JPS6252634B2 - - Google Patents

Info

Publication number
JPS6252634B2
JPS6252634B2 JP7267779A JP7267779A JPS6252634B2 JP S6252634 B2 JPS6252634 B2 JP S6252634B2 JP 7267779 A JP7267779 A JP 7267779A JP 7267779 A JP7267779 A JP 7267779A JP S6252634 B2 JPS6252634 B2 JP S6252634B2
Authority
JP
Japan
Prior art keywords
acid
scale
aqueous solution
aluminum
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7267779A
Other languages
Japanese (ja)
Other versions
JPS55165192A (en
Inventor
Masayoshi Kotake
Toshiki Mori
Iwao Yashima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Chemical Corp
Original Assignee
Nissan Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Chemical Corp filed Critical Nissan Chemical Corp
Priority to JP7267779A priority Critical patent/JPS55165192A/en
Publication of JPS55165192A publication Critical patent/JPS55165192A/en
Publication of JPS6252634B2 publication Critical patent/JPS6252634B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/02Cleaning or pickling metallic material with solutions or molten salts with acid solutions

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、ケミグラウンド法又はセミケミカル
法パルプの製造工程における蒸解装置からの排出
液(以下、黒液と称す。)の蒸発濃縮装置(以
下、缶と称す。)の黒液側内壁に付着せるスケー
ルを化学的に溶解させることにより缶内壁から付
着せるスケールを化学的に溶解させることにより
缶内壁から付着スケールを除去する新規な方法に
関する。 ケミグラウンド法又はセミケミカル法によるパ
ルプの製造はかなり以前から行なわれており、そ
の製造工程において生成する黒液は一旦蒸発濃縮
された後回収又は処分されているが、この蒸発濃
縮工程に用いられる罐の内壁には次第に不溶性物
質が沈積し、遂にスケールとなつて付着し伝熱効
率を低下させるために、時折この蒸発濃縮罐に付
着せるスケールの除去が行なわれている。この付
着スケールは、カルシウム分、蓚酸分その他複雑
な無機及び有機質成分からなるものであり、洗浄
水、通常用いられる洗剤等によつては除去でき
ず、また、塩酸、硝酸、硫酸等強酸類、苛性ソー
ダ、苛性カリ等強アルカリ類の薬液によつても能
率よく除去できない上に罐の基材が腐蝕損傷され
易いために、これらの方法は適用できず、従来よ
り上記スケールの除去方法としては主にスケール
に機械的外力を加えて剥離除去する方法がとられ
ている。 機械的外力を加えることにより上記スケールを
比較的能率よく除去する方法としては、200〜350
気圧もの高圧水を10トン/時前後の高速でノズル
から噴射しスケールに射的することによりスケー
ルを剥離除去方法があるが、この方法は、高圧発
生装置、耐圧装置、人力及び多量のエネルギーを
要し、また罐の曲折部分、細隅部等に付着せるス
ケールは簡易に除去し難く、更に作業上、スケー
ルが剥離することにより浄化された罐の壁面、す
なわち罐の基材が露出した部分に上記高速の噴射
水を不必要でも射的することを避けられないこと
もあり、これにより無視できない量の罐基材の摩
耗が伴ない、作業自体も罐内で噴射水を射的する
ための作業、装置の分解、罐の蓋の取りはずし及
び取り付け等煩わしい作業を要する等幾多の欠点
を有する。上記機械的外力によるスケールの除去
方法とは別に、極く一部では、スケールの付着し
た罐内に20〜25%の苛性ソーダ及び10〜15%の炭
酸ソーダを溶解させた熱水溶液を投入しスケール
と接触させた後、この罐内のアルカリ水溶液をス
ルフアミン酸の水溶液で置換し、スケールと接触
させることによる2段階式溶解除去方法も行なわ
れているが、この方法では、スケールに上記アル
カリ水溶液を接触させる第1段階において長時間
接触させないと第2段階での接触溶解除去の効果
が殆んどなく、極めて能率の悪い方法であり、更
に多段階の処理操作を要す等効率的スケールの除
去方法ではない。 本発明者らは、黒液蒸発濃縮罐内壁に付着せる
スケールを除去する簡易かつ効率的方法を確立す
ることを意図し、上記スケールに対する各種薬液
の作用効果を詳しく研究した結果、アルミニウム
塩の水溶液が上記スケールを極めて迅速に溶解す
る驚くべき新事実を見出し本発明を完成した。本
発明の目的は、黒液蒸発濃縮罐内壁に付着せるス
ケールを簡易、効率的かつ作業上安全に溶解除去
する方法を提供することにあり、更に他の目的
は、黒液蒸発濃縮罐内壁に腐蝕、損傷、摩耗等を
生起させない上記スケールの除去方法を提供する
ことにある。 本発明のスケール除去方法は、黒液蒸発罐内壁
に付着せるスケールに、蟻酸、酢酸、グリコール
酸、蓚酸、乳酸、マロン酸、りんご酸、酒石酸、
グルコン酸及びくえん酸からなる群より選ばれる
1種又は2種以上の有機酸の陰イオンとアルミニ
ウムイオンが共存する水溶液を接触させることを
特徴とする。 通常、黒液の蒸発濃縮罐内壁の材質は、SS−
41、STB−35、SUS−304、等軟鋼、不銹鋼等で
あり、その内壁に付着せるスケールは、カルシウ
ム分と蓚酸分が主成分であり、その両者を合せる
と約60〜90%になり、その他成分として少量の
水、無機及び有機質成分を含み、硬い組織構造物
となつて上記罐の内壁に固着しているものであ
る。このスケールの厚さが約数mm程度になると伝
達効率は著るしく低下し、スケールの除去が要求
される。前記せる如く、このスケールは、塩酸、
硫酸、硝酸、りん酸、スルフアミン酸等強酸類溶
液と接触させても、また、苛性ソーダ、苛性カリ
等強アルカリ類溶液と接触させても経済的かつ作
業上安全に効率よく溶解除去することは困難であ
つた。 特に上記酸類は罐内壁を腐蝕し易く、りん酸及
び硫酸は沈澱を生成させ好ましくない。 本発明に用いられる水溶液は、水中に、蟻酸、
酢酸、グリコール酸、蓚酸、乳酸、マロン酸、り
んご酸、酒石酸、グルコン酸、くえん酸の陰イオ
ンとアルミニウムイオンが共存することに特徴を
有し、本発明の目的が達成される限り他に、任意
の成分を含有して差支えない。 本発明に用いられる水溶液は、水中に上記有機
酸の陰イオンを生成せしめる物質と、アルミニウ
ムイオンを生成せしめる物質を供給することによ
り容易に調製される。 一般的に例示すれば、上記有機酸の陰イオンを
含む溶解性化合物とアルミニウムイオンを含む溶
解性化合物を水に溶解することにより得られ、具
体例としては、水に、蟻酸アルミニウム、酢酸ア
ルミニウム、グリコール酸アルミニウム、蓚酸ア
ルミニウム、乳酸アルミニウム、マロン酸アルミ
ニウム、りんご酸アルミニウム、酒石酸アルミニ
ウム、グルコン酸アルミニウム、くえん酸アルミ
ニウム又はこれらの混合物を溶解させる方法; 水に、蟻酸、酢酸、グリコール酸、蓚酸、乳
酸、マロン酸酸、りんご酸、酒石酸、グルコン
酸、くえん酸又はこれらの混合物と水酸化アルミ
ニウムを溶解させる方法等により得られる。 しかし、新たに調製しなくても、本発明の目的
が達成される限り、化学工場における副産物であ
つて、上記有機酸の陰イオンとアルミニウムイオ
ン等を含む水溶液を適宜組合せて利用することも
できる。 本発明に用いられる水溶液は、硫酸根、りん酸
根等カルシウムの難溶性塩を生成せしめるイオン
を含まないものが好ましく、また、一般にスケー
ルが溶解した後の液は廃棄又は再生処理される
が、この液中に沈澱性物質及び公害発生源となる
物質が含まれないことが望ましい。 本発明に用いられる水溶液は、上記せる如く、
蟻酸、酢酸、グリコール酸、蓚酸、乳酸、マロン
酸、りんご酸、酒石酸、グルコン酸、くえん酸等
の有機酸の陰イオンと、アルミニウムイオンを共
存させたことに特徴を有するが、スケールを溶解
させる際、アルミニウムイオン1当量に対し、上
記有機酸の陰イオン1当量の割合でスケール溶解
作用に関与するので、アルミニウムイオン1当量
に対し、ほぼ1当量の割合で上記有機酸の陰イオ
ンを含有するものが好ましい。しかし、スケール
を溶解除去するに必要な量のアルミニウムイオン
及び上記有機酸の陰イオンを含有する限り、水溶
液中に共存するアルミニウムイオンと上記有機酸
の陰イオンの当量比は1に限定される必要はな
く、いずれかのイオンが過剰であつても差支えな
い。 殊に、スケールが蓚酸カルシウム以外に、炭酸
カルシウム、亜硫酸カルシウム等の酸に可溶性の
炭酸塩、亜硫酸塩を含有する場合には、これらの
塩を溶解するに必要な量の酸をあらかじめ上記水
溶液中に含ませておくことが好ましい。スケール
を溶解した後のスケール成分を含有する水溶液
は、適当な処理がなされるから、その際消費エネ
ルギーが最小となるように予め配慮された組成の
水溶液を用いるのがよい。 本発明に用いられる水溶液中の前記有機酸の陰
イオンと、アルミニウムイオンは、スケールの溶
解に際して、当量比1の割合で消費的に関与する
から、付着スケールの量が多いときは、それと接
触させる水溶液中には付着スケールを全量溶解す
るに充分な量の上記陰イオン及びアルミニウムイ
オンが含有されねばならない。通常、除去すべき
スケールの化学組成は一定していないが、スケー
ル1重量部に対し上記水溶液を50〜1000重量部の
割合でスケールに接触させるのが好ましい。 付着スケールと接触させるべき水溶液の好まし
い量は、含有アルミニウムイオン及び上記陰イオ
ンの濃度に依存する。 水溶液があまり高濃度では溶解成分の析出を伴
ない易く、また、あまり低濃度では水溶液をスケ
ールに接触すべき時間が長くなり好ましくない。
通常好ましい濃度範囲は、アルミニウムイオンと
前記有機酸の陰イオンの総量として0.1〜40重量
%、特に、1.0〜15重量%である。また付着スケ
ールの除去のために用いられる水溶液の好ましい
