JPS6252616B2 - - Google Patents

Info

Publication number
JPS6252616B2
JPS6252616B2 JP54095801A JP9580179A JPS6252616B2 JP S6252616 B2 JPS6252616 B2 JP S6252616B2 JP 54095801 A JP54095801 A JP 54095801A JP 9580179 A JP9580179 A JP 9580179A JP S6252616 B2 JPS6252616 B2 JP S6252616B2
Authority
JP
Japan
Prior art keywords
particles
classification
fluidized bed
fine particles
gas flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54095801A
Other languages
Japanese (ja)
Other versions
JPS5621638A (en
Inventor
Kunio Kato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP9580179A priority Critical patent/JPS5621638A/en
Publication of JPS5621638A publication Critical patent/JPS5621638A/en
Publication of JPS6252616B2 publication Critical patent/JPS6252616B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/24Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique
    • B01J8/40Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique with fluidised bed subjected to vibrations or pulsations

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Drying Of Solid Materials (AREA)
  • Combined Means For Separation Of Solids (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)

Description

【発明の詳細な説明】 本発明は音波発生装置を内蔵した音波流動層分
級装置に関する。本発明に係る音波流動層装置
は、微粒子の分級、加熱、冷却、乾燥、吸着、脱
着等および固−気反応に利用することができる。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a sonic fluidized bed classification device incorporating a sonic generator. The sonic fluidized bed apparatus according to the present invention can be used for classification, heating, cooling, drying, adsorption, desorption, etc. of fine particles, and solid-gas reactions.

従来、一般的な粒子の流動層形成については、
通常の流動層または網状または格子状充填物を有
する横型流動層装置などが知られており、粒子間
の付着凝集の問題は生じていなかつた。しかし微
粒子になると粒子と粒子のあいだの付着凝集性が
強くなり流動化するのも難しく、各種充填物を使
用しても、付着凝集を防ぐことができなかつた。
従つて従来からの微粒子の付着凝集を防ぎ、微粒
子各個の機能を発揮させるためや、個々の微粒子
を取り出すために多大の努力がはらわれている。
Conventionally, regarding the formation of a general fluidized bed of particles,
A conventional fluidized bed or a horizontal fluidized bed apparatus having a net-like or lattice-like packing is known, and the problem of adhesion and aggregation between particles has not occurred. However, when the particles become fine, the adhesion and aggregation between the particles becomes strong, making it difficult to fluidize, and even when various fillers are used, it has not been possible to prevent adhesion and aggregation.
Therefore, great efforts have been made to prevent the conventional adhesion and aggregation of fine particles, to allow each fine particle to perform its function, and to extract individual fine particles.

例えば微粒子の分級では、前述した充填物を有
する流動層装置を用いたいわゆる乾式の分級方法
では、微粒子の付着凝集が激しく、分級不可能な
ので、一般には湿式分級法が採用されている。湿
式分級法としては、いわゆるハミルトン分級法と
いわれている水篩法、金属製のミクロフイルター
を用い超音波振動下微粒子を溶媒中に懸濁させた
状態で分級する超音波湿式分級法などがあるが、
前者は非能率であるのに加えて、分級精度が悪
く、後者では分級精度は良いが、金属製のミクロ
フイルターが高価であることおよび分級能率上に
難点がある。従つていずれの方法によつても、多
量の微粒子を安価かつ迅速に分級することは困難
であつた。
For example, when classifying fine particles, a so-called dry classification method using a fluidized bed device with a packing as described above causes severe adhesion and agglomeration of fine particles, making classification impossible, so a wet classification method is generally adopted. Wet classification methods include the water sieve method known as the so-called Hamilton classification method, and the ultrasonic wet classification method in which fine particles are classified while suspended in a solvent under ultrasonic vibration using a metal microfilter. but,
The former method is inefficient and has poor classification accuracy, while the latter method has good classification accuracy, but has the drawbacks of expensive metal microfilters and poor classification efficiency. Therefore, it has been difficult to classify a large amount of fine particles inexpensively and quickly using any of the methods.

本発明は、このような問題点を解決するもので
あり、微粒子の供給取り出しが、しばしば、また
は連続的に必要な分級に利用できる音波流動層装
置に関するものである。
The present invention solves these problems and relates to a sonic fluidized bed device that can be used for classification where fine particles are frequently or continuously required to be supplied and withdrawn.

