JPS6252997B2 - - Google Patents

Info

Publication number
JPS6252997B2
JPS6252997B2 JP54106946A JP10694679A JPS6252997B2 JP S6252997 B2 JPS6252997 B2 JP S6252997B2 JP 54106946 A JP54106946 A JP 54106946A JP 10694679 A JP10694679 A JP 10694679A JP S6252997 B2 JPS6252997 B2 JP S6252997B2
Authority
JP
Japan
Prior art keywords
signal
recording
color
playback
delay
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54106946A
Other languages
Japanese (ja)
Other versions
JPS5630383A (en
Inventor
Kunio Sekimoto
Yoshitsugu Shibuya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP10694679A priority Critical patent/JPS5630383A/en
Priority to EP80302857A priority patent/EP0024869B1/en
Priority to DE8080302857T priority patent/DE3071319D1/en
Publication of JPS5630383A publication Critical patent/JPS5630383A/en
Publication of JPS6252997B2 publication Critical patent/JPS6252997B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/79Processing of colour television signals in connection with recording
    • H04N9/80Transformation of the television signal for recording, e.g. modulation, frequency changing; Inverse transformation for playback
    • H04N9/82Transformation of the television signal for recording, e.g. modulation, frequency changing; Inverse transformation for playback the individual colour picture signal components being recorded simultaneously only
    • H04N9/83Transformation of the television signal for recording, e.g. modulation, frequency changing; Inverse transformation for playback the individual colour picture signal components being recorded simultaneously only the recorded chrominance signal occupying a frequency band under the frequency band of the recorded brightness signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/79Processing of colour television signals in connection with recording
    • H04N9/80Transformation of the television signal for recording, e.g. modulation, frequency changing; Inverse transformation for playback

Description

【発明の詳細な説明】 本発明はPALおよびSECAM方式カラーテレビ
ジヨン信号の記録再生装置に関し、長時間記録を
可能にし、かつ色信号の隣接信号妨害を軽減する
とともに、静止再生,スローモーシヨン再生,高
速再生,逆転再生等の特殊再生時にも正常な色再
生ができるよう構成したものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a recording and reproducing device for PAL and SECAM color television signals, which enables long-time recording, reduces adjacent signal interference of color signals, and is capable of static reproduction, slow motion reproduction, The structure is such that normal color reproduction can be performed even during special reproduction such as high-speed reproduction and reverse reproduction.

近来、家庭用VTRは高密度化の傾向に有り、
2ヘツド型ヘリカルスキヤンVTRでは、2つの
ヘツドにアジマス角度を設け、隣接するトラツク
間にガードバンドを設けない記録方式が一般化し
ている。
In recent years, there has been a trend toward higher density in home VCRs.
In a two-head helical scan VTR, a recording method in which the two heads are provided with an azimuth angle and no guard band is provided between adjacent tracks has become common.

第1図にVHS方式のPAL,SECAM信号用
VTRの記録パターンを示す。第1図において、
―A,―B,―A,―B,……は記録ト
ラツクを表わし、―A,―A,―A,……
はAヘツドで書かれた軌跡、―B,―B,
―B,……はBヘツドで書かれた軌跡で、Aヘツ
ド,Bヘツド間には±6゜のアジマス角度が設け
られている(図では示さず)。また、―1,
―2,―3,……はライン番号を表わし、付記
されているRとBは、そのラインの色信号を表わ
す。即ち、PAL信号では、1ラインごとにR―
Y信号の位相が反転しているが、R―Y信号が正
の状態をR、負の状態をBで表わす。また、
SECAM信号では、1ラインごとにR―Y信号と
B―Y信号が交互に伝送されているが、R―Y信
号が伝送されている状態をR,B―Y信号が伝送
されている状態をBで表わす。また、αHは隣接
するトラツク間の水平同期信号のずれ量で、
VHS方式PAL,SECAM信号用VTRではαH=1.5
に設定されている。なお、この時のトラツクピツ
チTPは49μm、テープスピードは23.4mm/Sで
ある。
Figure 1 shows the VHS system for PAL and SECAM signals.
Shows the recording pattern of a VTR. In Figure 1,
-A, -B, -A, -B, ... represent recording tracks, -A, -A, -A, ...
is the trajectory written by head A, -B, -B,
-B, . . . are loci drawn by the B head, and an azimuth angle of ±6° is provided between the A head and the B head (not shown in the figure). Also, -1,
-2, -3, . . . represent line numbers, and the appended R and B represent the color signals of the lines. In other words, for PAL signals, R-
Although the phase of the Y signal is inverted, a positive state of the RY signal is represented by R, and a negative state is represented by B. Also,
In the SECAM signal, the R-Y signal and the BY signal are transmitted alternately on each line. Represented by B. Also, α H is the amount of deviation of the horizontal synchronization signal between adjacent tracks,
α H = 1.5 for VHS PAL and SECAM signal VTRs
is set to . Note that the track pitch T P at this time was 49 μm, and the tape speed was 23.4 mm/S.

このようにVHS方式PAL,SECAM信号用
VTRでは隣接するトラツク間の水平同期信号が
並び、かつ、隣り合う色信号も並んでいる。即
ち、Rの隣りはR、Bの隣りはBになつている。
In this way, for VHS system PAL, SECAM signal
In a VTR, horizontal synchronization signals between adjacent tracks are lined up, and adjacent color signals are also lined up. That is, the neighbor of R is R, and the neighbor of B is B.

次に、このようなVTRで特殊再生(静止,ス
ロー,高速,逆転再生を総称する)する場合につ
いて説明する。第2図は静止再生,第3図は高速
再生,第4図は逆転再生の場合のヘツドの軌跡を
表わし、はAヘツドの再生軌跡、はBヘツド
の再生軌跡である。但し、第2図ではA,B両ヘ
ツドとも同じ軌跡を描く。前述のように、A,B
両ヘツドにはアジマス角度が設けられているた
め、AヘツドはAヘツドで書かれた軌跡の信号の
みを、BヘツドはBヘツドで書かれた軌跡の信号
のみを再生する。従つて、第2図〜第4図におい
て、それぞれ斜線の部分の信号が再生される。第
2図では、Aヘツドでは斜線の部分の信号を、
Bヘツドでは斜線の部分の信号が再生される。
このような特殊再生時には、1つのヘツドの1再
生中、記録軌跡をジヤンプしたり、ヘツド切換時
に通常再生の場合と異つた信号順序になつたりす
る。これらの状態を分類すると、 1 1つのヘツドの1再生中に、2つ先の記録軌
跡へ移行する(高速再生時)。〔第3図で、Aヘ
ツドの―A軌跡から―A軌跡への移行、お
よびBヘツドの―B軌跡から―B軌跡への
移行〕 2 ヘツドの切換時に1つ先の記録軌跡へ移行す
る(静止,スロー,高速,逆転再生時)。
Next, we will explain how to perform special playback (still, slow, high-speed, and reverse playback) on such a VTR. FIG. 2 shows head trajectories for static playback, FIG. 3 for high-speed playback, and FIG. 4 for reverse playback, where is the playback trajectory of the A head, and is the playback trajectory of the B head. However, in Fig. 2, both heads A and B draw the same trajectory. As mentioned above, A, B
Since both heads are provided with an azimuth angle, the A head reproduces only the signal of the trajectory written by the A head, and the B head reproduces only the signal of the trajectory written by the B head. Therefore, in FIGS. 2 to 4, the signals in the shaded areas are reproduced. In Fig. 2, the A head receives the signal in the shaded area,
In the B head, the signal in the shaded area is reproduced.
During such special playback, the recording trajectory may be jumped during one playback of one head, or the signal order may be different from that in normal playback when switching heads. These states can be categorized as follows: 1. During one playback of one head, a transition occurs to the next recording trajectory (during high-speed playback). [In Figure 3, the transition from the -A trajectory of the A head to the -A trajectory, and the transition from the -B trajectory to the -B trajectory of the B head] 2. Transition to the next recording trajectory when switching heads ( (during stationary, slow, high-speed, and reverse playback).

〔第2図で、Bヘツドの―B軌跡からAヘツ
ドの―A軌跡への移行、第4図で、Aヘツド
の―A軌跡から―B軌跡への移行〕 3 ヘツド切換時に3つ先の記録軌跡へ移行する
(高速再生時)。
[In Figure 2, the transition from the -B trajectory of the B head to the -A trajectory of the A head, and in Figure 4, the transition from the -A trajectory of the A head to the -B trajectory] 3. Move to recording trajectory (during high-speed playback).