濃度及び量は、スケールと接触させる条件にも依
存する。 本発明の方法は、上記水溶液を除去すべきスケ
ールと接触させることに特徴があり、それにより
スケールは液中へ溶解される。スケールを迅速に
溶解させるには、水溶液を罐内に供給し、貯液を
撹拌又は循環流動下に接触させる方法がよい。接
触させる際の水溶液の温度としては、通常、20〜
90℃、特に50〜70℃程度が好ましい。20℃以下で
スケールの溶解速度が小さく、また90℃以上では
作業にも困難を伴ない易く好ましくない。 本発明に用いられる前記水溶液には、本発明の
目的が達成される限り、前記特定成分の他に必要
に応じ、界面活性剤、酸、腐蝕抑制剤等が含めら
れても差支えない。 また、本発明の方法は従来から行なわれている
機械的外力によりスケールを剥離する方法、アル
カリ性水溶液と酸性水溶液とを2段階にスケール
に接触させる方法等と組合せて実施することもで
きる。 本発明の方法は、ケミグラウンド法又はセミケ
ミカル法パルプの製造工程における黒液蒸発濃縮
罐内壁に付着せるスケールの溶解除去に用いられ
るが、そのスケールの主成分は、カルシウム分及
び蓚酸分であり、これらの成分が本発明に用いら
れる上記水溶液により極めて良好に溶解されるこ
とに基いてスケールを形成している組織構造物が
溶解され易くなるものと考えられ、上記黒液蒸発
濃縮罐内壁に付着せるスケールのみに限らず、ス
ケールの主成分の化学組成及びスケールの沈積生
成過程が類似するスケールであれば、別の分野に
おける製造工程の罐等の装置に付着生成したスケ
ールの除去にも有用である。 以下、実施例及び参考例を挙げて更に詳しく説
明するが本発明の技術的範囲はこれに限定される
ものではない。 実施例 1 セミケミカル法パルプ製造工場の黒液蒸発濃縮
罐内壁に付着せる厚さ約1mmの褐色のスケールを
剥離採取し、ほぼ5mm×10mmの大きさとに切りと
り、その2.5gを、第1表に示す溶質成分の10%
水溶液100g中に投入した。ついで、60℃で4時
間撹拌した後、不溶分の量を測定することにより
溶解率を求めたところ第1表に示す結果を得た。
また不溶分について、水溶液を更新し、再度同条
件で溶解テストしたところNo.1、6、7、9、10
のスケールは溶解し、No.2、3、4、5、8は3
回目でほぼ溶解した。
The present invention is directed to a method of depositing liquid discharged from a digester (hereinafter referred to as black liquor) on the inner wall of the black liquor side of an evaporative concentrator (hereinafter referred to as a can) in the chemical ground method or semi-chemical pulp manufacturing process. The present invention relates to a novel method for removing scale deposited from the inner wall of a can by chemically dissolving the scale deposited on the inner wall of the can. Pulp production using the Chemiground method or semi-chemical method has been carried out for quite some time, and the black liquor produced in the manufacturing process is once evaporated and concentrated and then collected or disposed of. Insoluble substances gradually accumulate on the inner walls of the can and eventually become attached as scale, reducing the heat transfer efficiency. Therefore, the scale adhering to the evaporative concentration can is occasionally removed. This adhered scale is composed of calcium, oxalic acid, and other complex inorganic and organic components, and cannot be removed with washing water or commonly used detergents.Also, it cannot be removed with strong acids such as hydrochloric acid, nitric acid, sulfuric acid, etc. Even with strong alkaline chemicals such as caustic soda and caustic potash, these methods cannot be applied because they cannot be efficiently removed and the base material of the can is easily damaged by corrosion. A method of peeling off scale by applying external mechanical force to it is used. A relatively efficient way to remove the scale by applying external mechanical force is to apply a force of 200 to 350
There is a method of removing scale by spraying high-pressure water from a nozzle at a high speed of around 10 tons/hour and targeting the scale, but this method requires high-pressure generators, pressure-resistant equipment, human power, and a large amount of energy. In addition, it is difficult to easily remove the scale that adheres to the curved parts and narrow corners of the can, and furthermore, it is difficult to remove the scale that adheres to the can's curved parts and narrow corners. In some cases, it is unavoidable to unnecessarily aim the high-speed water jets mentioned above, which causes a non-negligible amount of wear on the can base material, and the work itself involves aiming the jet water inside the can. It has many disadvantages, such as requiring troublesome work such as disassembling the device, removing and attaching the lid of the can. Apart from the above-mentioned method of removing scale using external mechanical force, in some cases, a hot water solution containing 20 to 25% caustic soda and 10 to 15% soda carbonate is poured into a can with scale. There is also a two-step dissolution removal method in which the alkaline aqueous solution in the can is replaced with an aqueous solution of sulfamic acid and brought into contact with the scale, but in this method, the alkali aqueous solution is brought into contact with the scale. If contact is not carried out for a long period of time in the first stage of contact, there will be almost no effect of contact dissolution and removal in the second stage, making it an extremely inefficient method and requiring multi-stage processing operations to effectively remove scale. Not the method. The present inventors intended to establish a simple and efficient method for removing scale adhering to the inner wall of a black liquor evaporation concentration container, and as a result of detailed research on the effects of various chemical solutions on the scale, an aqueous solution of aluminum salt was found. discovered the surprising new fact that the above-mentioned scale can be dissolved extremely quickly, and completed the present invention. It is an object of the present invention to provide a method for dissolving and removing scale that adheres to the inner wall of a black liquor evaporator concentrator in a simple, efficient and work-safe manner. The object of the present invention is to provide a method for removing the scale that does not cause corrosion, damage, wear, etc. The scale removal method of the present invention includes formic acid, acetic acid, glycolic acid, oxalic acid, lactic acid, malonic acid, malic acid, tartaric acid,
