JPS6252761B2 - - Google Patents

Info

Publication number
JPS6252761B2
JPS6252761B2 JP53151937A JP15193778A JPS6252761B2 JP S6252761 B2 JPS6252761 B2 JP S6252761B2 JP 53151937 A JP53151937 A JP 53151937A JP 15193778 A JP15193778 A JP 15193778A JP S6252761 B2 JPS6252761 B2 JP S6252761B2
Authority
JP
Japan
Prior art keywords
polymerization
weight
maleic anhydride
copolymer
styrene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53151937A
Other languages
Japanese (ja)
Other versions
JPS5578006A (en
Inventor
Masayuki Tanaka
Kyomi Okita
Akihiko Kishimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP15193778A priority Critical patent/JPS5578006A/en
Publication of JPS5578006A publication Critical patent/JPS5578006A/en
Publication of JPS6252761B2 publication Critical patent/JPS6252761B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Polymerisation Methods In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【発明の詳細な説明】 本発明は熱変形温度の高い芳香族ビニル系共重
合体の製造方法に関するものである。さらに詳し
くは本発明は特定の芳香族ビニル化合物と無水マ
レイン酸を含有する粒状で、かつ熱変形温度の高
い共重合体を塊状−懸濁重合により製造する方法
に関するものである。 スチレンと無水マレイン酸からなる共重合体は
高い熱変形温度を有しているため、多方面の分野
に応用されている。またこの共重合体は例えばス
チレン−アクリロニトリル共重合体(SAN樹
脂)のようなスチレン系樹脂との混和性が良いた
め、SAN樹脂またはABS樹脂等のスチレン系樹
脂と混和することにより、他のスチレン系樹脂の
熱変形温度の向上に有効であることも知られてい
る(特公昭46−859号公報および特公昭47−50775
号公報)。 スチレンと無水マレイン酸とは交互共重合性が
大きく、通常のラジカル重合条件下では広範囲な
単量体仕込組成に対し、スチレンと無水マレイン
酸のモル比が1:1の組成を持つ交互共重合体が
生成する。この交互共重合体はスチレン単量体に
は不溶であるため、生成する共重合体がスチレン
単量体溶液から析出、沈殿し、均一系で重合を行
なう事が不可能となる。また無水マレイン酸は水
と反応して容易に加水分解を起し、マレイン酸に
化学変化するため、水を媒体とする乳化重合や懸
濁重合によりスチレンと無水マレイン酸の共重合
体を製造することは困難である。 それ故、経済的価値にすぐれた任意の組成を持
つスチレン−無水マレイン酸共重合体を製造する
方法として、有機溶媒の存在下にアルケニル芳香
族単量体の重合速度より実質的に低い速度で無水
マレイン酸を添加しながら芳香族ビニル系単量体
と無水マレイン酸を重合する溶媒塊状重合法が提
案されている(特開昭48−42091号公報)。この方
法は任意の組成をもつ共重合体は得られるものの
有機溶媒を利用するため、その回収工程や塊状重
合のための大規模な設備を要するという欠点があ
る。 またスチレン99.9〜60重量%、無水マレイン酸
0.1〜10.0重量%および必要に応じこれらと共重
合可能なビニル化合物0〜40重量%からなるビニ
ル単量体を塊状重合して無水マレイン酸を実質的
に重合させた後懸濁重合する方法(特開昭48−
88189号公報)も提案されているが、この方法で
得られる共重合体の無水マレイン酸含有量は高々
10重量%であり、高い熱変形温度を期待すること
ができない。 一方α−置換芳香族ビニル化合物10〜90重量
%、無水マレイン酸5〜30重量%および不飽和ニ
トリル化合物3〜50重量%を含む混合物をラジカ
ル重合する方法(特開昭53−2591号公報)が提案
されているが、この方法は重合速度の遅いα−置
換芳香族ビニル化合物を短時間で重合せしめるこ
とを主眼とするもので、得られる共重合体の熱変
形温度を問題とするものではなく、しかもこの方
法で採用している塊状重合や溶液重合では最終的
に無水マレイン酸を10重量%以上含有する共重合
体を得ることが困難である。 そこで本発明者らは上記の問題点を解決し、無
水マレイン酸を10重量%以上含有する芳香族ビニ
ル系重合体と無水マレイン酸の共重合体を簡便な
方法で得るべく鋭意検討した結果、特定の組成を
持つた無水マレイン酸、芳香族ビニル系単量体及
びアクリロニトリルからなる単量体混合物のラジ
カル塊状重合を行なえば、生成する共重合体が単
量体相から析出せず均一状態を保ちながら塊状重
合が進行し、さらに無水マレイン酸を実質的に完
全に重合させた後、重合系を水系に移して懸濁重
合を行えば、工業的に安価な方法で粒状の芳香族
ビニル系重合体と無水マレイン酸の共重合体が得
られることを見い出し、本発明に到達した。 すなわち本発明はアクリロニトリル/スチレン
を60重量%以上含む芳香族ビニル化合物の重量比
が0.17〜1.5であるアクリロニトリルと芳香族ビ
ニル化合物の混合物65〜90重量%および無水マレ
イン酸10〜35重量%からなるビニル単量体混合物
を、重合率が20〜75%となる迄ラジカル塊状重合
し、次いで水を媒体とする懸濁重合により重合を
完結することを特徴とする無水マレイン酸を10〜
35重量%含有する粒状共重合体の製造方法を提供
するものである。 本発明の初期単量体組成における、無水マレイ
ン酸含有量は10〜35重量%、好ましくは15〜30重
量%の範囲から選択される。無水マレイン酸の割
合が10重量%以下の場合は生成する共重合体の熱
変形温度が十分に高くならず、また35重量%以上
の場合は塊状重合段階で無水マレイン酸を実質的
に完全に重合させる段階まで重合すると重合系の
粘度が高くなりすぎ懸濁重合に移すことが不可能
になるため好ましくない。 残余の初期単量体組成は芳香族ビニル化合物と
アクリロニトリルとからなり、その合計が90〜65
重量%であり、かつアクリロニトリル/芳香族ビ
ニル化合物=0.17〜1.5(重量比)の範囲、好ま
しくは芳香族ビニル化合物とアクリロニトリルの
合計が85〜70重量%であり、かつアクリロニトリ
ル/芳香族ビニル化合物=0.2〜1.0(重量比)の
範囲から選択される。 アクリロニトリルにかえて他の単量体類を選択
した場合には重合系を均一に保持することが難し
く、公知の撹拌手段で塊状−懸濁重合を行なうこ
とが困難となるため好ましくない。 また初期単量体組成におけるアクリロニトリ
ル/芳香族ビニル化合物(重量比)が0.17に満た
ない場合には、塊状段階で生成する共重合体が重
合系から析出、沈殿して、懸濁重合に移行するこ
とが不可能となり、1.5を越える場合には、塊状
重合段階で樹脂の着色が著しくなるため好ましく
ない。 芳香族ビニル化合物およびアクリロニトリルは
重合初期に全て添加してもよいが、欲するなら
ば、一部を塊状重合段階の途中で分割して添加し
てもよい。また塊状重合段階の重合溶液の均一性
を妨害しない範囲内で他の単量体類あるいは溶媒
を少量添加することも可能である。 塊状重合の終了段階は、仕込んだ無水マレイン
酸が実質的に完全に重合した重合率20〜75%段階
から選択される。初期の無水マレイン酸仕込み量
に比例して無水マレイン酸を完全に重合させるた
めに必要な重合率が高くなり、したがつて塊状重
合系の粘度も高くなるが、このような場合には所
望により塊状重合終了時に芳香族ビニル化合物お
よび/またはアクリロニトリルを添加し重合系の
粘度を低下させることができる。 塊状重合を重合率20%以下で停止する場合に
は、初期の無水マレイン酸仕込量が比較的少なく
ても、無水マレイン酸を完全に重合させることが
できず、このまま懸濁重合に移行すると残余の無
水マレイン酸が水と反応するため好ましくない。
また塊状重合を重合率75%以上で停止する場合に
は、塊状重合系の粘度が異常に高くなり、懸濁重
合への移行が極めて困難になるため好ましくな
い。 かくして無水マレイン酸を実質的に完全に重合
させた塊状重合系は、次いで水を媒体とする懸濁
重合系へ移行させる。懸濁重合は重合が実質的に
完了するまで経続され、最終的に共重合体は取扱
い容易な粒状で回収される。 本発明で使用するスチレンを60重量%以上含む
芳香族ビニル化合物におけるスチレン以外の芳香
族ビニル化合物としては、α−メチルスチレン、
クロルスチレン等のいわゆるスチレンおよびその
置換体である単量体である。 本発明の塊状重合および懸濁重合において用い
られる重合開始剤や重合温度には特に制限はな
く、2・2′−アゾビス−2・4−ジメチルパレロ
ニトリルなどのアゾ系開始剤や過酸化ベンゾイル
などの過酸化物系開始剤などの遊離基発生性開始
剤、あるいは無触媒熱重合などが用いられ50℃な
いし150℃の温度条件が好ましい。 また重合系にメルカプタン類などの重合度調節
剤、滑剤、安定剤などを必要に応じ添加すること
ができる。 懸濁重合時における懸濁剤についても特に制限
はなく、ポリビニルアルコール、ポリアクリルア
ミド、あるいは硫酸バリウムなど公知の懸濁剤を
用いることができる。 以上に述べた方法によつて製造した無水マレイ
ン酸を10重量%以上含有する粒状共重合体は高い
熱変形温度を有し、他の機械的性質もすぐれてい
る。しかもこの共重合体はいわゆるABS樹脂あ
るいはMBS樹脂として知られている樹脂との混
和性にすぐれており、また粒状で製造されるので
混和操作も容易である。 すなわち、ジエン系ゴム重合体、アクリル系ゴ
ム状重合体等に芳香族ビニル系重量体および/ま
たはメタクリル酸エステル系単量体および/また
はアクリロニトリル等をグラフト共重合したいわ
ゆるABS樹脂あるいはMBS樹脂と、この共重合
体を混和することによつて熱変形温度が高く、か
つ高い耐衝撃強度を有する耐衝撃性樹脂を製造す
ることができる。この場合、ABS樹脂あるいは
MBS樹脂において、ゴム状重合体とグラフト重
合する単量体との混和割合は任意であり、通常ゴ
ム状重合体10〜90重量%、単量体90〜10重量%の
範囲から選択できる。またABS樹脂等の樹脂と
無水マレイン酸を含有する本発明の共重合体との
混合割合も目的に応じ任意に選択でき、ABS樹
脂5〜95重量%と無水マレイン酸を含有する共重
合体95〜5重量%の範囲から選べば良い。また欲
するならばスチレン−アクリロニトリル共重合体
などを同時に混合することも可能である。混合の
方法に特に制限はなく、通常使用される方法によ
り混合できる。またこれらの混和時に安定剤、滑
剤、繊維状補強剤、着色剤などを添加することも
可能である。 以上説明した本発明によれば次のごとき利点が
得られる。 (1) 無水マレイン酸を10〜35重量%含有する共重
合体を得ることができ、その結果として、
SAN樹脂等の他のスチレン系樹脂に比べて、
共重合体の熱変形温度が著しく向上する。 (2) 製造工程において有機溶剤を使用しなくても
よいので、その回収工程を必要とせず、したが
つて工業的に比較的簡単な装置で実施可能な塊
状−懸濁重合法によつて容易に粒状共重合体を
得ることができる。 (3) 本発明の共重合体はいわゆるABS樹脂ある
いはMBS樹脂等の樹脂との混和性が良好であ
り、この共重合体と、これらの樹脂との混和に
よつて熱変形温度が高く、しかも耐衝撃性にす
ぐれた樹脂を製造することができる。 以下、本発明を実施例によつて説明する。なお
実施例中の部数は重量部を表わす。 熱変形温度はASTM D−648−56または
BS2782、102Cにしたがつて測定した。以下の記
述においてBS法HDTとはBS2782、102Cにしたが
つて測定した熱変形温度である。 実施例 1 〔共重合体(A)の製造〕 還流コンデンサーおよび撹拌機を備えた15の
重合槽にスチレン1.91Kg、アクリロニトリル0.64
Kg、無水マレイン酸0.45Kg、2・2′−アゾビス−
2・4−ジメチルバレロニトリル0.6g、n−ド
デシルメルカプタン30gを仕込んで十分溶解させ
た。槽内温度を75℃に保ち撹拌を行なうと重合が
始まり重合溶液は徐々に粘度が上昇した。重合開
始後約2時間で粘度は上昇しなくなり、重合はほ
とんど停止した。この重合溶液は無色透明な粘稠
液体であり、重合率は43%であつた。ガスクロマ