〔第3図で、Aヘツドの―A軌跡からBヘツ
ドの―B軌跡への移行〕 4 ヘツド切換時に1つ前の軌跡へ移行する(静
止,スロー,逆転再生時)。
[In Figure 3, the transition from the -A trajectory of the A head to the -B trajectory of the B head] 4 Transition to the previous trajectory when switching heads (during stationary, slow, and reverse playback).

〔第2図で、Aヘツドの―A軌跡からBヘツ
ドの―B軌跡への移行,第4図で、Bヘツド
の―B軌跡からAヘツドの―A軌跡への移
行〕 5 1つのヘツドの1再生中に、2つ前の記録軌
跡へ移行する(静止,スロー,逆転再生時)。
[In Figure 2, the transition from the -A trajectory of head A to the -B trajectory of head B, and in Figure 4, the transition from the -B trajectory of head B to the -A trajectory of head A] 5. During one playback, move to the previous two recording tracks (when playing still, slow, or in reverse).

〔第4図で、Aヘツドの―A軌跡から―A
軌跡への移行、―A軌跡から―A軌跡への
移行、Bヘツドの―B軌跡から―B軌跡へ
の移行〕 の5通りになる。上述の5つの場合において、水
平同期信号の連続性と色信号の連続性が重要であ
る。水平同期信号の連続性がなくなると画面でス
キユー歪が生じることになる。次に色信号の連続
性について述べる。PALおよびSECAM信号で
は、1ラインごとに色信号が切換えられている。
即ち、PALでは1ラインごとにR―Y信号の搬
送波の位相が反転されており、SECAMではR―
Y信号とB―Y信号が1ラインごとに切換えて伝
送されている。従つて、フイールドの途中または
始めで色信号の順序が逆転すると、テレビジヨン
受像機の色判別回路が誤動作したり、引込むまで
の時間がかかつたりし、色がつかなかつたり、画
面の途中や上部で色相が乱れたりする。
[In Figure 4, from the -A locus of A head to -A
There are five ways: transition to trajectory, transition from -A trajectory to -A trajectory, and transition from -B trajectory to -B trajectory of the B head. In the five cases described above, the continuity of the horizontal synchronization signal and the continuity of the color signal are important. If the continuity of the horizontal synchronization signal is lost, skew distortion will occur on the screen. Next, we will discuss the continuity of color signals. In PAL and SECAM signals, the color signal is switched for each line.
That is, in PAL, the phase of the carrier wave of the R-Y signal is inverted for each line, and in SECAM, the phase of the carrier wave of the R-Y signal is inverted for each line.
The Y signal and BY signal are switched and transmitted line by line. Therefore, if the order of the color signals is reversed in the middle or at the beginning of the field, the color discrimination circuit of the television receiver may malfunction, or it may take a long time for the color to be read in, and the color may not appear, or the color may not appear in the middle or at the beginning of the screen. The hue may be distorted at the top.

第1図の記録パターンのVTRで上述の5つの
場合を見ると、1)および5)の場合は、記録パ
ターンで水平同期信号および色信号が並んでいる
ため、水平同期信号の連続性も色信号の連続性も
保たれる。2)の場合は、通常再生の場合と全く
同じヘツドの切換えが行なわれるため水平同期信
号および色信号の連続性が保たれる。3)の場合
は、ヘツド切換時に再生される信号は2トラツク
と2αHラインスキツプされる。第3図の―A
から―Bへの移行では、―Bトラツクと―
Aトラツクおよび、―Aトラツクの―312
ライン,―313ライン(1/2ライン),―B
トラツクの―313ライン(1/2ライン),―
314ラインがスキツプされ、―311ライン
から―315ラインへ移行する。従つてスキツ
プされる全ライン数は625+2αH=628(αH
1.5)となり、これは偶数であるので、水平同期
信号および色信号の連続性は保たれる。4)の場
合は、ヘツド切換時に、再生される信号は1つ前
のトラツクへもどり、かつ2αHラインもとへも
どる。第2図の―Aから―Bへの移行では
―Aトラツクの―314ラインから―Bトラ
ツクの―312ラインへ移行する。即ち、625
+2αH=628ラインへ前へもどる。第4図の―
Bトラツクから―Aトラツクへの移行に際して
も同様に625+2αH=628ライン前へもどる。こ
れは偶数であるので、水平同期信号および色信号
の連続性は保たれる。
Looking at the five cases mentioned above on a VTR with the recording pattern shown in Figure 1, in cases 1) and 5), the horizontal sync signal and color signal are lined up in the recording pattern, so the continuity of the horizontal sync signal is also Signal continuity is also maintained. In case 2), the switching of heads is carried out exactly the same as in the case of normal reproduction, so that the continuity of the horizontal synchronizing signal and color signal is maintained. In case 3), the signal reproduced at the time of head switching is skipped over 2 tracks and 2α H lines. -A in Figure 3
In the transition from -B to -B track and -
A track and -312 of A track
Line, -313 line (1/2 line), -B
Truck's -313 line (1/2 line), -
Line 314 is skipped, and line -311 shifts to line -315. Therefore, the total number of lines skipped is 625 + 2α H = 628 (α H =
1.5), which is an even number, so the continuity of the horizontal synchronization signal and color signal is maintained. In case 4), when switching heads, the reproduced signal returns to the previous track and returns to the 2α H line. In the transition from -A to -B in Fig. 2, there is a transition from -314 line of the A track to -312 line of the -B track. i.e. 625
+2α H = Return to the 628 line. Figure 4 -
Similarly, when transitioning from B track to -A track, the line returns to the front by 625+2α H =628 lines. Since this is an even number, the continuity of the horizontal synchronization signal and color signal is maintained.

このように第1図のような記録パターンの
VTRでは特殊再生時にも常に水平同期信号およ
び色信号の連続性が保たれている。
In this way, the recording pattern shown in Figure 1
In a VTR, the continuity of the horizontal synchronization signal and color signal is always maintained even during special playback.

次に、VHS方式PAL,SECAM信号用VTRの
信号処理の基本ブロツク図を第5図に示し、簡単
に説明する。第5図において、1は映像信号入力
端子、2は低域フイルタ、3は帯域フイルタ、4
は周波数変調器、5は周波数変換器、6は加算
器、7はヘツド、8は高域フイルタ、9は低域フ
イルタ、10は周波数復調器、11は周波数変換
器、12は加算器、13は映像信号出力端子であ
る。入力端子1に印加された映像信号は、低域フ
イルタ2および帯域フイルタ3により輝度信号と
搬送色信号に分離される。輝度信号は周波数変調
器4で周波変調波とされ、加算器6に導かれる。
一方、搬送色信号は周波数変換器5で低域周波数
に変換され、加算器6で前記周波数変調波に重畳
され、ヘツド7を通じてテープに記録される。こ
の低域への周波数変換時に、PAL,SECAMのそ
れぞれの信号に応じた信号処理が施される。ヘツ
ド7から再生された信号は高域フイルタ8および
低域フイルタ9によつて輝度信号の周波数変調波
および低域に変換された搬送色信号に分離され
る。周波数変調波は、周波数復調器10に導か
れ、復調されて再生輝度信号が得られ、加算器1
2へ導かれる。一方、低域に変換された搬送色信
号は周波数変換器11でもとの周波数にもどさ
れ、加算器12で、再生輝度信号に加えられ、出
力端子13に再生映像信号が得られる。周波数変
換器11で搬送色信号をもとの周波数にもどす過
程でPAL,SECAMそれぞれの信号に応じた信号
処理が施される。
Next, a basic block diagram of signal processing of a VHS system PAL and SECAM signal VTR is shown in FIG. 5, and will be briefly explained. In Fig. 5, 1 is a video signal input terminal, 2 is a low-pass filter, 3 is a band filter, and 4 is a video signal input terminal.
is a frequency modulator, 5 is a frequency converter, 6 is an adder, 7 is a head, 8 is a high-pass filter, 9 is a low-pass filter, 10 is a frequency demodulator, 11 is a frequency converter, 12 is an adder, 13 is a video signal output terminal. A video signal applied to an input terminal 1 is separated into a luminance signal and a carrier color signal by a low-pass filter 2 and a bandpass filter 3. The luminance signal is converted into a frequency modulated wave by a frequency modulator 4 and guided to an adder 6.
On the other hand, the carrier color signal is converted to a lower frequency by a frequency converter 5, superimposed on the frequency modulated wave by an adder 6, and recorded on a tape via a head 7. During this frequency conversion to the low frequency range, signal processing is applied to each of the PAL and SECAM signals. The signal reproduced from the head 7 is separated by a high pass filter 8 and a low pass filter 9 into a frequency modulated wave of a luminance signal and a carrier color signal converted to a low pass. The frequency modulated wave is guided to a frequency demodulator 10 and demodulated to obtain a reproduced luminance signal, and an adder 1
Leads to 2. On the other hand, the carrier color signal converted to a low frequency band is returned to its original frequency by a frequency converter 11, and added to the reproduced luminance signal by an adder 12, so that a reproduced video signal is obtained at an output terminal 13. In the process of returning the carrier color signal to its original frequency in the frequency converter 11, signal processing is applied to each of the PAL and SECAM signals.