It is characterized by bringing into contact an aqueous solution in which aluminum ions coexist with an anion of one or more organic acids selected from the group consisting of gluconic acid and citric acid. Usually, the material of the inner wall of the black liquor evaporation concentration container is SS-
41, STB-35, SUS-304, etc., mild steel, stainless steel, etc., and the scale that adheres to the inner wall is mainly composed of calcium and oxalic acid, which together account for about 60 to 90%. It contains small amounts of water, inorganic and organic components as other components, and forms a hard tissue structure that adheres to the inner wall of the can. When the thickness of this scale becomes approximately several millimeters, the transmission efficiency decreases significantly, and removal of the scale is required. As mentioned above, this scale is
Even if it comes into contact with strong acid solutions such as sulfuric acid, nitric acid, phosphoric acid, or sulfamic acid, or with strong alkaline solutions such as caustic soda or caustic potash, it is difficult to dissolve and remove it economically and safely in an efficient manner. It was hot. In particular, the above acids tend to corrode the inner wall of the can, and phosphoric acid and sulfuric acid are undesirable because they form precipitates. The aqueous solution used in the present invention contains formic acid,
It is characterized by the coexistence of anions of acetic acid, glycolic acid, oxalic acid, lactic acid, malonic acid, malic acid, tartaric acid, gluconic acid, and citric acid and aluminum ions, and as long as the object of the present invention is achieved. It may contain any components. The aqueous solution used in the present invention is easily prepared by supplying in water a substance that generates anions of the organic acid and a substance that generates aluminum ions. Generally speaking, it can be obtained by dissolving in water a soluble compound containing the anion of the organic acid and a soluble compound containing aluminum ion, and specific examples include aluminum formate, aluminum acetate, A method of dissolving aluminum glycolate, aluminum oxalate, aluminum lactate, aluminum malonate, aluminum malate, aluminum tartrate, aluminum gluconate, aluminum citrate or a mixture thereof; formic acid, acetic acid, glycolic acid, oxalic acid, lactic acid in water. , malonic acid, malic acid, tartaric acid, gluconic acid, citric acid, or a mixture thereof and aluminum hydroxide. However, even if the purpose of the present invention is not newly prepared, as long as the purpose of the present invention is achieved, an aqueous solution which is a by-product of a chemical factory and contains the anion of the above-mentioned organic acid, aluminum ion, etc. can be used in an appropriate combination. . The aqueous solution used in the present invention preferably does not contain ions such as sulfate groups and phosphate groups that generate poorly soluble salts of calcium, and generally the solution after the scale has been dissolved is discarded or recycled. It is desirable that the liquid does not contain precipitable substances or substances that cause pollution. The aqueous solution used in the present invention is as described above,
It is characterized by the coexistence of aluminum ions and the anions of organic acids such as formic acid, acetic acid, glycolic acid, oxalic acid, lactic acid, malonic acid, malic acid, tartaric acid, gluconic acid, and citric acid, which dissolves scale. In this case, since the anion of the organic acid mentioned above is involved in the scale dissolution action at a ratio of 1 equivalent of anion of the organic acid to 1 equivalent of aluminum ion, the anion of the organic acid is contained in a ratio of approximately 1 equivalent to 1 equivalent of aluminum ion. Preferably. However, as long as the aqueous solution contains aluminum ions and anions of the organic acid in amounts necessary to dissolve and remove scale, the equivalent ratio of aluminum ions and anions of the organic acid coexisting in the aqueous solution must be limited to 1. There is no problem even if one of the ions is in excess. In particular, when the scale contains acid-soluble