トグラフイーで残存単量体の組成を分析したとこ
ろ、スチレン69.3重量%、アクリロニトリル30.2
重量%、および無水マレイン酸0.5重量%であつ
た。 この時点でスチレン0.21Kg、2・2′−アゾビス
イソブチロニトリル6gを加え十分溶解させ、つ
いでメタクリル酸メチル/アクリルアミド=20/
80(重量比)の共重合体3.4g、リン酸2水素ナ
トリウム1.1gを溶解したイオン交換水4.5を加
え懸濁重合を開始した。75℃で2時間、90℃で1
時間保持して重合を完結させた。 重合物を水洗、乾燥して粒状共重合体(A)を得
た。元素分析によつて共重合体中の無水マレイン
酸の含有量を測定したところ14.0重量%であつ
た。熱変形温度(BS法HDT)は131.5℃であつ
た。 実施例 2 〔共重合体(B)の製造〕 撹拌機付きのオートクレーブにスチレン1.92
Kg、アクリロニトリル0.48Kg、無水マレイン酸
0.60Kg、2・2′−アゾビス−2・4−ジメチルバ
レロニトリル0.6g、tert−ブチルパーオキシベ
ンゾエート6g、tert−ドデシルメルカプタン30
gを仕込んで十分撹拌、溶解させた。槽内温度75
℃に保つと2時間で重合率は48%に達し、重合は
ほとんどすすまなくなつた。この時ガスクロマト
グラフイーで残存単量体を定量するとスチレン
73.1重量%、アクリロニトリル26.1重量%および
無水マレイン酸0.8重量%であつた。 次いで、けん化度80%のポリビニルアルコール
30gを溶解したイオン交換水4.5を加えて懸濁
重合を開始した。105℃で2時間、120℃で1時
間、保持して重合を完結させた。 重合物を水洗、乾燥して粒状共重合体(B)を得
た。元素分析によつて共重合体中の無水マレイン
酸含有量を測定したところ19.8重量%であつた。
熱変形温度(BS法HDT)は141.7℃であつた。 実施例 3 〔共重合体(C)の製造〕 実施例1と同じ重合槽にスチレン2.04Kg、アク
リロニトリル0.51Kg、無水マレイン酸0.45Kg、n
〜ドデシルメルカプタン30gおよびtert−ブチル
パーオキシベンゾエート6gを仕込み、75℃で8
時間熱塊状重合を行なつた。 この時重合率は41%に達し、ガスクロマトグラ
フイーによつて測定した残存単量体の組成はスチ
レン75.2重量%、アクリロニトリル24.2重量%及
び無水マレイン酸0.6重量%であつた。 次いでけん化度80%のポリビニルアルコール20
gを溶解したイオン交換水4.5を加えて懸濁重
合を開始した。105℃で2時間120℃で1時間保持
して重合を完結させた。 重合物を水洗、乾燥して、粒状共重合体(C)を得
た。元素分析値から計算した無水マレイン酸含有
量は15.0重量%であつた。熱変形温度(BS法
HDT)は、134.5℃であつた。 実施例 4 〔共重合体(D)の製造〕 実施例1と同じ重合槽にα−メチルスチレン
0.765Kg、スチレン1.275Kg、アクリロニトリル
0.51Kg、無水マレイン酸0.45Kg、tert−ドデシル
メルカプタン6g、過酸化ベンゾイル9gを仕込
み、75℃で保持して重合を行なつた。4時間で重
合率40%に達し、残存単量体中の無水マレイン酸
は0.4重量%で実質的に消費されていた。 次いでメタクリル酸メチル/アクリルアミド=
20/80(重量比)の共重合体3.4g、リン酸水素
ナトリウム1.1gを溶解したイオン交換水4.5を
加えて懸濁重合を行つた。75℃で6時間、95℃で
2時間保持して重合を完結させた。 重合物を水洗、乾燥して粒状重合体(D)を得た。
共重合体中の無水マレイン酸含有量は14.9重量%
であつた。熱変形温度(BS法HDT)は141.0℃で
あつた。 実施例 5 〔共重合体(E)の製造〕 実施例1と同じ重合槽にスチレン1.47Kg、アク
リロニトリル0.63Kg、無水マレイン酸0.9Kg、
2・2′−アゾビス−2・4−ジメチルバレロニト
リル0.6gおよびn−ドデシルメルカプタン30g
を仕込んで十分溶解させた後75℃で重合を行なつ
た。徐々に粘度が上昇し、重合開始後2時間でか
なり粘度が高くなつたので、スチレン1.32Kg、
2・2′−アゾビスイソブチロニトリル6gを加え
十分溶解して、けん化度80%のポリビニルアルコ
ール15gを溶解したイオン交換水4.5を加えて
懸濁重合を開始した。75℃で2時間、95℃/1時
間保持して重合を完結させた。 粒状共重合体(E)が得られた。共重合体中の無水
マレイン酸含有量は20.5重量%であつた。熱変形
温度(BS法HDT)は142.1℃であつた。 塊状重合終了時の重合率は65重量%であり、そ
の時の残存モノマーの組成はスチレン46.0重量
%、アクリロニトリル53.1重量%および無水マレ
イン酸、0.9重量%であつた。 比較例 1 〔共重合体(F)の製造〕 実施例1と同じ重合槽にスチレン2.07Kg、アク
リロニトリル0.69Kg、無水マレイン酸0.24Kg、
2・2′−アゾビス−2・4−ジメチルバレロニト
リル0.6g、n−ドデシルメルカプタン30gを仕
込んで重合を行なつた。槽内温度を75℃に保つと
2時間で重合率29重量%に達した。この時の残存
単量体の組成はスチレン71.2重量%、アクリロニ
トリル28.6重量%および無水マレイン酸は0.2重
量%であつた。 次いでスチレン0.12Kg、2・2′−アゾビスイソ
ブチロニトリル6gを加えて実施例1と同じ方法
で懸濁重合を行なつた。75℃で3時間90℃で1時
間保つて重合を完結させた。 粒状の共重合体(F)が得られたが、熱変形温度
(BS法HDT)は107℃しかなかつた。共重合体中
の無水マレイン酸含有量は7.7重量%であつた。 無水マレイン酸含有量が10重量%未満の場合は
高い熱変形温度は得られない。 比較例 2 実施例1と同じ重合槽にスチレン1.32Kg、アク
リロニトリル0.57Kg、無水マレイン酸1.11Kg、n
−ドデシルメルカプタン30gを仕込み、重合を行
なつた。70℃で2時間、続いて80℃で4時間、重
合した時、重合物の粘度が高くなり、それ以上粘
度が上昇すると撹拌が困難となつたので2・2′−
アゾビスイソブチロニトリル6g、スチレン0.9
Kgを加えて、75℃に保つて実施例3と同じ方法で
懸濁重合をはじめた。しかし懸濁安定性が悪く、
重合物が固まりとなつて沈殿し重合を完結できな
かつた。 塊状重合中止時の重合率は70.3重量%であり、
この時の残存モノマー組成は無水マレイン酸22.6
重量%、スチレン21.2重量%、アクリロニトリル
56.2重量%であつた。無水マレイン酸の仕込量が
35重量%以上であると懸濁重合移行時に多量の無
水マレイン酸が残り、それが熱水中で加水分解し
て水中に溶解して懸濁安定性が悪くなり懸濁重合
を行なえない。 比較例 3 還流コンデンサーと撹拌機を付けた2の三つ
口フラスコにスチレン255gに無水マレイン酸45
gを加え、十分溶解させた溶液と、n−ドデシル
メルカプタン3g、2・2′−アゾビス−2・4−
ジメチルバレロニトリル60mgを仕込み、十分混合
溶解してから75℃で重合を開始した。 重合開始後30分程で生成した共重合体が固まり
となつて沈殿して撹拌が困難となつたので重合を
中止した。 アクリロニトリルを含まない系では生成する共
重合体は単量体溶液中に溶解せずに沈殿するた
め、均一状態を保持することができず、塊状重合
を行なうことはできない。すなわち無水マレイン
酸を10部以上含む系ではアクリロニトリルが存在
しない場合は塊状重合を行なうことができない。 比較例 4 比較例3と同じ三つ口フラスコにスチレン222
g、アクリロニトリル33g、無水マレイン酸45
g、n−ドデシルメルカプタン3g、2・2′−ア
ゾビス−2・4−ジメチルバレロニトリル60mgを
仕込み、十分溶解させてから、75℃で重合を開始
した。 重合開始後約30分で、生成した共重合体が固ま
りとなつて沈殿して、撹拌が困難になつたので重
合を中止した。 本実施例では初期仕込におけるアクリロニトリ
ル/スチレン(重量比)=0.149であつたため重合
系を均一に保つことができなかつた。すなわちア
クリロニトリル/スチレン<0.17(重量比)であ
る単量体溶液中では生成する共重合体が溶解せず
に沈殿するために均一に重合が行えない。 比較例 5 〔共重合体(G)の製造〕 実施例1と同じ重合槽にスチレン0.89Kg、アク
リロニトリル1.45Kg、無水マレイン酸0.66Kg、
2・2′−アゾビス−2・4−ジメチルバレロニト
リル0.6g、n−ドデシルメルカプタン30gを仕
込んで重合を行なつた。75℃で2時間保つと重合
率53重量%に達し、この時の残存単量体の組成は
スチレン8.9重量%、アクリロニトリル90.5重量
%および無水マレイン酸0.6重量%であつた。 次いでスチレン3.0Kg、2・2′−アゾビスイソ
ブチロニトリル6gを加えて十分溶解してから実
施例1と同じ方法で懸濁重合を行ない重合を完結
させた。 粒状共重合体を得たが黄味色を帯びていた。熱
変形温度測定のためテストピースを240℃で成形
したが、テストピースは褐色に着色した。その熱
変形温度(BS法HDT)は124℃であつた。共重
合体(G)の組成は無水マレイン酸11.0重量%、スチ
レン64.8重量%、アクリロニトリル24.2重量%で
あつた。 初期の単量体仕込においてAN/ST>1.5(重
量比)の場合には得られる共重合体の着色が著し
いため、好ましくない。 実施例 6 ポリブタジエンラテツクス60部(固形分)にス
チレン28.5部およびアクリロニトリル11.5部をグ
ラフト共重合してなるグラフト共重合体30部に実
施例1〜5および比較例1で製造した共重合体(A)
〜(E)、および(F)70部をそれぞれ配合して樹脂組成
物を製造し、その物性を測定した。測定結果を表
1にまとめた。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing an aromatic vinyl copolymer having a high heat distortion temperature. More specifically, the present invention relates to a method for producing a granular copolymer containing a specific aromatic vinyl compound and maleic anhydride and having a high heat distortion temperature by bulk-suspension polymerization. Copolymers made of styrene and maleic anhydride have high heat distortion temperatures and are therefore used in many fields. In addition, this copolymer has good miscibility with styrene resins such as styrene-acrylonitrile copolymer (SAN resin), so it can be mixed with other styrene resins such as SAN resin or ABS resin. It is also known to be effective in improving the heat distortion temperature of resins (Japanese Patent Publication No. 46-859 and Japanese Patent Publication No. 47-50775).
