号レベル対通過帯域幅
特性において、入力信号レベルepに対し通過帯
域幅がBpより大きくなるようレベル設定され
る。
Let the passband width of the reference bandpass transducer 1 of the demodulation system in FIG . do. At this time, the level of the nonlinear resonant system 2 is set so that the passband width is larger than B p with respect to the input signal level e p in the input signal level vs. passband width characteristic shown in FIG.

従つて第1図の復調系全体の受信帯域幅は信号
レベルep以上の状態において、基準帯域通過
波器1の帯域幅Bpとなる。
Therefore, the reception bandwidth of the entire demodulation system shown in FIG. 1 becomes the bandwidth B p of the reference bandpass transducer 1 in a state where the signal level is equal to or higher than e p .

又受信入力信号レベルが低下すると、非直線共
振系2の通過帯域幅が狭帯域化され、従つて復調
系全体の受信帯域幅は基準帯域通過波器1の帯
域幅Bpより狭くなり、固定の帯域幅Bpの場合に
くらべてC/Nが改善される。
Furthermore, when the receiving input signal level decreases, the passband width of the nonlinear resonant system 2 becomes narrower, and therefore the receiving bandwidth of the entire demodulation system becomes narrower than the bandwidth B p of the reference bandpass waver 1. The C/N is improved compared to the case where the bandwidth B p is .

尚第1図の復調系全体の入力信号に対する信号
および雑音通過帯域幅の圧縮度は、非直線共振系
2に用いられる非直線抵抗素子101,102の
特性や、その前段に用いる増幅器、ミキサー等の
回路4の入出力特性により調整される。
The degree of compression of the signal and noise passing bandwidth for the input signal of the entire demodulation system shown in FIG. It is adjusted according to the input/output characteristics of the circuit 4.

又デイスクリミネータ3は通常のL.C回路や遅
延線により構成されるものである。
Further, the discriminator 3 is constituted by an ordinary LC circuit or delay line.

以上説明したように第1の実施例では、並列共
振回路と非直線抵抗素子101,102を用いて
入力信号レベルによつて通過帯域幅が自動的に変
る非直線共振系2と、固定の帯域通過特性を持つ
基準帯域通過波器1とを縦続に接続し、受信入
力信号のレベルに応じて復調系の受信帯域幅を変
化させている。即ち、基準帯域通過波器1で決
まるスレツシユホールド以上の受信入力信号にお
いては、基準帯域通過波器1の受信帯域幅で復
調して復調信号の波形歪みに関して最適な状態と
なし、又受信入力信号が該スレツシユホールド近
傍及びそれ以下になつた場合、非直線共振系2の
通過帯域幅を狭め、C/Nを改善する。この結果
低い受信入力信号レベルにおいても熱雑音による
影響が大幅に減小し、復調信号(復調画質)の雑
音特性が改善される。
As explained above, in the first embodiment, the nonlinear resonant system 2 uses a parallel resonant circuit and nonlinear resistance elements 101 and 102 to automatically change the passband width depending on the input signal level, and the nonlinear resonant system 2 has a fixed band width. A reference bandpass transducer 1 having a pass characteristic is connected in cascade, and the reception bandwidth of the demodulation system is changed according to the level of the reception input signal. That is, for a received input signal that is equal to or higher than the threshold determined by the reference bandpass waveform generator 1, it is demodulated using the reception bandwidth of the reference bandpass waveform generator 1 to achieve an optimal state regarding waveform distortion of the demodulated signal, and the reception input signal is demodulated using the reception bandwidth of the reference bandpass waveform generator 1. When the signal becomes near or below the threshold, the passband width of the nonlinear resonant system 2 is narrowed to improve the C/N. As a result, the influence of thermal noise is significantly reduced even at low received input signal levels, and the noise characteristics of the demodulated signal (demodulated image quality) are improved.

第1の実施例では非直線共振系2として並列共
振回路を用いた場合について説明したが、直列共
振回路と非直線抵抗素子よりなる共振系において
も同様の効果が得られるものであり、以下に説明
する。
In the first embodiment, a case was explained in which a parallel resonant circuit was used as the nonlinear resonant system 2, but similar effects can be obtained in a resonant system consisting of a series resonant circuit and a nonlinear resistance element, and the following will be explained. explain.

第8図は第2の実施例における非直線共振系2
の構成を示す。復調系全体については第1図と同
じである。第8図において103,104は非直
線抵抗素子、14は非直線抵抗素子103,10
4に対する直流バイアス電源、15は直流バイア
スの帰路であり、他の記号は第2図と同じであ
る。
Figure 8 shows the nonlinear resonant system 2 in the second embodiment.
The configuration is shown below. The entire demodulation system is the same as that shown in FIG. In FIG. 8, 103 and 104 are nonlinear resistance elements, and 14 is a nonlinear resistance element 103 and 10.
4 is a DC bias power supply, 15 is a return path for DC bias, and other symbols are the same as in FIG.