すなわち、本発明は、容器内の下部に通気性の
ある分散板、分散板の下方に気体の流入口、容器
の上部に気体の排出口および5〜800Hzの音波を
発生できる音波発生器を備えた微粒子を微粒子を
分級するのに適した音波流動層分級装置に関す
る。本発明の特徴は、音波を用いて微粒子の凝集
を防ぐことで、下方からの気体により流動層が形
成されることにある。
That is, the present invention includes a breathable dispersion plate in the lower part of the container, a gas inlet below the dispersion plate, a gas outlet in the upper part of the container, and a sound wave generator capable of generating sound waves of 5 to 800 Hz. The present invention relates to a sonic fluidized bed classification device suitable for classifying fine particles. A feature of the present invention is that a fluidized bed is formed by gas from below by preventing agglomeration of fine particles using sound waves.

本発明に係る音波流動層装置は適当な気体送風
装置、筒状容器の流動層域内の側面より微粒子を
供給するための流入口に連結した粉粒体供給装置
および微粒子を取り出すための流入口に連結し、
微粒子を集積する装置、さらに、気流により移送
されるより小粒径の微粒子を上方より取り出し、
集積する装置等が必要に応じて設置される。これ
らの装置は当業者にとつて公知の装置を使用すれ
ばよい。
The sonic fluidized bed device according to the present invention includes a suitable gas blower, a powder supply device connected to an inlet for supplying fine particles from the side surface of the fluidized bed region of a cylindrical container, and an inlet for taking out fine particles. connect,
A device for accumulating fine particles;
Accumulation equipment, etc. will be installed as necessary. As these devices, devices known to those skilled in the art may be used.

本発明に係る音波流動層装置において、容器と
は気流が下方から上方に通過できるようになつて
いれば、どのような形状でもよく、その底部に微
粒子をささえ、気体が通過できるような微孔のあ
いた分散板を有する。分散板としては、ろ紙、ガ
ラスフイルターなどを使用することができる。
In the sonic fluidized bed device according to the present invention, the container may have any shape as long as it allows airflow to pass from below to above, and has micropores at the bottom that support fine particles and allow gas to pass through. It has a dispersion plate with a gap. As the dispersion plate, filter paper, glass filter, etc. can be used.

微粒子の流入口および流出口は、容器の側面に
目的に応じて設置すればよく、必要によつては前
述した容器を直列に配列した連続音波流動層装置
とすることも可能である。
The inlet and outlet for fine particles may be installed on the side surface of the container depending on the purpose, and if necessary, it is also possible to form a continuous sonic fluidized bed device in which the containers described above are arranged in series.

気体により流動化されている微粒子の凝集を防
ぎ、完全な流動層を形成させる音波は、公知の方
法で発生させ、例えば容器下部に取りつけた音波
発生器により微粒子に伝達される。音波発生器と
はスピーカーなどをいう。音波の発生方法および
音波の微粒子への伝達方法には、特に制限はな
く、微粒子の流動層形式に効果的であればよい。
流動層の上部に必要に応じて網状または格子状の
充填物を使用することもできる。
The sound waves that prevent the particles being fluidized by the gas from agglomerating and form a complete fluidized bed are generated by a known method and transmitted to the particles, for example, by a sonic generator attached to the bottom of the container. A sound wave generator is a speaker, etc. There are no particular restrictions on the method of generating sound waves and the method of transmitting sound waves to fine particles, as long as they are effective for the fluidized bed form of fine particles.
A net-like or grid-like packing can also be used in the upper part of the fluidized bed, if desired.

音波としては5〜800Hzの周波数のものが有効
であり、この範囲外の周波数では微粒子の凝集を
防ぐことはできない。音波の出力については微粒
子の性状および量に応じて決めればよい。
Sound waves with a frequency of 5 to 800 Hz are effective, and agglomeration of fine particles cannot be prevented at frequencies outside this range. The output of the sound wave may be determined depending on the properties and amount of the particles.

微粒子としては樹脂粒子、顔料、トナー、一般
無機物粒子、ガラス粒子、金属系粒子、カーボン
粒子、固形触媒粒子等どのようなものでもよく、
多孔性であつてもよい。粒子径分布のあるもので
も、比重差のあるものでもよい。対象とする粒子
径は100μm以下が適当であり、好ましくは0.5〜
80μmの粒子がよい。
The fine particles may be of any kind, such as resin particles, pigments, toners, general inorganic particles, glass particles, metal particles, carbon particles, solid catalyst particles, etc.
It may also be porous. It may be one with a particle size distribution or one with a difference in specific gravity. The target particle size is suitably 100μm or less, preferably 0.5~
Particles of 80 μm are preferable.