Publication No.). Styrene and maleic anhydride have high alternating copolymerizability, and under normal radical polymerization conditions, alternating copolymerization with a molar ratio of styrene and maleic anhydride of 1:1 is possible for a wide range of monomer charge compositions. A union is generated. Since this alternating copolymer is insoluble in styrene monomer, the resulting copolymer precipitates out of the styrene monomer solution, making it impossible to carry out polymerization in a homogeneous system. In addition, maleic anhydride reacts with water and easily undergoes hydrolysis, resulting in a chemical change to maleic acid. Therefore, a copolymer of styrene and maleic anhydride is produced by emulsion polymerization or suspension polymerization using water as a medium. That is difficult. Therefore, as a method for producing styrene-maleic anhydride copolymers of any composition with good economic value, polymerization at a rate substantially lower than that of alkenyl aromatic monomers in the presence of an organic solvent is recommended. A solvent bulk polymerization method has been proposed in which an aromatic vinyl monomer and maleic anhydride are polymerized while adding maleic anhydride (Japanese Patent Laid-Open No. 48-42091). Although this method can yield a copolymer with an arbitrary composition, it has the disadvantage that it requires a recovery step and large-scale equipment for bulk polymerization because it uses an organic solvent. Also styrene 99.9-60% by weight, maleic anhydride
A method of bulk polymerizing a vinyl monomer consisting of 0.1 to 10.0% by weight and, if necessary, 0 to 40% by weight of a vinyl compound copolymerizable with these to substantially polymerize maleic anhydride, followed by suspension polymerization ( Japanese Unexamined Patent Publication 1973-
88189) has also been proposed, but the maleic anhydride content of the copolymer obtained by this method is at most
10% by weight, so a high heat distortion temperature cannot be expected. On the other hand, a method of radical polymerizing a mixture containing 10 to 90% by weight of an α-substituted aromatic vinyl compound, 5 to 30% by weight of maleic anhydride, and 3 to 50% by weight of an unsaturated nitrile compound (Japanese Unexamined Patent Publication No. 53-2591) has been proposed, but this method focuses on polymerizing α-substituted aromatic vinyl compounds, which have a slow polymerization rate, in a short time, and does not concern the heat distortion temperature of the resulting copolymer. Furthermore, it is difficult to obtain a copolymer containing 10% by weight or more of maleic anhydride in the bulk polymerization or solution polymerization employed in this method. Therefore, the present inventors have made extensive studies to solve the above problems and obtain a copolymer of an aromatic vinyl polymer and maleic anhydride containing 10% by weight or more of maleic anhydride by a simple method. If a monomer mixture consisting of maleic anhydride, an aromatic vinyl monomer, and acrylonitrile with a specific composition is subjected to radical bulk polymerization, the resulting copolymer will not precipitate from the monomer phase and will be in a uniform state. After the bulk polymerization proceeds while the maleic anhydride is maintained, and the maleic anhydride is substantially completely polymerized, the polymerization system is transferred to an aqueous system and suspension polymerization is performed. It was discovered that a copolymer of a polymer and maleic anhydride can be obtained, and the present invention was achieved. That is, the present invention consists of a mixture of 65 to 90% by weight of acrylonitrile and an aromatic vinyl compound in which the weight ratio of the aromatic vinyl compound containing 60% by weight or more of acrylonitrile/styrene is 0.17 to 1.5, and 10 to 35% by weight of maleic anhydride. A vinyl monomer mixture is subjected to radical bulk polymerization until the polymerization rate reaches 20 to 75%, and then the polymerization is completed by suspension polymerization using water as a medium.
The present invention provides a method for producing a granular copolymer containing 35% by weight. In the initial monomer composition of the present invention, the maleic anhydride content is selected from the range of 10 to 35% by weight, preferably 15 to 30% by weight. If the proportion of maleic anhydride is less than 10% by weight, the heat distortion temperature of the resulting copolymer will not be high enough, and if it is more than 35% by weight, the maleic anhydride will be substantially completely removed in the bulk polymerization stage. If the polymerization is carried out to the stage of polymerization, the viscosity of the polymerization system becomes too high, making it impossible to proceed to suspension polymerization, which is not preferable. The remaining initial monomer composition consists of an aromatic vinyl compound and acrylonitrile, with a total of 90 to 65
% by weight, and acrylonitrile/aromatic vinyl compound=0.17 to 1.5 (weight ratio), preferably the total of aromatic vinyl compound and acrylonitrile is 85 to 70% by weight, and acrylonitrile/aromatic vinyl compound= Selected from the range of 0.2 to 1.0 (weight ratio). When other monomers are selected instead of acrylonitrile, it is difficult to maintain a uniform polymerization system and it is difficult to carry out bulk-suspension polymerization using known stirring means, which is not preferred. Furthermore, if the acrylonitrile/aromatic vinyl compound (weight ratio) in the initial monomer composition is less than 0.17, the copolymer formed in the bulk stage will precipitate and precipitate from the polymerization system, resulting in a transition to suspension polymerization. If it exceeds 1.5, the resin becomes significantly colored during the bulk polymerization stage, which is not preferable. The aromatic vinyl compound and acrylonitrile may all be added at the beginning of the polymerization, but if desired, a portion may be added in portions during the bulk polymerization stage. It is also possible to add small amounts of other monomers or solvents within a range that does not interfere with the uniformity of the polymerization solution in the bulk polymerization stage. The termination stage of the