非直線抵抗素子103,104は信号の伝送路
に対して逆方向に直列に接続され、直流バイアス
電源14によりそれぞれ順方向にバイアスされて
いる。
The non-linear resistance elements 103 and 104 are connected in series in opposite directions to the signal transmission path, and are each biased in the forward direction by the DC bias power supply 14.

今、順方向にバイアスされた非直線抵抗素子1
03,104が直列接続された場合、第8図のP
点より見る非直線抵抗素子103,104の合成
の電圧V対電流Iの総合特性は第9図のようにな
る。又これを電圧V対非直線抵抗素子103,1
04の抵抗値Rdで示せば第10図の如くなる。
Nonlinear resistance element 1 now forward biased
When 03 and 104 are connected in series, P in Figure 8
The overall characteristic of the combined voltage V versus current I of the nonlinear resistance elements 103 and 104 seen from a point is as shown in FIG. Also, this is expressed as voltage V vs. nonlinear resistance element 103,1
If the resistance value R d is expressed as 04, it will be as shown in FIG.

この特性をもつ非直線抵抗素子103,104
に対し、第10図に示すように高周波の入力信号
17が印加される。
Nonlinear resistance elements 103, 104 with this characteristic
In contrast, a high frequency input signal 17 is applied as shown in FIG.

入力信号17のレベルeが小さい場合、非直線
抵抗素子103,104は低い実効負荷抵抗
Rdeffを示す。又入力信号17のレベルeが大き
くなると非直線抵抗素子103,104の実効負
荷抵抗は急激に高くなる。従つて入力信号17の
レベルeに対する非直線抵抗素子103,104
の実効負荷抵抗Rdeffの特性を示すと第11図の
如くなる。
When the level e of the input signal 17 is small, the nonlinear resistance elements 103 and 104 have a low effective load resistance.
Indicates Rdeff. Furthermore, as the level e of the input signal 17 increases, the effective load resistance of the nonlinear resistance elements 103 and 104 increases rapidly. Therefore, the nonlinear resistance elements 103 and 104 for the level e of the input signal 17
The characteristics of the effective load resistance Rdeff are shown in FIG.

一方、本実施例における非直線共振系2は第8
図に示すように、コンデンサ8とコイル9よりな
る直列共振回路と非直線抵抗素子103,104
から構成される。従つて第1の実施例と同じ記号
で表わした場合、直列共振回路のQ値はQ=5ω
pC/Rdeffとして与えられる。その為、入力信号
17のレベルeが小さい場合、実効負荷抵抗
Rdeffは小さいためQ値は大きくなり、又入力信
号17のレベルeが大きくなると実効負荷抵抗
Rdeffは大きくなりQ値は小さくなる。
On the other hand, the nonlinear resonant system 2 in this embodiment is the eighth
As shown in the figure, a series resonant circuit consisting of a capacitor 8 and a coil 9 and non-linear resistance elements 103 and 104
It consists of Therefore, when expressed using the same symbol as in the first embodiment, the Q value of the series resonant circuit is Q=5ω
It is given as p C/Rdeff. Therefore, when the level e of the input signal 17 is small, the effective load resistance
Since Rdeff is small, the Q value becomes large, and when the level e of the input signal 17 becomes large, the effective load resistance
Rdeff increases and the Q value decreases.

即ち、第8図における信号入力端子12から信
号出力端子13に至る信号の通過特性は、入力信
号17のレベルeに応じて変化し、伝送(通過)
帯域特性は、第1の実施例と同じく第6図に示す
如くなる。
That is, the passage characteristics of the signal from the signal input terminal 12 to the signal output terminal 13 in FIG. 8 change depending on the level e of the input signal 17, and the transmission (passage)
The band characteristics are as shown in FIG. 6, the same as in the first embodiment.

従つて、受信入力信号のレベルが大きい場合は
基準帯域通過波器1の受信帯域幅で復調して復
調信号の波形歪みに関して最適な状態となし、受
信入力信号のレベルが小さい時は非直線共振系2
は通過帯域幅を狭めC/Nを改善することにな
り、第1の実施例と同様復調信号の雑音特性も改
善されることとなる。
Therefore, when the level of the received input signal is high, it is demodulated using the reception bandwidth of the reference bandpass waver 1 to achieve the optimum state regarding waveform distortion of the demodulated signal, and when the level of the received input signal is low, non-linear resonance occurs. System 2
The passband width is narrowed and the C/N ratio is improved, and the noise characteristics of the demodulated signal are also improved as in the first embodiment.