carbonates and sulfites such as calcium carbonate and calcium sulfite in addition to calcium oxalate, the amount of acid necessary to dissolve these salts must be added to the above aqueous solution in advance. It is preferable to include it in Since the aqueous solution containing scale components after dissolving the scale is subjected to appropriate treatment, it is preferable to use an aqueous solution with a composition that is designed in advance to minimize energy consumption. The anion of the organic acid and the aluminum ion in the aqueous solution used in the present invention participate in the dissolution of scale in a consumptive manner at an equivalent ratio of 1, so when there is a large amount of attached scale, contact with it The aqueous solution must contain sufficient amounts of the above-mentioned anions and aluminum ions to dissolve all of the attached scale. Usually, the chemical composition of the scale to be removed is not constant, but it is preferable that the above aqueous solution is brought into contact with the scale at a ratio of 50 to 1000 parts by weight per 1 part by weight of the scale. The preferred amount of aqueous solution to be contacted with the deposited scale depends on the aluminum ion content and the concentration of the anions mentioned above. If the concentration of the aqueous solution is too high, dissolved components are likely to precipitate, and if the concentration is too low, the time for contacting the aqueous solution with the scale becomes undesirable.
A generally preferred concentration range is 0.1 to 40% by weight, particularly 1.0 to 15% by weight, as the total amount of aluminum ions and anions of the organic acid. The preferred concentration and amount of the aqueous solution used for removing scale adhesion also depends on the conditions under which it is brought into contact with the scale. The method of the present invention is characterized in that the aqueous solution is brought into contact with the scale to be removed, whereby the scale is dissolved into the liquid. In order to quickly dissolve scale, it is best to supply an aqueous solution into a can and bring the stored liquid into contact with it under stirring or circulating flow. The temperature of the aqueous solution during contact is usually 20~
The temperature is preferably about 90°C, particularly about 50 to 70°C. Below 20°C, the dissolution rate of scale is low, and above 90°C, it tends to be difficult to work, which is not preferable. The aqueous solution used in the present invention may optionally contain a surfactant, an acid, a corrosion inhibitor, etc. in addition to the specific components described above, as long as the purpose of the present invention is achieved. Furthermore, the method of the present invention can also be carried out in combination with a conventional method of peeling off scale using external mechanical force, a method of contacting scale with an alkaline aqueous solution and an acidic aqueous solution in two stages, and the like. The method of the present invention is used to dissolve and remove scale that adheres to the inner wall of a black liquor evaporation concentration can during the chemical ground method or semi-chemical pulp manufacturing process, and the main components of the scale are calcium and oxalic acid. It is believed that these components are extremely well dissolved by the aqueous solution used in the present invention, so that the scale-forming tissue structures are easily dissolved. It is useful not only for scales that adhere, but also for removing scales that have adhered to equipment such as cans in manufacturing processes in other fields, as long as the chemical composition of the main components of the scale and the scale deposition process are similar. It is. The present invention will be described in more detail below with reference to Examples and Reference Examples, but the technical scope of the present invention is not limited thereto. Example 1 A brown scale with a thickness of about 1 mm attached to the inner wall of a black liquor evaporation concentration can in a semi-chemical pulp manufacturing factory was peeled off and collected, cut into a size of approximately 5 mm x 10 mm, and 2.5 g of it was collected as shown in Table 1. 10% of the solute components shown in
It was poured into 100g of aqueous solution. Then, after stirring at 60°C for 4 hours, the dissolution rate was determined by measuring the amount of insoluble matter, and the results shown in Table 1 were obtained.
Regarding insoluble matter, when the aqueous solution was renewed and the dissolution test was performed again under the same conditions, No. 1, 6, 7, 9, 10
The scale of No. 2, 3, 4, 5, and 8 is dissolved.
Almost dissolved in the second time.