bulk polymerization is selected from the stage at which the polymerization rate is 20 to 75%, at which the charged maleic anhydride is substantially completely polymerized. The polymerization rate required to completely polymerize maleic anhydride increases in proportion to the initial amount of maleic anhydride charged, and therefore the viscosity of the bulk polymerization system also increases. At the end of bulk polymerization, an aromatic vinyl compound and/or acrylonitrile can be added to reduce the viscosity of the polymerization system. When stopping bulk polymerization at a polymerization rate of 20% or less, even if the initial amount of maleic anhydride charged is relatively small, maleic anhydride cannot be completely polymerized, and if the transition to suspension polymerization continues, residual This is not preferred because maleic anhydride reacts with water.
Furthermore, when bulk polymerization is stopped at a polymerization rate of 75% or more, the viscosity of the bulk polymerization system becomes abnormally high, making it extremely difficult to shift to suspension polymerization, which is not preferable. The bulk polymerization system in which maleic anhydride has been substantially completely polymerized is then transferred to a suspension polymerization system using water as a medium. The suspension polymerization is continued until the polymerization is substantially complete, and the copolymer is finally recovered in the form of easy-to-handle granules. Among the aromatic vinyl compounds containing 60% by weight or more of styrene used in the present invention, the aromatic vinyl compounds other than styrene include α-methylstyrene,
It is a monomer that is so-called styrene such as chlorstyrene and its substituted products. There are no particular restrictions on the polymerization initiator or polymerization temperature used in the bulk polymerization and suspension polymerization of the present invention, and azo initiators such as 2,2'-azobis-2,4-dimethylparellonitrile, benzoyl peroxide, etc. A free radical-generating initiator such as a peroxide-based initiator, etc., or non-catalytic thermal polymerization is used, and a temperature condition of 50°C to 150°C is preferable. Further, polymerization degree regulators such as mercaptans, lubricants, stabilizers, etc. can be added to the polymerization system as necessary. There are no particular limitations on the suspending agent during suspension polymerization, and known suspending agents such as polyvinyl alcohol, polyacrylamide, or barium sulfate can be used. The granular copolymer containing 10% by weight or more of maleic anhydride produced by the method described above has a high heat distortion temperature and has excellent other mechanical properties. Furthermore, this copolymer has excellent miscibility with resins known as so-called ABS resins or MBS resins, and since it is produced in granular form, mixing operations are easy. That is, so-called ABS resin or MBS resin, which is obtained by graft-copolymerizing a diene rubber polymer, an acrylic rubber polymer, etc. with an aromatic vinyl heavy material and/or a methacrylic acid ester monomer, and/or acrylonitrile, etc.; By blending this copolymer, it is possible to produce an impact-resistant resin that has a high heat deformation temperature and high impact strength. In this case, ABS resin or
In the MBS resin, the mixing ratio of the rubbery polymer and the monomer to be graft-polymerized is arbitrary, and can usually be selected from the range of 10 to 90% by weight of the rubbery polymer and 90 to 10% by weight of the monomer. Furthermore, the mixing ratio of the resin such as ABS resin and the copolymer of the present invention containing maleic anhydride can be arbitrarily selected depending on the purpose. It may be selected from the range of ~5% by weight. Furthermore, if desired, it is also possible to simultaneously mix a styrene-acrylonitrile copolymer or the like. There are no particular restrictions on the mixing method, and mixing can be performed by any commonly used method. It is also possible to add stabilizers, lubricants, fibrous reinforcing agents, coloring agents, etc. when mixing these. According to the present invention described above, the following advantages can be obtained. (1) A copolymer containing 10 to 35% by weight of maleic anhydride can be obtained, and as a result,
Compared to other styrene resins such as SAN resin,
The heat distortion temperature of the copolymer is significantly improved. (2) Since it is not necessary to use organic solvents in the manufacturing process, there is no need for a recovery process, and therefore the bulk-suspension polymerization method can be easily carried out using relatively simple industrial equipment. A granular copolymer can be obtained. (3) The copolymer of the present invention has good miscibility with resins such as so-called ABS resins and MBS resins, and has a high heat distortion temperature due to the miscibility of this copolymer with these resins. A resin with excellent impact resistance can be produced. Hereinafter, the present invention will be explained with reference to Examples. Note that the numbers in the examples represent parts by weight. Heat distortion temperature is ASTM D-648-56 or
Measured according to BS2782, 102C. In the following description, BS method HDT is the heat distortion temperature measured according to BS2782, 102C. Example 1 [Production of copolymer (A)] 1.91 kg of styrene and 0.64 kg of acrylonitrile were placed in 15 polymerization tanks equipped with a reflux condenser and a stirrer.
Kg, maleic anhydride 0.45Kg, 2・2′-azobis-