本発明は、前述の第1図のパターンより更に高
密度化を進めたり、あるいは異つたパターンにし
たりして、特殊再生時に、水平同期信号および色
信号の連続性を得る方法を提供するものである。
The present invention provides a method for obtaining continuity of horizontal synchronizing signals and color signals during special playback by increasing the density even further than the pattern shown in FIG. 1, or by using a different pattern. be.

第2図〜第4図で説明したように特殊再生時に
信号の不連続が生じ得る5つの場合がある。その
それぞれの場合について任意のパターンでのαH
と水平同期信号および色信号の連続性について説
明する。1の場合はトラツク移行時に625+2αH
ライン先へ移行する。5の場合は625+2αHライ
ン前へ移行する。また前述のように、ヘツド切換
時に、2の場合は通常再生のときと全く同じよう
に信号が移行し、いかなるパターンでも水平同期
信号および色信号の連続性は保たれ、3の場合は
625+2αHライン先へ移行し、4の場合は625+
2αHライン前へ移行する。従つて、これらのと
きに水平同期信号が常に連続であるための条件
は、スキツプされるライン数、または逆もどりす
るライン数が整数であること、即ち、625+2αH
が整数であることであり、 αH=n/2(n:整数) となる。また、色信号が連続であるための条件
は、625+2αHが偶数であること、即ち、2αH
が奇数であることであり、 αH=(2n+1)/2(n:整数) となる。
As explained in FIGS. 2 to 4, there are five cases in which signal discontinuity may occur during special playback. α H in any pattern for each case
This section explains the continuity of horizontal synchronization signals and color signals. In case of 1, 625 + 2α H at the time of track transition
Move to the end of the line. In case of 5, move to 625+2α H line front. Also, as mentioned above, when switching heads, in case 2 the signal transitions in exactly the same way as during normal playback, and the continuity of the horizontal sync signal and color signal is maintained no matter what the pattern is, and in case 3
625+2α Move to H line ahead, if 4, 625+
2α Move to front of H line. Therefore, the condition for the horizontal synchronization signal to always be continuous in these cases is that the number of skipped lines or the number of lines reversed is an integer, that is, 625 + 2α H
is an integer, and α H =n/2 (n: integer). Also, the condition for the color signal to be continuous is that 625+2α H is an even number, that is, 2α H
is an odd number, and α H = (2n+1)/2 (n: integer).

本発明は、以上の点に鑑み、第1図のパターン
より更に記録密度を上げた場合、あるいは、異つ
たパターンにした場合において、特殊再生時にも
色信号の連続性を得ようとするものである。前述
の水平同期信号および色信号の連続性の条件を満
たす。第1図より高密度のパターンはαH=0.5の
みである。ところが、αH=0.5とすると、テープ
スピードは7.8mm/S、トラツクピツチはTP=16
μmとなり、音声の性能および画質が極端に悪く
なつてしまう。そこで本発明では特にαH=1.0
(テープスピード15.6mm/S、トラツクピツチTP
=32μm)とした時、特殊再生時に色信号の連続
性を得られる方法を提供するものである。このパ
ターンでは音声,画質とも家庭用としてはほぼ満
足できるものが得られる。なお、本発明による
と、αH=1.0のみならず、αH=m(m:整数)
のいかなるパターンに対しても、特殊再生時に水
平同期信号および色信号の連続性が得られ、ま
た、いかなるαHのパターンに対しても特殊再生
時に色信号の連続性が得られるものである。
In view of the above points, the present invention attempts to obtain continuity of color signals even during special reproduction when the recording density is further increased than the pattern shown in FIG. 1, or when a different pattern is used. be. The above-mentioned horizontal synchronization signal and color signal continuity conditions are met. From FIG. 1, the only high-density pattern is α H =0.5. However, if α H =0.5, the tape speed is 7.8 mm/S, and the track pitch is T P =16.
μm, resulting in extremely poor audio performance and image quality. Therefore, in the present invention, especially α H =1.0
(Tape speed 15.6mm/S, track pitch T P
= 32 μm), it provides a method for obtaining continuity of color signals during special reproduction. With this pattern, both sound and picture quality are almost satisfactory for home use. According to the present invention, not only α H =1.0 but also α H =m (m: integer)
Continuity of horizontal synchronization signals and color signals can be obtained during special reproduction for any pattern of , and continuity of color signals can be obtained for any pattern of α H during special reproduction.

第6図にαH=1.0の場合の原記録パターンを示
す。第6図において、トラツク,ラインおよび色
信号の記号は第1図と同じ意味である。また、第
7図は、このパターンでの静止再生、第8図は高
速再生、第9図は逆転再生の時のヘツドの軌跡を
表わす。これはαH=1.5の場合の第2図〜第4図
に対応し、記号は同じ意味である。αH=mの場
合は、前述の説明からわかるように、特殊再生時
常に水平同期信号の連続性は得られるが、特殊再
生の前記2以外の場合は色信号の連続性がくずれ
ることになる(第7図〜第9図)。
FIG. 6 shows the original recording pattern when α H =1.0. In FIG. 6, the symbols for tracks, lines and color signals have the same meanings as in FIG. Further, FIG. 7 shows the trajectory of the head during stationary playback, FIG. 8 shows the trajectory of the head during high-speed playback, and FIG. 9 shows the trajectory of the head during reverse playback. This corresponds to FIGS. 2 to 4 for α H =1.5, and the symbols have the same meanings. In the case of α H =m, as can be seen from the above explanation, the continuity of the horizontal synchronization signal is always obtained during special playback, but in cases other than the above 2 during special playback, the continuity of the color signal is broken. (Figures 7 to 9).

また、第6図のパターンからわかるように、α
H=mでは隣接する信号が並んでいない。従つ
て、隣接トラツクから受ける妨害信号は、主信号
と異つた情報(0.5ラインずれた情報)となる。
輝度信号は比較的高い周波数(周波数偏移3.8M
Hz〜4.8MHz)で周波数変調されて記録されてい
るため、アジマスロスが大きく、隣接信号情報が
主信号情報と異つていてもそれ程影響を受けない
が、色信号は低域周波数帯に変換して記録される
ためアジマスロスが比較的少なく、隣接信号の影
響を受けやすい。PAL信号の搬送色信号は、位
相および振幅で情報を伝達しているため、ライン
間の位相相関が有り、これを利用して隣接妨害信
号を除去することができるが、SECAM信号の搬
送色信号は周波数変調波であるため、ライン間の
厳密な位相関係がなく、これを利用して隣接妨害
信号を除去することが難しい。第1図のパターン
のように隣接する信号が並んでいると、隣接妨害
信号は主信号とほぼ同じ信号になり、その影響は
少ない。特にSECAM色信号は、周波数変調波で
あるので、隣接妨害搬送色信号の周波数が主信号
の周波数とほぼ同じであれば零ビートとなり復調
後の妨害信号量もきわめて小さくなる。
Also, as can be seen from the pattern in Figure 6, α
When H = m, adjacent signals are not lined up. Therefore, the interference signal received from the adjacent track has information different from the main signal (information shifted by 0.5 lines).
The luminance signal has a relatively high frequency (frequency deviation 3.8M
Hz to 4.8MHz), the azimuth loss is large, and even if the adjacent signal information differs from the main signal information, it will not be affected much, but the color signal is converted to a lower frequency band. Since the signal is recorded with relatively little azimuth loss, it is easily influenced by adjacent signals. The carrier color signal of the PAL signal transmits information in phase and amplitude, so there is a phase correlation between lines, and this can be used to remove adjacent interference signals, but the carrier color signal of the SECAM signal Since it is a frequency modulated wave, there is no strict phase relationship between lines, and it is difficult to use this to remove adjacent interference signals. When adjacent signals are lined up like the pattern shown in FIG. 1, the adjacent interference signal becomes almost the same signal as the main signal, and its influence is small. In particular, since the SECAM color signal is a frequency modulated wave, if the frequency of the adjacent interference carrier color signal is almost the same as the frequency of the main signal, it will be a zero beat and the amount of interference signal after demodulation will be extremely small.