本発明に系る音波流動層分級装置を運転する場
合、気体速度は分級すべき粉粒体の分級の境界の
大きさにより決定され、分級しない場合は最小粒
子が飛散しない範囲内にされる。粉粒体の供給速
度、流入口および流出口の高さ、容器の大きさは
必要な分級の精度によつて適宜決定される。
When operating the sonic fluidized bed classification apparatus according to the present invention, the gas velocity is determined by the size of the classification boundary of the powder or granular material to be classified, and when classification is not performed, the gas velocity is kept within a range in which the smallest particles are not scattered. The feeding rate of the powder, the heights of the inlet and outlet, and the size of the container are appropriately determined depending on the required classification accuracy.

本発明をフライアツシユの分級に用いた例で説
明する。第1図は回分式の音波流動層分級装置を
示したものである。1は送風機で、この送風機に
より気体は流入口2を径て分散板3を通して容器
4に供給され粒子供給口5を経て供給された微粒
子6を流動化させる。この場合には容器内に金網
を円筒状にした充填物7が充填されている。充填
物としては、一般的に目びらき2〜5メツシユ、
内径1.5〜10cm程度のものがよい。一方発振機8
で発生した音波は、増幅機9で増幅され、スピー
カー10で装置内に音波を発生させる。分級され
た粒子は、排出口11を経て捕集器12で捕集さ
れ、貯槽13に貯えられる。
The present invention will be explained using an example in which it is used for classifying fly ash. FIG. 1 shows a batch type sonic fluidized bed classification apparatus. Reference numeral 1 denotes a blower, and this blower supplies gas through an inlet 2 to a container 4 through a dispersion plate 3, and fluidizes fine particles 6 supplied through a particle supply port 5. In this case, the container is filled with a filler 7 made of a cylindrical wire mesh. The filling is generally 2 to 5 meshes,
It is best to use one with an inner diameter of 1.5 to 10 cm. On the other hand, oscillator 8
The sound waves generated are amplified by an amplifier 9, and a speaker 10 generates sound waves within the device. The classified particles are collected by a collector 12 through a discharge port 11 and stored in a storage tank 13.

次に第1図の装置の作用をさらに説明する。送
風機1によつて圧送された気体は分散板3を通し
て充填物7を内設した内部へと噴き出されると共
に、すでに供給されている微粒子を流動化させ
る。その際に発振機8で発生した音波が増幅機9
で増幅され、スピーカー10で装置内に伝達され
るので、この作用により微粒子の付着凝集性がゆ
るめられ、微粒子の流動化が円滑に行なわれる。
このような状態において一定ガス流速のもとで混
合微粒子を分級し、比較的細かい粒子を装置上部
の粒子捕集器12に捕集することができる。すな
わち、一定ガス流速のもとで、これ以上粒子捕集
器12内に粒子が流出しなくなるまでこれを続け
る。粒子が流出しなくなつた場合には、ガス流速
を小さい速度からしだいに大きな速度に変えて行
き、同じ操作を繰り返すことにより、補集器12
内に小さい粒子からしだいに大きい粒子を捕集す
ることによつて粒子を分級する。
Next, the operation of the apparatus shown in FIG. 1 will be further explained. The gas forced by the blower 1 is blown out through the dispersion plate 3 into the interior containing the filler 7, and fluidizes the fine particles already supplied. At that time, the sound waves generated by the oscillator 8 are transmitted to the amplifier 9.
Since the amplified signal is amplified by the speaker 10 and transmitted into the device by the speaker 10, this action loosens the adhesion and agglomeration of the particles, and smoothes the fluidization of the particles.
In such a state, the mixed fine particles can be classified under a constant gas flow rate, and relatively fine particles can be collected in the particle collector 12 at the top of the device. That is, this process is continued at a constant gas flow rate until no more particles flow into the particle collector 12. If particles no longer flow out, the gas flow rate can be gradually changed from a low speed to a high speed and the same operation can be repeated to remove the gas from the collector 12.
Particles are classified by collecting particles from smaller to larger particles within the container.