0.6 g of 2,4-dimethylvaleronitrile and 30 g of n-dodecylmercaptan were charged and sufficiently dissolved. When the temperature inside the tank was kept at 75°C and stirring was performed, polymerization started and the viscosity of the polymerization solution gradually increased. Approximately 2 hours after the start of polymerization, the viscosity stopped increasing and the polymerization almost stopped. This polymerization solution was a colorless and transparent viscous liquid, and the polymerization rate was 43%. Analysis of the composition of the remaining monomers by gas chromatography revealed that styrene was 69.3% by weight and acrylonitrile was 30.2% by weight.
% by weight, and 0.5% by weight of maleic anhydride. At this point, 0.21 kg of styrene and 6 g of 2,2'-azobisisobutyronitrile were added and dissolved sufficiently, and then methyl methacrylate/acrylamide = 20/
Suspension polymerization was started by adding 4.5 g of ion-exchanged water in which 3.4 g of 80 (weight ratio) copolymer and 1.1 g of sodium dihydrogen phosphate were dissolved. 2 hours at 75℃, 1 hour at 90℃
The polymerization was completed by holding for a certain period of time. The polymer was washed with water and dried to obtain a granular copolymer (A). The content of maleic anhydride in the copolymer was determined to be 14.0% by weight by elemental analysis. The heat distortion temperature (BS method HDT) was 131.5°C. Example 2 [Manufacture of copolymer (B)] Styrene 1.92% was placed in an autoclave equipped with a stirrer.
Kg, acrylonitrile 0.48Kg, maleic anhydride
0.60Kg, 2,2'-azobis-2,4-dimethylvaleronitrile 0.6g, tert-butyl peroxybenzoate 6g, tert-dodecyl mercaptan 30
g was charged and sufficiently stirred to dissolve. Tank temperature 75
When kept at ℃, the polymerization rate reached 48% in 2 hours, and polymerization hardly progressed. At this time, when the remaining monomer was quantified using gas chromatography, styrene was detected.
73.1% by weight, 26.1% by weight of acrylonitrile and 0.8% by weight of maleic anhydride. Next, polyvinyl alcohol with a saponification degree of 80%
Suspension polymerization was started by adding 4.5 g of ion-exchanged water in which 30 g of ion-exchanged water was dissolved. The polymerization was completed by holding at 105°C for 2 hours and at 120°C for 1 hour. The polymer was washed with water and dried to obtain a granular copolymer (B). The maleic anhydride content in the copolymer was determined to be 19.8% by weight by elemental analysis.
The heat distortion temperature (BS method HDT) was 141.7°C. Example 3 [Production of copolymer (C)] In the same polymerization tank as in Example 1, 2.04 kg of styrene, 0.51 kg of acrylonitrile, 0.45 kg of maleic anhydride, n
~30g of dodecyl mercaptan and 6g of tert-butylperoxybenzoate were charged and heated to 8.5g at 75°C.
Time-thermal bulk polymerization was carried out. At this time, the polymerization rate reached 41%, and the composition of the remaining monomers determined by gas chromatography was 75.2% by weight of styrene, 24.2% by weight of acrylonitrile, and 0.6% by weight of maleic anhydride. Next, polyvinyl alcohol 20 with a saponification degree of 80%
Suspension polymerization was started by adding 4.5 g of ion-exchanged water in which 4.5 g of ion-exchanged water had been dissolved. The polymerization was completed by holding at 105°C for 2 hours and at 120°C for 1 hour. The polymer was washed with water and dried to obtain a granular copolymer (C). The maleic anhydride content calculated from elemental analysis was 15.0% by weight. Heat distortion temperature (BS method
HDT) was 134.5°C. Example 4 [Production of copolymer (D)] In the same polymerization tank as in Example 1, α-methylstyrene was added.
0.765Kg, styrene 1.275Kg, acrylonitrile
0.51 kg, maleic anhydride 0.45 kg, tert-dodecyl mercaptan 6 g, and benzoyl peroxide 9 g were charged, and polymerization was carried out while maintaining the temperature at 75°C. The polymerization rate reached 40% in 4 hours, and maleic anhydride in the remaining monomers was substantially consumed at 0.4% by weight. Then methyl methacrylate/acrylamide=
Suspension polymerization was carried out by adding 4.5 g of ion-exchanged water in which 3.4 g of a 20/80 (weight ratio) copolymer and 1.1 g of sodium hydrogen phosphate were dissolved. Polymerization was completed by holding at 75°C for 6 hours and at 95°C for 2 hours. The polymer was washed with water and dried to obtain a granular polymer (D).
The maleic anhydride content in the copolymer is 14.9% by weight
It was hot. The heat distortion temperature (BS method HDT) was 141.0°C. Example 5 [Production of copolymer (E)] In the same polymerization tank as in Example 1, 1.47 kg of styrene, 0.63 kg of acrylonitrile, 0.9 kg of maleic anhydride,
0.6 g of 2,2'-azobis-2,4-dimethylvaleronitrile and 30 g of n-dodecylmercaptan
After being charged and sufficiently dissolved, polymerization was carried out at 75°C. The viscosity gradually increased and became quite high 2 hours after the start of polymerization, so 1.32 kg of styrene,
6 g of 2,2'-azobisisobutyronitrile was added and sufficiently dissolved, and 4.5 g of ion-exchanged water in which 15 g of polyvinyl alcohol with a degree of saponification of 80% was dissolved was added to initiate suspension polymerization. Polymerization was completed by holding at 75°C for 2 hours and at 95°C for 1 hour. A granular copolymer (E) was obtained. The maleic anhydride content in the copolymer was 20.5% by weight. The heat distortion temperature (BS method HDT) was 142.1°C. The polymerization rate at the end of the bulk polymerization was 65% by weight, and the composition of the remaining monomers at that time was 46.0% by weight of styrene, 53.1% by weight of acrylonitrile, and 0.9% by weight of maleic anhydride. Comparative Example 1 [Manufacture of copolymer (F)] In the same polymerization tank as in Example 1, 2.07 kg of styrene, 0.69 kg of acrylonitrile, 0.24 kg of maleic anhydride,