本発明は、このような点も考慮し、隣接色信号
の妨害を従来並みにし、かつ特殊再生時にも、正
常な色再生を行ない、高密度記録を可能にするも
のである。
Taking these points into consideration, the present invention is intended to reduce the interference of adjacent color signals to the same level as in the past, to perform normal color reproduction even during special reproduction, and to enable high-density recording.

第10図に本発明の一実施例の基本ブロツク図
を、第11図に第10図の各部波形および色信号
関係を、第12図に本発明における色信号の記録
パターン(αH=1.0)を示し、これらに従つて本
発明を説明する。第10図において、1〜13は
第5図と同じものを表わし、同じ動作をする。1
4,24は1.5Hデイレーライン、15,23は
1.0Hデイレーライン、16,22は0.5Hデイレ
ーライン、17,25はスイツチ回路(SW)、
18,26はヘツド切換信号入力端子、19,2
7はフリツプフロツプ、20,28はヘツド切換
信号、21,29はそれぞれフリツプフロツプ1
9,27の出力信号であり、その波形を第11図
の同じ番号で示す。なお、フリツプフロツプ27
の出力信号29は、記録状態に対応して2つの状
態があり、それぞれ第11図の29・1,29・
2で示す。第12図の記号は第1図,第6図と同
じであるがライン番号は色信号に対するものを表
わし、輝度信号に関しては第6図のままである。
Fig. 10 shows a basic block diagram of an embodiment of the present invention, Fig. 11 shows the waveforms and color signal relationships of each part in Fig. 10, and Fig. 12 shows the color signal recording pattern (α H = 1.0) in the present invention. The present invention will be explained according to these figures. In FIG. 10, numerals 1 to 13 represent the same elements as in FIG. 5 and perform the same operations. 1
4 and 24 are 1.5H day line, 15 and 23 are
1.0H delay line, 16 and 22 are 0.5H delay lines, 17 and 25 are switch circuits (SW),
18, 26 are head switching signal input terminals, 19, 2
7 is a flip-flop, 20 and 28 are head switching signals, and 21 and 29 are flip-flops 1 and 29, respectively.
9 and 27, and their waveforms are indicated by the same numbers in FIG. In addition, flip-flop 27
The output signal 29 has two states corresponding to the recording state, 29.1 and 29.2 in FIG. 11, respectively.
Shown as 2. The symbols in FIG. 12 are the same as those in FIGS. 1 and 6, but the line numbers represent those for color signals, and the luminance signals remain the same as in FIG. 6.

第10図において、輝度信号は第5図と同様に
処理され、その記録パターンは第6図のようにな
る。一方、帯域フイルタ3の出力搬送色信号は、
1.5Hデイレーライン14を経てスイツチ回路1
7のa端子へ、1.0Hデイレーライン15を経て
スイツチ回路17のb端子へ、0.5Hデイレーラ
イン16を経てスイツチ回路17のc端子へ、そ
のままスイツチ回路17のd端子へ導かれる。ス
イツチ回路17は、端子18に印加されたヘツド
切換信号20(第11図20)および信号20を
フリツプフロツプ19で1/2に分周した信号21
(第11図21)で制御され、出力は、 信号20……高,信号21……高のとき端子
a、 信号20……低,信号21……高のとき端子
b、 信号20……高,信号21……低のとき端子
c、 信号20……低,信号21……低のとき端子
d、 へそれぞれ接続するように成されている(第11
図30)。従つて、スイツチ回路17の出力には
第11図31に示すように、入力信号に対し、遅
れが1.5H,1.0H,0.5H,0,1.5H……となる信
号が得られる。スイツチ回路17の出力色信号は
周波数変換器5に導かれ、第5図の場合と同様に
記録される。今、トラツク―B,―A,―
B,―A,―B……に記録される色信号がそ
れぞれ、1.5H,1.0H,0.5H,0,1.5H……と遅
延されたとすると、色信号の記録パターンは第1
2図のようになる。このように、記録パターンで
色信号が並ぶように成され、再生時、隣接トラツ
クより受ける妨害信号は主信号とほぼ同じ信号に
成されるため影響を少なくすることができる。な
お、トラツクと色信号の遅延の関係は第12図に
限らず、色信号遅延順序が、1.5H,1.0H,
0.5H,0,1.5H……という順であれば良いのは
明らかである。
In FIG. 10, the luminance signal is processed in the same manner as in FIG. 5, and the recorded pattern is as shown in FIG. On the other hand, the output carrier color signal of the bandpass filter 3 is
Switch circuit 1 via 1.5H delay line 14
7, to the b terminal of the switch circuit 17 via the 1.0H delay line 15, to the c terminal of the switch circuit 17 via the 0.5H delay line 16, and directly to the d terminal of the switch circuit 17. The switch circuit 17 includes a head switching signal 20 (FIG. 11 20) applied to the terminal 18 and a signal 21 whose frequency is divided by half by a flip-flop 19.
(Fig. 11, 21), and the output is: terminal a when signal 20...high, signal 21...high, terminal b when signal 20...low, signal 21...high, signal 20...high , signal 21... is connected to terminal c when it is low, signal 20... is low, and signal 21... is connected to terminal d when it is low (11th
Figure 30). Therefore, as shown in FIG. 11, the output of the switch circuit 17 provides signals with delays of 1.5H, 1.0H, 0.5H, 0, 1.5H, . . . with respect to the input signal. The output color signal of the switch circuit 17 is guided to the frequency converter 5 and recorded in the same manner as in FIG. Now, truck-B, -A,-
If the color signals recorded in B, -A, -B... are delayed by 1.5H, 1.0H, 0.5H, 0, 1.5H..., the color signal recording pattern will be the first one.
It will look like Figure 2. In this way, the color signals are aligned in the recording pattern, and during reproduction, the interference signal received from the adjacent track is made into almost the same signal as the main signal, so that the influence can be reduced. Note that the relationship between the track and color signal delay is not limited to that shown in FIG. 12; the color signal delay order is 1.5H, 1.0H,
It is clear that the order of 0.5H, 0, 1.5H, etc. is sufficient.