【表】 次に軟鋼及び不銹鋼の試験片について、第2表
に示す溶質成分の10%水溶液の腐食性試験を行つ
た。 試験片A:SS−41(JIS G3101、#320の研磨仕
上) 寸法は 1×12×75mm アセトンにより脱脂洗浄せるもの 試験片B:SUS−304(JIS G4305、#320の研磨
仕上) 寸法は 1×12×75mm アセトンにより脱脂洗浄せるもの 試験方法は下記要領による。 100mlのガラス製容器に第2表記載の実験No.1
〜10の水溶液90gを投入し、次いでこの中へ0.5
%となる量の市販腐食抑制剤を添加溶解させ、こ
の中へ予めアセトン洗浄せる上記試験片A又はB
をそれぞれ別個に全面浸漬し、60℃で6時間静置
した。 その後試験片をとり出し、流水で洗浄し、試験
片Bについてはアセトン洗浄し、乾燥し、試験片
Aについては、流水洗浄ののち、70℃の10%くえ
ん酸2アンモニウム水溶液中に1分間浸漬し、再
び流水で洗浄し、アセトン洗浄、乾燥したのち秤
量することにより腐食率を算出した。
[Table] Next, test pieces of mild steel and stainless steel were subjected to a corrosion test using a 10% aqueous solution of the solute components shown in Table 2. Test piece A: SS-41 (JIS G3101, #320 polished finish) Dimensions are 1 x 12 x 75 mm Degrease and clean with acetone Test piece B: SUS-304 (JIS G4305, #320 polished finish) Dimensions are 1 ×12×75mm Items that can be degreased and cleaned with acetone.The test method is as follows. Experiment No. 1 listed in Table 2 in a 100ml glass container
Pour 90 g of an aqueous solution of ~10, then add 0.5
% of a commercially available corrosion inhibitor is added and dissolved therein, and the above test piece A or B is preliminarily washed with acetone.
The entire surface of each sample was immersed separately and left at 60°C for 6 hours. Thereafter, the test piece was taken out and washed with running water. Test piece B was washed with acetone and dried, and test piece A was washed with running water and then immersed in a 10% diammonium citrate aqueous solution at 70°C for 1 minute. Then, the corrosion rate was calculated by washing again with running water, washing with acetone, drying, and weighing.