Polymerization was carried out by charging 0.6 g of 2,2'-azobis-2,4-dimethylvaleronitrile and 30 g of n-dodecylmercaptan. When the temperature inside the tank was maintained at 75°C, the polymerization rate reached 29% by weight in 2 hours. The composition of the remaining monomers at this time was 71.2% by weight of styrene, 28.6% by weight of acrylonitrile, and 0.2% by weight of maleic anhydride. Next, 0.12 kg of styrene and 6 g of 2,2'-azobisisobutyronitrile were added, and suspension polymerization was carried out in the same manner as in Example 1. The polymerization was completed by holding at 75°C for 3 hours and at 90°C for 1 hour. A granular copolymer (F) was obtained, but the heat distortion temperature (BS method HDT) was only 107°C. The maleic anhydride content in the copolymer was 7.7% by weight. If the maleic anhydride content is less than 10% by weight, a high heat distortion temperature cannot be obtained. Comparative Example 2 Styrene 1.32Kg, acrylonitrile 0.57Kg, maleic anhydride 1.11Kg, n
- 30 g of dodecyl mercaptan was charged and polymerization was carried out. When the polymerization was carried out at 70℃ for 2 hours and then at 80℃ for 4 hours, the viscosity of the polymer increased, and if the viscosity increased further, stirring became difficult, so 2.2'-
Azobisisobutyronitrile 6g, styrene 0.9
Kg was added and suspension polymerization was started in the same manner as in Example 3, keeping the temperature at 75°C. However, suspension stability is poor,
The polymerized product precipitated into a lump and the polymerization could not be completed. The polymerization rate when bulk polymerization was stopped was 70.3% by weight,
The remaining monomer composition at this time is maleic anhydride 22.6
wt%, styrene 21.2wt%, acrylonitrile
It was 56.2% by weight. The amount of maleic anhydride charged is
If it is 35% by weight or more, a large amount of maleic anhydride remains during suspension polymerization, which is hydrolyzed in hot water and dissolved in water, resulting in poor suspension stability and suspension polymerization cannot be carried out. Comparative Example 3 In a three-neck flask equipped with a reflux condenser and a stirrer, 255 g of styrene and 45 g of maleic anhydride were added.
Add 3g of n-dodecylmercaptan and 3g of n-dodecylmercaptan, 2,2'-azobis-2,4-
After 60 mg of dimethylvaleronitrile was charged and thoroughly mixed and dissolved, polymerization was started at 75°C. Approximately 30 minutes after the start of the polymerization, the copolymer formed became a lump and precipitated, making stirring difficult, so the polymerization was stopped. In a system that does not contain acrylonitrile, the copolymer produced does not dissolve in the monomer solution but precipitates, so a homogeneous state cannot be maintained and bulk polymerization cannot be performed. That is, in a system containing 10 parts or more of maleic anhydride, bulk polymerization cannot be carried out in the absence of acrylonitrile. Comparative Example 4 Styrene 222 was placed in the same three-necked flask as Comparative Example 3.
g, acrylonitrile 33g, maleic anhydride 45g
3 g, n-dodecylmercaptan, and 60 mg of 2,2'-azobis-2,4-dimethylvaleronitrile were charged and sufficiently dissolved, and then polymerization was started at 75°C. Approximately 30 minutes after the start of the polymerization, the produced copolymer precipitated into a lump, making stirring difficult, so the polymerization was stopped. In this example, since the acrylonitrile/styrene (weight ratio) in the initial charge was 0.149, it was not possible to maintain a uniform polymerization system. That is, in a monomer solution where acrylonitrile/styrene <0.17 (weight ratio), the resulting copolymer does not dissolve but precipitates, making it impossible to uniformly polymerize. Comparative Example 5 [Manufacture of copolymer (G)] In the same polymerization tank as in Example 1, 0.89 kg of styrene, 1.45 kg of acrylonitrile, 0.66 kg of maleic anhydride,
Polymerization was carried out by charging 0.6 g of 2,2'-azobis-2,4-dimethylvaleronitrile and 30 g of n-dodecylmercaptan. When kept at 75°C for 2 hours, the polymerization rate reached 53% by weight, and the composition of the remaining monomers at this time was 8.9% by weight of styrene, 90.5% by weight of acrylonitrile, and 0.6% by weight of maleic anhydride. Next, 3.0 kg of styrene and 6 g of 2,2'-azobisisobutyronitrile were added and sufficiently dissolved, and suspension polymerization was carried out in the same manner as in Example 1 to complete the polymerization. A granular copolymer was obtained, but it had a yellowish color. A test piece was molded at 240°C to measure heat distortion temperature, but the test piece was colored brown. Its heat distortion temperature (BS method HDT) was 124°C. The composition of copolymer (G) was 11.0% by weight of maleic anhydride, 64.8% by weight of styrene, and 24.2% by weight of acrylonitrile. If AN/ST>1.5 (weight ratio) in the initial monomer charge, the resulting copolymer will be significantly colored, which is not preferred. Example 6 30 parts of a graft copolymer obtained by graft copolymerizing 60 parts of polybutadiene latex (solid content) with 28.5 parts of styrene and 11.5 parts of acrylonitrile, and the copolymers produced in Examples 1 to 5 and Comparative Example 1 ( A)
A resin composition was prepared by blending 70 parts of ~(E) and (F), and its physical properties were measured. The measurement results are summarized in Table 1. 【table】