次に再生系について述べる。低域フイルタ9の
出力である低域に変換された再生搬送色信号は周
波数変換器11でもとの周波数にもどされ、
0.5Hデイレーライン22,1.0Hデイレーライン
23、1.5Hデイレーライン24を経て、またそ
のままでスイツチ回路25の端子a,b,c,d
へそれぞれ導かれる。スイツチ回路25は、端子
26に印加されたヘツド切換信号28(第11図
28)および信号28をフリツプフロツプ27で
1/2に分周した信号29(第11図29・1また
は29・2)で制御され、スイツチ回路17と同
じ動作をする(第11図28,29・1,32ま
たは28,29・2,35)。記録時のスイツチ
回路17の制御信号20,21と再生時のスイツ
チ回路25の制御信号28,29の関係を見る
と、信号20と信号28は記録,再生トラツクに
対して常に同位相となる様定められている。即
ち、第11図と第12図で、Bヘツド記録.再生
するとき(―B,―B,―B……)は高レ
ベル、Aヘツドで記録・再生するとき(―A,
―A,―A……)は抵レベルとなつている。
ところが、信号21と信号29は、記録時の位相
に対し、再生時は、同位相になる場合(第11図
29・1)と逆位相になる場合(同図29・2)
が生じる。それぞれの場合の再生スイツチ回路2
5の接続と再生色信号の遅延量および記録・再生
あわせての色信号の遅延量を第11図32〜34
(再生1)、35〜37(再生2)に示す。再生1
の場合、第11図34に示すように、記録・再生
あわせての色信号遅延は3フイールド間2.0H
で、1フイールド0という繰り返しになる。ま
た、再生2の場合は、第11図37に示すよう
に、記録・再生あわせての色信号遅延は3フイー
ルド間1.0Hで、1フイールド3.0Hという繰り返
しになる。いずれの場合も、フイールド(トラツ
ク)間の色信号遅延量の差は2.0Hとなり、再生
色信号のRとBの順序は変らないで、ヘツドを切
換えてもR,B,R,B,……の順になるので、
テレビジヨン受像機の色判別回路は正常に動作
し、正常な色を再現することができる。
Next, we will discuss the regeneration system. The reproduced carrier color signal converted to a low frequency signal, which is the output of the low frequency filter 9, is returned to its original frequency by a frequency converter 11.
After passing through the 0.5H delay line 22, 1.0H delay line 23, and 1.5H delay line 24, the terminals a, b, c, and d of the switch circuit 25 are connected as they are.
Each will be guided to The switch circuit 25 transfers the head switching signal 28 (FIG. 11 28) applied to the terminal 26 and the signal 28 to the flip-flop 27.
It is controlled by a signal 29 (29.1 or 29.2 in FIG. 11) whose frequency is divided by 1/2, and operates in the same way as the switch circuit 17 (28, 29.1, 32 or 28, 29.2 in FIG. 11). , 35). Looking at the relationship between the control signals 20 and 21 of the switch circuit 17 during recording and the control signals 28 and 29 of the switch circuit 25 during playback, it appears that the signals 20 and 28 are always in the same phase with respect to the recording and playback tracks. It is determined. That is, in FIGS. 11 and 12, head B records. When playing back (-B, -B, -B...), the level is high; when recording and playing back with the A head (-A,
-A, -A...) are at a low level.
However, when the signals 21 and 29 are in phase during recording, when they are reproduced, there are cases in which they are in the same phase (Fig. 11, 29.1) and cases in which they are in opposite phase (Fig. 11, 29.2).
occurs. Playback switch circuit 2 in each case
Figures 11-32 to 34 show the connection of 5, the amount of delay of the reproduced color signal, and the amount of delay of the color signal for both recording and reproduction.
(Reproduction 1), 35-37 (Reproduction 2). Play 1
In this case, as shown in Figure 11 34, the color signal delay for recording and playback is 2.0H between 3 fields.
Then, 1 field becomes 0 and it repeats. In addition, in the case of reproduction 2, as shown in FIG. 11, the color signal delay for both recording and reproduction is 1.0H for three fields and 3.0H for one field, which is repeated. In either case, the difference in color signal delay amount between fields (tracks) is 2.0H, and the order of R and B of the reproduced color signal does not change, even if the head is switched, R, B, R, B,... ...so the order is
The color discrimination circuit of a television receiver operates normally and can reproduce normal colors.

次に、特殊再生の場合について述べる。特殊再
生時には第2図〜第4図および第7図〜第9図の
説明で述べたように、色信号の不連続が生じ得る
5つの場合がある。これらの5つの場合について
本発明を説明する。第13図は第12図のような
色信号記録パターンを第7図〜第9図のような再
生軌跡で特殊再生した時の各トラツクの色信号の
遅延量を示す図である。28〜33は第11図と
同じものである。38〜40は静止再生(第7
図)、41〜43は高速再生(第8図)、44〜4
6は逆転再生(第9図)例の再生トラツク、記録
色信号遅れ、記録・再生あわせての色信号遅れを
表わす。前述の特殊再生の1の場合は、第8図で
―Aトラツクから―Aトラツクへの移行時、
―Bトラツクから―Bヘラツクへの移行時に
あたり、例えば、第13図43のような色信号遅
れになる。このように、この場合は、1つのヘツ
ドで1再生中であるので再生途中で色信号の遅延
切換は行なわれない。そして、第12図の記録パ
ターンでわかるように1つおきのトラツクの色信
号が並んでいるため、色信号の連続性が得られ
る。なお、第13図43で―Aから―A,
―Bから―Bへの移行時に色信号の遅延量が
1.0H変つている。第6図のような原パターン再
生時に色信号の順序が逆転するのでこのように移
行時に原信号に対して1.0Hの変化により色信号
の順序を正常にすることができる。2の場合は、
第7図の―Bから―A,第9図の―Aから
―Bへの移行に相当し、第13図40,46の
ような色信号遅れになる。この場合は通常再生時
と同じ色信号遅延切換で色信号順序は保たれる。
3の場合は、第8図の―Aから―Bへの移行
にあたり、第13図43のような色信号遅れにな
る。この場合、ヘツド切換時の色信号遅延量は
1.0H変化する。そして原パターン(第6図)再
生時に色信号順序が逆転するので1.0Hの遅延量
の変化により正常にすることができる。4の場合
は、第7図で―Aから―B、第9図で―B
から―Aへの移行にあたり、第13図40,4
6のような色信号遅れになる。この場合も、ヘツ
ド切換時の色信号遅延量は1.0H変化し、原パタ
ーン再生時に色信号順序が逆転するので、このよ
うにして正常にすることができる。5の場合は、
第9図で―Aから―A,―Aから―A,
―Bから―Bへの移行にあたり、第13図4
6のような色信号遅れになる。この場合も1)の
場合と同様に再生色信号順序を正常にすることが
できる。第13図ではスイツチ25の切換信号2
9として29・1で記したが、29・2にしても
全く同様である。
Next, the case of special playback will be described. During special playback, there are five cases in which color signal discontinuity may occur, as described in the explanations of FIGS. 2 to 4 and 7 to 9. The present invention will be described for these five cases. FIG. 13 is a diagram showing the amount of delay of the color signal of each track when the color signal recording pattern shown in FIG. 12 is specially reproduced with the playback trajectory shown in FIGS. 7 to 9. 28 to 33 are the same as in FIG. 11. 38-40 are static playback (7th
), 41-43 are high-speed playback (Figure 8), 44-4
Reference numeral 6 represents the reproduction track, recording color signal delay, and color signal delay for both recording and reproduction in the example of reverse reproduction (FIG. 9). In case of special playback 1 mentioned above, when transitioning from -A track to -A track in Figure 8,
At the time of transition from -B track to -B track, for example, the color signal lags as shown in FIG. 13, 43. As described above, in this case, since one head is performing one reproduction, the color signal delay switching is not performed during reproduction. As can be seen from the recording pattern in FIG. 12, since the color signals of every other track are lined up, continuity of the color signals can be obtained. In addition, in FIG. 13 43, from -A to -A,
The amount of delay in the color signal when transitioning from -B to -B
1.0H has changed. Since the order of the color signals is reversed when reproducing the original pattern as shown in FIG. 6, the order of the color signals can be made normal by changing the original signal by 1.0H at the time of transition. In case of 2,
This corresponds to the transition from -B to -A in FIG. 7 and from -A to -B in FIG. 9, resulting in color signal delays as shown at 40 and 46 in FIG. 13. In this case, the color signal order is maintained by the same color signal delay switching as during normal reproduction.
In the case of 3, the color signal lags as shown at 43 in FIG. 13 during the transition from -A to -B in FIG. In this case, the amount of color signal delay when switching heads is
Changes by 1.0H. Since the color signal order is reversed when the original pattern (FIG. 6) is reproduced, it can be made normal by changing the delay amount of 1.0H. 4, in Figure 7 - A to - B, in Figure 9 - B
In the transition from to -A, Fig. 13 40, 4
There will be a color signal delay like 6. In this case as well, the color signal delay amount changes by 1.0H when switching heads, and the color signal order is reversed when the original pattern is reproduced, so it can be made normal in this way. In case of 5,
In Figure 9 -A to -A, -A to -A,
In transitioning from -B to -B, Figure 13 4
There will be a color signal delay like 6. In this case as well, the reproduced color signal order can be made normal as in case 1). In FIG. 13, switching signal 2 of switch 25
Although it was written as 29.1 as 9, it is exactly the same even if it is written as 29.2.

また第10図の例では、再生スイツチ回路25
のd端子へは周波数変換器11の出力をそのまま
接続したが、2.0Hデイレーラインを介して接続
しても良い。この時第11図および第13図の再
生でd端子へ接続された時の再生色信号遅れは
2.0Hになり、それに応じて記録再生あわせての
色信号遅れも2.0H増えるが、色信号の順序には
影響がない。
In the example of FIG. 10, the regeneration switch circuit 25
Although the output of the frequency converter 11 is directly connected to the d terminal of the d terminal, it may be connected via a 2.0H delay line. At this time, the reproduction color signal delay when connected to the d terminal in the reproduction of Figures 11 and 13 is
2.0H, and the color signal delay during recording and playback also increases by 2.0H, but the order of the color signals is not affected.

以上のように本発明によれば、特殊再生のいか
なる場合も色信号順序を正常に保ち、テレビジヨ
ン受像機での色判別の誤りをなくし、正常な色を
つけることができる。
As described above, according to the present invention, it is possible to keep the color signal order normal in any case of special reproduction, eliminate errors in color discrimination in a television receiver, and provide normal colors.