【表】 上表に示される如く、本発明に用いられる水溶
液は、いずれも鋼材に対する腐食性が極めて、小
さく、充分に実用され得るものであることを確認
した。
[Table] As shown in the above table, it was confirmed that all of the aqueous solutions used in the present invention had extremely low corrosiveness to steel materials, and could be sufficiently put to practical use.

Claims (1)

【特許請求の範囲】[Claims] 1 ケミグラウンド法又はセミケミカル法パルプ
の製造工程における蒸解装置からの排出液の蒸発
濃縮装置内壁に付着せるスケールに、蟻酸、酢
酸、グリコール酸、蓚酸、乳酸、マロン酸、りん
ご酸、酒石酸、グルコン酸及びくえん酸からなる
群より選ばれる1種又は2種以上の有機酸の陰イ
オンとアルミニウムイオンが共存する水溶液を接
触させることを特徴とする前記スケールの除去方
法。
1. Formic acid, acetic acid, glycolic acid, oxalic acid, lactic acid, malonic acid, malic acid, tartaric acid, glucone, The method for removing scale, which comprises bringing into contact an aqueous solution in which aluminum ions coexist with one or more organic acid anions selected from the group consisting of acids and citric acid.
JP7267779A 1979-06-09 1979-06-09 Scale removing method Granted JPS55165192A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7267779A JPS55165192A (en) 1979-06-09 1979-06-09 Scale removing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7267779A JPS55165192A (en) 1979-06-09 1979-06-09 Scale removing method