本発明は基準帯域通過波器1と、共振回路お
よび非直線抵抗素子からなる簡単な非直線共振系
2の縦続接続により、入力信号レベルが低くなつ
た場合、自動的に受信帯域幅を狭める復調系を形
成する。その為受信信号のレベルが低い時にC/
Nを改善し、復調信号の雑音特性を改善する。
The present invention utilizes a demodulation system that automatically narrows the receiving bandwidth when the input signal level becomes low by cascading a reference band pass waveformer 1 and a simple nonlinear resonant system 2 consisting of a resonant circuit and a nonlinear resistance element. form a system. Therefore, when the received signal level is low, C/
N and improve the noise characteristics of the demodulated signal.

従つて、特にTV変調信号を受信する簡易衛星
受信機などのS/N改善方式として有効に利用で
きる。
Therefore, it can be effectively used as an S/N improvement method especially for simple satellite receivers that receive TV modulated signals.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例の構成図、第2図は第
1の実施例における非直線共振系を示す回路図、
第3図から第7図は第1の実施例の動作を示す説
明図であつて、第3図は非直線抵抗素子の電圧V
対電流Iの特性を示す説明図、第4図は電圧V対
非直線抵抗素子の抵抗値Rdの特性を示す説明
図、第5図は入力信号のレベルeに対する非直線
抵抗素子の実効負荷抵抗Rdeffの特性を示す説明
図、第6図は非直線共振系の伝送帯域特性を示す
説明図、第7図は入力信号レベルeに対する通過
帯域幅特性を示す説明図である。第8図は第2の
実施例における非直線共振系を示す回路図、第9
図から第11図は第2の実施例の動作を示す説明
図であつて、第9図は非直線抵抗素子の電圧V対
電流Iの特性を示す説明図、第10図は電圧V対
非直線抵抗素子の抵抗値Rdの特性を示す説明
図、第11図は入力信号のレベルeに対する非直
線抵抗素子の実効負荷抵抗Rdeffの特性を示す説
明図である。 1……基準帯域通過波器、2……非直線共振
系、3……周波数デイスクリミネータ、4……増
幅器、ミキサ等の回路、5……AGC増幅器、リ
ミツタ等の回路、6……FM信号入力端子、7…
…復調信号出力端子、8……コンデンサ、9……
コイル、101,102,103,104……非
直線抵抗素子、11……伝送路、12……信号入
力端子、13……信号出力端子、14……直流バ
イアス電源、15……直流バイアス帰路、16,
17……入力信号。
FIG. 1 is a configuration diagram of an embodiment of the present invention, FIG. 2 is a circuit diagram showing a nonlinear resonant system in the first embodiment,
3 to 7 are explanatory diagrams showing the operation of the first embodiment, and FIG. 3 shows the voltage V of the nonlinear resistance element.
Fig. 4 is an explanatory diagram showing the characteristics of the resistance value R d of the nonlinear resistance element versus voltage V. Fig. 5 is an explanatory diagram showing the characteristics of the resistance value R d of the nonlinear resistance element versus the input signal level e. FIG. 6 is an explanatory diagram showing the characteristics of the resistance Rdeff, FIG. 6 is an explanatory diagram showing the transmission band characteristics of a nonlinear resonant system, and FIG. 7 is an explanatory diagram showing the pass band width characteristics with respect to the input signal level e. Figure 8 is a circuit diagram showing a non-linear resonance system in the second embodiment;
11 are explanatory diagrams showing the operation of the second embodiment, FIG. 9 is an explanatory diagram showing the characteristics of voltage V vs. current I of the nonlinear resistance element, and FIG. 10 is an explanatory diagram showing the characteristics of voltage V vs. nonlinear resistance element. FIG. 11 is an explanatory diagram showing the characteristics of the resistance value R d of the linear resistance element, and FIG. 11 is an explanatory diagram showing the characteristics of the effective load resistance Rdeff of the nonlinear resistance element with respect to the level e of the input signal. 1... Reference band pass wave device, 2... Non-linear resonant system, 3... Frequency discriminator, 4... Circuits such as amplifiers and mixers, 5... Circuits such as AGC amplifiers and limiters, 6... FM Signal input terminal, 7...
...Demodulated signal output terminal, 8...Capacitor, 9...
Coil, 101, 102, 103, 104...Nonlinear resistance element, 11...Transmission line, 12...Signal input terminal, 13...Signal output terminal, 14...DC bias power supply, 15...DC bias return path, 16,
17...Input signal.