第10図の実施例では再生スイツチ回路25の
制御信号29として記録時に対し同相のものと逆
相のものがあつたが、インデツクス信号を用いる
ことにより記録時と同相にすることができる。そ
の実施例を第14図に、第14図の各部波形を第
15図に示し説明する。第14図において、1〜
29は第10図と同じものを表わす。47は垂直
同期信号分離回路、48は論理積回路、49は加
算器、50はインデツクス分離回路、54は2H
デイレーラインである。入力映像信号より垂直同
期信号分離回路47で分離された垂直同期信号5
1(第15図51)、端子18に印加されたヘツ
ド切換信号20(第15図20)、フリツプフロ
ツプ19の出力信号21(第15図21)は論理
積回路48に導かれ、その出力にインデツクス信
号52(第15図52)が得られる。このインデ
ツクス信号52を加算器49で低域に変換された
色信号に重畳して記録する。この時、インデツク
ス信号は信号20、信号21ともに高レベルのト
ラツク、即ち、色信号遅延が1.5Hのトラツクの
垂直ブランキングに挿入されることになる。再生
時低域フイルタ9の出力色信号からインデツクス
分離回路50によつてインデツクス信号53(第
15図53)が分離される。このインデツクス信
号でフリツプフロツプ27を制御し、インデツク
ス信号が高レベルのときは、その出力が高レベル
となるようにすれば、信号29は第15図のよう
な位相となり、信号28(第15図28)、信号
29とも記録時と同じ位相にすることができる。
更にスイツチ回路25のd端子へは、周波数変換
器11の出力色信号を2Hデイレーライン54を
通したものが接続されており、再生時のスイツチ
回路25の制御信号と色信号遅れは第11図の再
生1でd端子に接続している時の再生色信号遅れ
(同図33のd)、記録・再生あわせての色信号遅
れ(同図34のd)をともに2.0Hにしたものに
なり、色遅れは常に2.0Hになる。この場合、第
10図の例のようにフイールドによつて色信号の
遅れに差が生じないため、色の縦の境界でのフリ
ツカも生ぜず、より良いものになる。しかし、輝
度信号に対し色信号は2H遅れている。このずれ
を1.0Hにするかなくするには、再生輝度信号を
CCDのような遅延素子を用いるなり、超音波遅
延線で輝度信号を高周波に変調して遅延させるな
りして輝度信号をlH(l:正整数)遅らせるこ
とも可能である。ここで、輝度信号を1H遅延す
ると輝度信号に対し色信号は1H遅れになり、輝
度信号を2H遅延すると輝度信号と色信号のタイ
ミングは全く一致して、良質の再生画像が得られ
る。
In the embodiment shown in FIG. 10, the control signal 29 of the reproduction switch circuit 25 has one in phase and the other in phase with respect to the recording time, but by using an index signal, the control signal 29 can be made to be in the same phase as the recording time. An example of this will be described with reference to FIG. 14, and FIG. 15 showing waveforms of various parts of FIG. 14. In Figure 14, 1 to
29 represents the same thing as in FIG. 47 is a vertical synchronization signal separation circuit, 48 is an AND circuit, 49 is an adder, 50 is an index separation circuit, and 54 is a 2H
It is a daily line. Vertical synchronization signal 5 separated from the input video signal by vertical synchronization signal separation circuit 47
1 (FIG. 15, 51), the head switching signal 20 (FIG. 15, 20) applied to the terminal 18, and the output signal 21 of the flip-flop 19 (FIG. 15, 21) are led to an AND circuit 48, and an index is applied to its output. A signal 52 (FIG. 15 52) is obtained. This index signal 52 is superimposed on the color signal converted into a low frequency signal by an adder 49 and recorded. At this time, the index signal is inserted into the vertical blanking of the track where both signals 20 and 21 are at a high level, that is, the track where the color signal delay is 1.5H. During reproduction, an index signal 53 (FIG. 15) is separated from the output color signal of the low-pass filter 9 by an index separation circuit 50. If the flip-flop 27 is controlled by this index signal so that its output is at a high level when the index signal is at a high level, the signal 29 will have a phase as shown in FIG. ) and signal 29 can have the same phase as during recording.
Further, the output color signal of the frequency converter 11 is connected to the d terminal of the switch circuit 25 through a 2H delay line 54, and the control signal of the switch circuit 25 and the color signal delay during reproduction are the same as the 11th delay line. In playback 1 in the figure, the reproduction color signal delay when connected to the d terminal (d in Figure 33) and the color signal delay during recording and playback (d in Figure 34) are both 2.0H. The color delay is always 2.0H. In this case, unlike the example shown in FIG. 10, there is no difference in the delay of the color signal depending on the field, so flicker does not occur at the vertical boundaries of colors, resulting in better results. However, the chrominance signal lags behind the luminance signal by 2H. To reduce or eliminate this deviation to 1.0H, adjust the reproduced brightness signal.
It is also possible to delay the luminance signal by lH (l: a positive integer) by using a delay element such as a CCD or by modulating the luminance signal to a high frequency with an ultrasonic delay line and delaying it. Here, if the luminance signal is delayed by 1H, the chrominance signal will be delayed by 1H with respect to the luminance signal, and if the luminance signal is delayed by 2H, the timings of the luminance signal and the chrominance signal will match exactly, resulting in a high-quality reproduced image.

以上の説明ではαH=1.0の場合について、記録
色信号を1.5H,1.0H,0.5H,0という繰り返し
で遅延させ、再生色信号を0.5H,1.0H,1.5H,
0(2.0H)という繰り返しで遅延する場合につ
いて述べたが、任意のαH=2m+1(m:整数)
の場合も同じである。また、任意のαH=2m+1
で、記録色信号を1トラツクごとに遅れが0.5H
ずつ少なくなるか、又はそれに2kH(k:整数)
加えた時間の順序で遅延させ(必ずしも0.5H,
1.0Hのような値である必要はなく、例えば
1.8H,1.3H,0.8H,0.3H又は1.8H,3.3H,
0.8H,2.3Hのような繰り返しでも良いし、4ト
ラツク単位の繰り返しでなく、4の倍数トラツク
単位の繰り返しでも良い)、再生色信号を1トラ
ツクごとに遅れが0.5Hずつ多くなるか、又はそ
れに2kH加えた時間の順序で遅延させてもよい。
この場合、再生輝度信号を遅延させない場合は、
通常再生時の記録・再生合計色信号の遅れを1H
の整数倍にする必要があり、再生輝度信号を遅延
させる場合は、色信号の合計遅延量と輝度信号の
遅延量の差が1Hの整数倍になるようにすれば良
い。例えば、第14図の構成で、輝度信号を
1.5H遅らせるようにすれば、デイレーライン2
2,23,24,53をそれぞれ、0,0.5H,
1.0H,1.5Hのデイレーラインとして再生時の輝
度信号と色信号のタイミングを全く一致させるこ
とができる。
In the above explanation, for the case of α H = 1.0, the recorded color signal is repeatedly delayed as 1.5H, 1.0H, 0.5H, 0, and the reproduced color signal is delayed as 0.5H, 1.0H, 1.5H,
We have described the case where the delay is repeated by 0 (2.0H), but any α H = 2m + 1 (m: integer)
The same is true for . Also, any α H =2m+1
The recording color signal has a delay of 0.5H for each track.
or 2kH (k: integer)
Delay in the order of added time (not necessarily 0.5H,
It doesn't have to be a value like 1.0H, for example
1.8H, 1.3H, 0.8H, 0.3H or 1.8H, 3.3H,
(It may be repeated in 0.8H, 2.3H, or it may be repeated in units of multiples of 4 tracks instead of in units of 4 tracks), the delay of the reproduced color signal increases by 0.5H for each track, or It may be delayed in the order of 2kHz plus time.
In this case, if you do not want to delay the reproduced luminance signal,
1H recording/playback total color signal delay during normal playback
When delaying the reproduced luminance signal, the difference between the total delay amount of the color signal and the delay amount of the luminance signal should be an integral multiple of 1H. For example, with the configuration shown in Figure 14, the luminance signal
If you delay 1.5H, day line 2
2, 23, 24, 53 respectively, 0, 0.5H,
As a delay line of 1.0H and 1.5H, it is possible to perfectly match the timing of the luminance signal and color signal during reproduction.