Claims (1)

【特許請求の範囲】[Claims] 1 アクリロニトリル/スチレンを60重量%以上
含む芳香族ビニル化合物の重量比が0.17〜1.5で
あるアクリロニトリルと芳香族ビニル化合物の混
合物65〜90重量%および無水マレイン酸10〜35重
量%からなるビニル単量体混合物を、重合率が20
〜75%となる迄ラジカル塊状重合し、次いで水を
媒体とする懸濁重合により重合を完結することを
特徴とする無水マレイン酸を10〜35重量%含有す
る粒状共重合体の製造方法。
1 Vinyl monomer consisting of 65-90% by weight of a mixture of acrylonitrile and aromatic vinyl compound with a weight ratio of 0.17-1.5 of an aromatic vinyl compound containing 60% by weight or more of acrylonitrile/styrene and 10-35% by weight of maleic anhydride. The polymerization rate is 20
1. A method for producing a granular copolymer containing 10 to 35% by weight of maleic anhydride, which comprises carrying out radical bulk polymerization until the concentration of maleic anhydride reaches 75%, and then completing the polymerization by suspension polymerization using water as a medium.
JP15193778A 1978-12-11 1978-12-11 Preparation of copolymer Granted JPS5578006A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15193778A JPS5578006A (en) 1978-12-11 1978-12-11 Preparation of copolymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15193778A JPS5578006A (en) 1978-12-11 1978-12-11 Preparation of copolymer