Publications (2)

Publication Number Publication Date
JPS55165192A JPS55165192A (en) 1980-12-23
JPS6252634B2 true JPS6252634B2 (en) 1987-11-06

Family

ID=13496228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7267779A Granted JPS55165192A (en) 1979-06-09 1979-06-09 Scale removing method

Country Status (1)

Country Link
JP (1) JPS55165192A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01154238U (en) * 1988-04-19 1989-10-24

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62141187A (en) * 1985-12-12 1987-06-24 株式会社パ−マケム・アジア Detergent for papermaking process
GB2309980B (en) * 1996-02-06 1998-12-16 Abbey Treatment of ferrous metal surfaces
CN106083569B (en) * 2016-06-12 2018-11-02 日照金禾博源生化有限公司 A kind of preparation method of specified particle size anhydrous citric acid

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01154238U (en) * 1988-04-19 1989-10-24

Also Published As

Publication number Publication date
JPS55165192A (en) 1980-12-23

Similar Documents

Publication Publication Date Title
JPS6252635B2 (en)
US3687858A (en) Process for cleaning aluminum
CA2095809C (en) Method for cleaning aluminum and aluminum alloys
JPS59133382A (en) Deterging and etching process for aluminum case
US3460989A (en) Method of treating ferrous metal surfaces
US2653860A (en) Etching aluminum using saccharic acid as a modifier
CA1127941A (en) Process for removing scale of calcium oxalate
IL248247A (en) Process for stabilizing the surface of ferrous metals in hot-dip galvanization process
US2653861A (en) Etching aluminum using hexahydroxyheptanoic acid as a modifier
EP0781258A1 (en) Stainless steel alkali treatment
JPS6252634B2 (en)
US2774694A (en) Process for the descaling of sugar factory evaporators and other heat transfer equipment
US2817195A (en) Cleaning metal surfaces
US2331196A (en) Protective phosphate coating
JPS581078A (en) Aluminum surface detergent alkaline solution
US3553016A (en) Method and composition for treating stainless steel
US2593259A (en) Acid cleaner and detergent
CA2502423C (en) Acidic cleaning method for machine dishwashing
CN103088334B (en) Neutralizer/passivator in metal surface treatment technique
US3369935A (en) Using lactamic sulfate to clean and remove deposits
JPS6018360B2 (en) How to remove scale
JPH01250486A (en) Method for removing scale of digester
JP2000234286A (en) Cleaning of scale in pulp digester and its peripheral equipment
US2218557A (en) Treatment of metals
JPH0580560B2 (en)