またαH=2mの場合は、記録色信号を1トラツ
クごとに遅れが0.5Hずつ多くなるか、またはそ
れに2kH加えた時間の順序(例えば、0,0.5H,
1.0H,1.5Hの順)で遅延させ、再生色信号を記
録と逆の順序で遅延させればよい。
In addition, when α H = 2m, the delay of the recording color signal increases by 0.5H for each track, or the delay is increased by 2kHz for each track (for example, 0, 0.5H,
It is sufficient to delay the reproduced color signal in the reverse order of recording.

以上、αH=m,特にαH=1.0の場合につい
て、本発明を説明したが、前述のように本発明は
いかなるαHのパターンに対しても有効である。
任意のαHの場合、記録色信号を1トラツクごと
に遅れが(αH+0.5)Hずつ多くなるか、または
それに2kH加えた時間の順序で遅延させ、再生色
信号を記録と逆の順序で遅延させればよい。αH
=1.0のとき、αH+0.5=1.5となり、記録色信号
を1トラツクごとに1.5Hずつ遅延時間が多くな
るようにまたはそれに2kH加えた時間の順序で遅
延するということは、例えば、1.5H,3.0H−2H
=1.0H(k=−1),4.5H−4H=0.5H(k=−
2),6.0H−6H=0(k=3)という順で遅延す
ることになり、上記の説明と一致する。αH=2m
+1のときはαH+0.5=2m+1.5となり、αH
1.0(m=0)のときと同じ遅延になる。αH
2mのときはαH+0.5=2m+0.5となり、記録色信
号を1トラツクごとに遅れが、例えば0.5Hずつ
多くなるよう0,0.5H,1.0H,1.5Hの順序で遅
延すればよい。αH=0.75のときは、αH+0.5=
1.25Hとなり、例えば、記録色信号を1トラツク
ごとに0,1.25H,2.5H−2H=0.5H,3.75H−2H
=1.75H,5.0H−4H=1.0H,6.25H−6H=
0.25H,7.5H−6H=1.5H,8.75H−8H=0.75H,
10.0H−10H=0の順序で遅延すれば良い。
The present invention has been described above for the case of α H =m, particularly α H =1.0, but as described above, the present invention is effective for any α H pattern.
In the case of arbitrary α H , the recorded color signal is delayed by increasing the delay by (α H +0.5)H for each track, or by adding 2 kHz to the delay, and the reproduced color signal is delayed by increasing the delay by (α H +0.5)H for each track, or by adding 2kHz to the delay, and the reproduced color signal is Just delay it in order. α H
= 1.0, α H +0.5 = 1.5, and the recording color signal is delayed by 1.5H for each track or by adding 2kHz to the delay time, for example, 1.5 H, 3.0H−2H
= 1.0H (k = -1), 4.5H - 4H = 0.5H (k = -
2), 6.0H-6H=0 (k=3), which is consistent with the above explanation. α H = 2m
When +1, α H +0.5=2m+1.5, and α H =
The delay will be the same as when 1.0 (m=0). α H =
When the distance is 2m, α H +0.5 = 2m + 0.5, and the recording color signal can be delayed in the order of 0, 0.5H, 1.0H, 1.5H so that the delay increases by 0.5H for each track, for example. . When α H =0.75, α H +0.5=
For example, the recording color signal is 0, 1.25H, 2.5H - 2H = 0.5H, 3.75H - 2H for each track.
=1.75H, 5.0H−4H=1.0H, 6.25H−6H=
0.25H, 7.5H−6H=1.5H, 8.75H−8H=0.75H,
It is sufficient to delay in the order of 10.0H-10H=0.

なお、ヘツド回転方向とテープの走行方向が逆
であるパターンではαHを負とすれば以上のこと
がすべてあてはまる。また、本発明は、1トラツ
クに1フイールド記録するもの以外に対しても、
トラツクごとの記録色信号遅延量の差を適当に設
定することにより適用できることはいうまでもな
い。
In addition, in a pattern in which the direction of head rotation and the direction of tape running are opposite, all of the above applies if α H is negative. Furthermore, the present invention can also be applied to systems other than recording one field per track.
Needless to say, this method can be applied by appropriately setting the difference in recording color signal delay amount for each track.

以上の説明のように、本発明によれば、PAL
およびSECAM信号の記録・再生に際し、従来よ
り高密度化でき、かつ色信号の隣接妨害を少なく
し、特殊再生時にも色信号の順序を正常にして画
質,音質とも十分なものを得ることができる。
As described above, according to the present invention, PAL
When recording and reproducing SECAM signals, it is possible to achieve higher density than before, reduce adjacent interference of color signals, and normalize the order of color signals even during special playback to obtain sufficient image and sound quality. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は現行のPAL,SECAM信号用VHS方式
VTRの記録パターン(αH=1.5)を示す図、第
2図〜第4図は、第1図のパターンで特殊再生し
た時のヘツド軌跡を示す図、第5図は第1図パタ
ーンにおける信号処理方式の基本ブロツク図、第
6図はαH=1.0の場合の記録パターン図、第7図
〜第9図は、第6図のパターンで特殊再生した時
のヘツド軌跡を示す図、第10図は本発明の一実
施例を示すブロツク図、第11図は第10図の各
部波形と通常再生時の色信号の遅延時間を示す
図、第12図は本発明における色信号記録パター
ンの一例を示す図、第13図は、第10図の各部
波形と特殊再生時の色信号の遅延時間を示す図、
第14図は本発明の別の実施例を示すブロツク
図、第15図は第14図の各部波形図である。 14,15,16,22,23,24,53…
…デイレーライン、17,25……スイツチ回
路、18……ヘツド切換信号入力端子、19……
フリツプフロツプ、48……論理積回路、47…
…垂直同期信号分離回路、50……インデツクス
分離回路。
Figure 1 shows the current VHS system for PAL and SECAM signals.
Figures showing the VTR recording pattern (α H = 1.5); Figures 2 to 4 are diagrams showing head trajectories when performing special playback with the pattern in Figure 1; Figure 5 is the signal in the pattern in Figure 1. A basic block diagram of the processing method, Figure 6 is a recording pattern diagram when α H = 1.0, Figures 7 to 9 are diagrams showing head trajectories when performing special reproduction with the pattern in Figure 6, Figure 10 The figure is a block diagram showing one embodiment of the present invention. Figure 11 is a diagram showing the waveforms of each part of Figure 10 and the delay time of the color signal during normal playback. Figure 12 is an example of the color signal recording pattern in the present invention. 13 is a diagram showing the waveforms of each part in FIG. 10 and the delay time of the color signal during special playback,
FIG. 14 is a block diagram showing another embodiment of the present invention, and FIG. 15 is a waveform diagram of each part of FIG. 14. 14, 15, 16, 22, 23, 24, 53...
...Delay line, 17, 25...Switch circuit, 18...Head switching signal input terminal, 19...
Flip-flop, 48...AND circuit, 47...
. . . Vertical synchronization signal separation circuit, 50 . . . Index separation circuit.

Claims (1)