Claims (1)

【特許請求の範囲】 1 少くとも、固定の帯域幅をもつ基準帯域通過
波器と、非直線抵抗を含む素子および並列共振
回路若しくは直列共振回路より構成される非直線
共振系と、周波数デイスクリミネータとを伝送方
向に関して縦続に接続するように設け、 前記共振回路への入力信号レベルが増大するに
伴い前記共振回路のQ値が低下し通過帯域幅が広
くなり、前記入力信号レベルが低下するに従い前
記共振回路のQ値が大きくなり通過帯域幅が狭く
なるようにした前記非直線共振系により、 前記基準帯域通過波器の帯域幅で決まるFM
変調された受信信号のスレツシユホールドレベル
近傍を境に、 該スレツシユホールドレベル以上の受信信号に
おいては前記非直線共振系の通過帯域幅を前記基
準帯域通過波器の通過帯域幅より広くなし、 該スレツシユホールドレベル以下の受信信号に
おいては前記非直線共振系の通過帯域幅を前記基
準帯域通過波器の通過帯域幅より狭くなるよう
にせしめ、 前記受信信号のレベルに対応して受信帯域幅を
変化させ、雑音特性を改善することを特徴とする
FM信号復調方式。
[Scope of Claims] 1. A nonlinear resonant system consisting of at least a reference bandpass transducer with a fixed bandwidth, an element including a nonlinear resistance, and a parallel resonant circuit or a series resonant circuit, and a frequency discriminator. and the resonant circuit are connected in cascade in the transmission direction, and as the input signal level to the resonant circuit increases, the Q value of the resonant circuit decreases, the passband width widens, and the input signal level decreases. Accordingly, the non-linear resonant system in which the Q value of the resonant circuit is increased and the passband width is narrowed allows the FM determined by the bandwidth of the reference bandpass waver to be
The passband width of the non-linear resonant system is set to be wider than the passband width of the reference band pass waver for a received signal equal to or higher than the threshold level, with a boundary near a threshold level of the modulated received signal; For a received signal below the threshold level, the passband width of the nonlinear resonant system is made narrower than the passband width of the reference band pass waver, and the receive bandwidth is adjusted in accordance with the level of the received signal. It is characterized by changing the noise characteristics and improving the noise characteristics.
FM signal demodulation method.
JP6338581A 1981-04-28 1981-04-28 Fm signal demodulation system Granted JPS57180210A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP6338581A JPS57180210A (en) 1981-04-28 1981-04-28 Fm signal demodulation system
CA000400870A CA1190289A (en) 1981-04-28 1982-04-13 Fm signal demodulation system
AU82602/82A AU551612B2 (en) 1981-04-28 1982-04-14 Fm demodulator
DE8282301963T DE3268923D1 (en) 1981-04-28 1982-04-16 An fm signal demodulation system
EP82301963A EP0064819B1 (en) 1981-04-28 1982-04-16 An fm signal demodulation system
US06/370,795 US4563651A (en) 1981-04-28 1982-04-22 FM Demodulator with variable bandpass filter
MX192450A MX151254A (en) 1981-04-28 1982-04-27 IMPROVEMENTS IN THE DEMODULATION SYSTEM FOR A MODULATED TELEVISION SIGNAL

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6338581A JPS57180210A (en) 1981-04-28 1981-04-28 Fm signal demodulation system

Publications (2)

Publication Number Publication Date
JPS57180210A JPS57180210A (en) 1982-11-06
JPS6253084B2 true JPS6253084B2 (en) 1987-11-09

Family

ID=13227770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6338581A Granted JPS57180210A (en) 1981-04-28 1981-04-28 Fm signal demodulation system

Country Status (1)

Country Link
JP (1) JPS57180210A (en)

Also Published As

Publication number Publication date
JPS57180210A (en) 1982-11-06

Similar Documents

Publication Publication Date Title
EP0064819B1 (en) An fm signal demodulation system
US4531148A (en) High sensitivity FM signal demodulation system
US5023939A (en) FM tuner with band extraction and optimization of a PLL FM demodulator
JPH0544209B2 (en)
US4989264A (en) Bandwidth limiting circuit with variable bandwidth
CA1070391A (en) Automatic noise limiter
US4527187A (en) High sensitivity FM signal demodulation system
US4794620A (en) Radio frequency modem and method
EP0135301B1 (en) Demodulation circuit from fm signals and demodulation system therefor
JPS6253084B2 (en)
US4679247A (en) FM receiver
US4698598A (en) FM demodulator system with threshold extension
US4689826A (en) Optical communication of video and audio with cross-talk suppression
JPS6250027B2 (en)
JP2522432Y2 (en) FM receiver
JPH0238009B2 (en)
JPH0122764B2 (en)
JPS6316923B2 (en)
JPS6155834B2 (en)
JP3430846B2 (en) Satellite receiver
JP2964525B2 (en) FM demodulation circuit for satellite broadcast receiver
JPH0122763B2 (en)
JPS628975B2 (en)
CA1203289A (en) Differential detector for demodulating fm or pm signals
JP2519320Y2 (en) Tuner AGC circuit