Publications (2)

Publication Number Publication Date
JPS5578006A JPS5578006A (en) 1980-06-12
JPS6252761B2 true JPS6252761B2 (en) 1987-11-06

Family

ID=15529454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15193778A Granted JPS5578006A (en) 1978-12-11 1978-12-11 Preparation of copolymer

Country Status (1)

Country Link
JP (1) JPS5578006A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6168201U (en) * 1984-10-11 1986-05-10

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4888189A (en) * 1972-02-26 1973-11-19
JPS532591A (en) * 1976-06-30 1978-01-11 Asahi Chem Ind Co Ltd Preparation of copolymer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4888189A (en) * 1972-02-26 1973-11-19
JPS532591A (en) * 1976-06-30 1978-01-11 Asahi Chem Ind Co Ltd Preparation of copolymer

Also Published As

Publication number Publication date
JPS5578006A (en) 1980-06-12

Similar Documents

Publication Publication Date Title
JP3469264B2 (en) Production method of heat-resistant copolymer
US2886553A (en) Process for the suspension polymerization of vinylidene aromatic hydrocarbons having rubbery conjugated 1, 3-diene polymers dissolved therein
JP3137752B2 (en) Method for producing resin for toner
JPS58217501A (en) New copolymer
DK147006B (en) PROCEDURE FOR PREPARING A COPOLYMER OR PODECOPOLYMER
JPH0449841B2 (en)
JPS6252761B2 (en)
JPH04505944A (en) Method for producing impact resistant and glossy thermoplastic resin
JPS59166517A (en) Film-forming olefinic nitril polymer latex and manufacture
US3632684A (en) Graft copolymer with a backbone containing tetrahydrobenzyl acrylate
JP2000026547A (en) Carboxylated nitrile rubber-based rubber latex without emulsifier
US4205020A (en) Graft copolymers containing rubber, acrylonitrile and an aromatic olefin
JPS6128698B2 (en)
JPH07507084A (en) Method for producing carboxylated styrene-diene-block copolymer
US3629370A (en) Process for the production of thermoplastic-elastic moulding compositions of high impact and notched impact strength
JPS6247208B2 (en)
JP2762488B2 (en) Thermoplastic resin composition
EP0381432A2 (en) Preparation of large beads of a styrene copolymer
JPS5851961B2 (en) Copolymer manufacturing method
JPH0357926B2 (en)
JPH0138125B2 (en)
JP2565378B2 (en) Method for producing copolymer
EP0519097B1 (en) Process for the preparation of copolymers with units derived from glycidyl esters or glycidylethers
JPH05148310A (en) Production of thermoplastic resin containing malemide
US3306885A (en) Molecular weight control in polymerization of vinylidene monomers using a 1,2-carboxy-5-methylcyclohexene-4 regulator