【特許請求の範囲】 1 PALまたはSECAM方式による入力映像信号
を輝度信号と搬送色信号に分離し、輝度信号を角
度変調波とし、搬送色信号を低域周波数に変換
し、該角度変調信号の低域に重畳して、互いにア
ジマス角度をもつ2つのヘツドで記録媒体に斜め
のトラツクを形成して記録し、再生時は、上記角
度変調信号を復調して再生輝度信号を得、上記低
域に変換された搬送色信号を元の周波数に変換し
て再生搬送色信号を得、該再生輝度信号と再生搬
送色信号を合成して再生映像信号を得るように構
成した映像信号記録再生装置において、記録され
る搬送色信号を1トラツクごとに一定またはそれ
に2kH(ただし、k:整数,H:水平走査時間)
加えた時間差をもつて順次遅延し、再生時に再生
搬送色信号をヘツド切換ごとに記録時と同じ一定
の時間差またはそれに2kH加えた時間差をもつ
て、記録時と逆の順序の繰り返しで順次遅延させ
ることを特徴とする映像信号記録再生装置。 2 記録時と同じスピードでの再生(通常再生)
時の記録再生の合計色信号遅延時間が、どのトラ
ツクについても1Hの整数倍となり、かつトラツ
ク間の合計色信号遅延時間の差が0Hまたは2Hの
整数倍となるよう構成したことを特徴とする特許
請求の範囲第1項に記載の映像信号記録再生装
置。 3 記録時に色信号遅延の繰り返しに同期したパ
イロツト信号を共に記録し、再生時、前記パイロ
ツト信号により、再生色信号遅延の繰り返し時期
を制御して、通常再生時の記録再生合計での色信
号遅延時間がどのトラツクについても同じになる
よう構成したことを特徴とする特許請求の範囲第
2項に記載の映像信号記録再生装置。 4 通常再生時のトラツク間の色信号の記録再生
合計遅延時間差が0Hまたは2Hの整数倍となるよ
うに成し、かつ再生輝度信号を遅延して、再生時
の輝度信号と色信号の時間差が0Hまたは1Hの整
数倍となるよう構成したことを特徴とする特許請
求の範囲第1項に記載の映像信号記録再生装置。 5 記録時に色信号遅延の繰り返しに同期したパ
イロツト信号を共に記録し、再生時、前記パイロ
ツト信号により再生色信号遅延の繰り返し時期を
制御して、通常再生時の記録再生合計での色信号
遅延時間がどのトラツクについても同じになるよ
う構成したことを特徴とする特許請求の範囲第4
項に記載の映像信号記録再生装置。 6 通常再生時の記録再生合計の色信号遅延時間
が、どのトラツクについても1Hの整数倍になる
ように成し、かつ、再生輝度信号を1Hの整数倍
時間遅延することを特徴とする特許請求の第4項
に記載の映像信号記録再生装置。 7 通常再生時の輝度信号と色信号のタイミング
を一致させるべく構成したことを特徴とする特許
請求の範囲第5項に記載の映像信号記録再生装
置。 8 隣り合うトラツク間の水平同期信号のずれを
αH=m(m:整数)とし、記録される搬送色信
号の1トラツクごとの遅延時間差を0.5Hまたは
それに2kH加えた時間とすることを特徴とする特
許請求の範囲第1項に記載の映像信号記録再生装
置。 9 色信号を1トラツクごとまたはヘツド切換ご
とに一定またはそれに2kH加えた時間差をもつて
順次遅延する手段は、色信号を互いに所定の時間
差をもつ複数の遅延手段(遅延0も含む)に加え
る第1の手段、それぞれの遅延手段出力をスイツ
チ回路の入力に結合する第2の手段、前記スイツ
チ回路を、ヘツド切換信号およびその分周信号で
制御し、前記スイツチ回路の入力に加えられた信
号を順次切換えて取り出す第3の手段より成るこ
とを特徴とする特許請求の範囲第1項に記載の映
像信号記録再生装置。
[Claims] 1. Separate an input video signal using the PAL or SECAM system into a luminance signal and a carrier color signal, convert the luminance signal into an angle modulated wave, convert the carrier color signal to a low frequency, and convert the angle modulated signal into a low frequency signal. It is superimposed on the low frequency band and recorded by forming a diagonal track on the recording medium using two heads having an azimuth angle to each other. During playback, the angle modulation signal is demodulated to obtain a reproduced luminance signal, and the low frequency signal is In a video signal recording and reproducing apparatus configured to convert the carrier color signal converted into the original frequency to obtain a reproduced carrier color signal, and to synthesize the reproduced luminance signal and the reproduced carrier color signal to obtain a reproduced video signal. , the recorded carrier color signal is constant for each track or 2kHz (k: integer, H: horizontal scanning time)
During playback, the reproduced conveyance color signal is sequentially delayed with the same fixed time difference as during recording, or a time difference of 2 kHz added, in the reverse order of the recording time, each time the head is switched. A video signal recording and reproducing device characterized by: 2 Playback at the same speed as recording (normal playback)
The present invention is characterized in that the total color signal delay time during recording and reproduction of time is an integral multiple of 1H for every track, and the difference in total color signal delay time between tracks is an integral multiple of 0H or 2H. A video signal recording and reproducing device according to claim 1. 3. During recording, a pilot signal synchronized with the repetition of the color signal delay is recorded together, and during playback, the pilot signal is used to control the repetition timing of the playback color signal delay, thereby reducing the color signal delay in the total recording and playback during normal playback. The video signal recording and reproducing apparatus according to claim 2, characterized in that the time is the same for all tracks. 4. The total delay time difference between recording and reproducing color signals between tracks during normal playback is an integral multiple of 0H or 2H, and the reproduced luminance signal is delayed so that the time difference between the luminance signal and chrominance signal during reproduction is The video signal recording and reproducing apparatus according to claim 1, characterized in that the video signal recording and reproducing apparatus is configured to be an integral multiple of 0H or 1H. 5. At the time of recording, a pilot signal synchronized with the repetition of the color signal delay is recorded, and at the time of playback, the repetition timing of the playback color signal delay is controlled by the pilot signal, so that the color signal delay time in the total recording and playback during normal playback is determined. Claim 4 is characterized in that:
2. The video signal recording and reproducing device described in 2. 6. A patent claim characterized in that the total recording and reproduction color signal delay time during normal playback is made to be an integral multiple of 1H for every track, and the reproduced luminance signal is delayed by an integral multiple of 1H. The video signal recording and reproducing device according to item 4. 7. The video signal recording and reproducing apparatus according to claim 5, wherein the video signal recording and reproducing apparatus is configured to match the timing of the luminance signal and the color signal during normal reproduction. 8. The horizontal synchronization signal deviation between adjacent tracks is α H = m (m: integer), and the delay time difference for each track of the recorded carrier color signal is 0.5H or 2kHz added to that time. A video signal recording and reproducing apparatus according to claim 1. 9. Means for sequentially delaying color signals with a fixed time difference or a time difference of 2 kHz for each track or each head switch is a means for sequentially delaying color signals with a fixed time difference or a time difference of 2 kHz for each track or head change. a second means for coupling the output of each delay means to an input of a switch circuit, controlling said switch circuit with a head switching signal and its frequency divided signal; 2. The video signal recording and reproducing apparatus according to claim 1, further comprising a third means for sequentially switching and taking out the video signal.
JP10694679A 1979-08-21 1979-08-21 Video signal recording and reproducing device Granted JPS5630383A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP10694679A JPS5630383A (en) 1979-08-21 1979-08-21 Video signal recording and reproducing device
EP80302857A EP0024869B1 (en) 1979-08-21 1980-08-19 Video signal recording and reproducing apparatus
DE8080302857T DE3071319D1 (en) 1979-08-21 1980-08-19 Video signal recording and reproducing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10694679A JPS5630383A (en) 1979-08-21 1979-08-21 Video signal recording and reproducing device

Publications (2)

Publication Number Publication Date
JPS5630383A JPS5630383A (en) 1981-03-26
JPS6252997B2 true JPS6252997B2 (en) 1987-11-09

Family

ID=14446531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10694679A Granted JPS5630383A (en) 1979-08-21 1979-08-21 Video signal recording and reproducing device

Country Status (1)

Country Link
JP (1) JPS5630383A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56132085A (en) * 1980-03-21 1981-10-16 Victor Co Of Japan Ltd Recording system and recording plus reproducing system for color video signal
JPS56132086A (en) * 1980-03-21 1981-10-16 Victor Co Of Japan Ltd Recording system and recording plus reproducing system for color video signal
JPS5725782A (en) * 1980-07-23 1982-02-10 Pioneer Video Corp Recording system of color video signal

Also Published As

Publication number Publication date
JPS5630383A (en) 1981-03-26

Similar Documents

Publication Publication Date Title
JPH0640672B2 (en) Magnetic recording / playback device
US4825300A (en) Magnetic video recording system and method with horizontal synchronization interval alignment
JPH0134520B2 (en)
JPS5827716B2 (en) Jikikiro Kuuchi
JPS6252997B2 (en)
JPS6318918B2 (en)
EP0024850B1 (en) Video signal recording and reproducing apparatus
JPS6151830B2 (en)
JPH0127638B2 (en)
KR910009772B1 (en) Magnetic recording and playback apparatus
JPS6318917B2 (en)
JPS627758B2 (en)
EP0024869B1 (en) Video signal recording and reproducing apparatus
EP0334335B1 (en) Video signal transmission apparatus
JPH0231557B2 (en)
JP2616019B2 (en) Recording and playback device
JPS623978Y2 (en)
JPH0423475B2 (en)
JPS64873B2 (en)
JPH0118634B2 (en)
JPS5855719B2 (en) Method for recording and reproducing information signals
JP3806992B2 (en) Magnetic reproduction apparatus, special reproduction method of magnetic reproduction apparatus, and color signal correction circuit
JPS62286387A (en) Magnetic recording/reproducing method for video signal
JPS6334677B2 (en)
JPS61274590A (en) Time base changing circuit