第2図は、本発明の他の実施例であり、本発明
による装置を複数個用いて、これをカスケード結
合することによつて多数の微粒子群を連続的に分
級させることができる。すなわち送風機14から
気体流入口15,16および17を経た気体を、
分散板18,19および20を通して容器21,
22および23に順次送り、ホツパー24より供
給された微粒子を4種類の大きさに連続的に分級
し、それぞれ粗い粒子から捕集器25,26,2
7および28を経て貯槽29,30,31および
32に捕集することが可能である。捕集器33お
よび34は次の容器へ粒子を供給するためのホツ
パーをかねる。微粒子の装置内での分散をよくす
るためスピーカー35,36および37が増幅機
38,39および40を介して音波発生機41,
42および43と連結され、音波を発生するよう
になつている。
FIG. 2 shows another embodiment of the present invention. By using a plurality of devices according to the present invention and cascading them, a large number of fine particle groups can be classified continuously. That is, the gas that has passed from the blower 14 through the gas inlets 15, 16, and 17,
container 21 through distribution plates 18, 19 and 20;
22 and 23, and the fine particles supplied from the hopper 24 are continuously classified into four sizes, and the coarse particles are sent to the collectors 25, 26, and 2, respectively.
7 and 28 and can be collected in storage tanks 29, 30, 31 and 32. The collectors 33 and 34 serve as hoppers for supplying particles to the next container. In order to improve the dispersion of particles within the device, speakers 35, 36 and 37 are connected to sound wave generators 41, 37 via amplifiers 38, 39 and 40.
42 and 43 to generate sound waves.

応用例 1 本応用例は、第1図に示した装置を分級に用い
た例である。すなわち内径1.4cm、網目5メツシ
ユの円筒型金網リングを充填し、分散板としてろ
紙を用い、80Hzの音波を発振しながら流動化して
フライアツシユを分級した場合のガス流速と部分
分級効率との関係を示したものである。ただし流
動層装置の直径は150mm、分散板からの高さは300
mmであり、流動層の高さは150mmとした。容器は
アクリル樹脂系プラスチツクで作製した。フライ
アツシユは第3図に示した粒度分布のものを200
g供給した。スピーカーの外径は150mmであり、
分散板の下部に第1図のように取付けた。80Hzの
音波の出力は200ワツトであつた。この結果を第
4図および第5図に示す。
Application Example 1 This application example is an example in which the apparatus shown in FIG. 1 is used for classification. In other words, the relationship between the gas flow rate and partial classification efficiency is calculated when the flyash is classified by filling a cylindrical wire mesh ring with an inner diameter of 1.4 cm and 5 meshes, using filter paper as a dispersion plate, and fluidizing it while oscillating an 80 Hz sound wave. This is what is shown. However, the diameter of the fluidized bed device is 150 mm, and the height from the distribution plate is 300 mm.
mm, and the height of the fluidized bed was 150 mm. The container was made of acrylic resin plastic. The fly ash has a particle size distribution shown in Figure 3.
g was supplied. The outer diameter of the speaker is 150mm,
It was attached to the bottom of the distribution plate as shown in Figure 1. The output of the 80Hz sound wave was 200 Watts. The results are shown in FIGS. 4 and 5.

第4図は、分級粒子の粒度分布とガス流速U
(cm/sec)の関係を示したものである。第4図中
曲線44,45,46,47および48はそれぞ
れガス流速が0.2cm/sec、0.84cm/sec、1.88cm/
sec、3.3cm/secおよび7.5cm/secのときの例で
ある。
Figure 4 shows the particle size distribution of classified particles and the gas flow rate U.
(cm/sec). Curves 44, 45, 46, 47 and 48 in Fig. 4 have gas flow velocities of 0.2 cm/sec, 0.84 cm/sec, and 1.88 cm/sec, respectively.
sec, 3.3cm/sec and 7.5cm/sec.

第5図において横軸はガス流速U(cm/sec)、
縦軸は部分分級効率βi(上部から出てくる粒子
を篩分けて、該当径の粒子の重量を測り、単位時
間あたりに換算したものを、該当径の粒子の単位
時間あたりの供給量で割つた数値)とした。第5
図中、曲線49,50,51,52および53
は、粒子径0〜5μm、5μmを越え10μm以
下、10μmを越え15μm以下、15μmを越え20μ
m以下および20μmを越え30μm以下のものに関
するβiの変化を示す。
In Fig. 5, the horizontal axis is the gas flow velocity U (cm/sec),
The vertical axis is the partial classification efficiency βi (the particles coming out from the top are sieved, the weight of particles of the corresponding diameter is measured, and the weight is converted per unit time, divided by the amount of particles of the corresponding diameter supplied per unit time). (value). Fifth
In the figure, curves 49, 50, 51, 52 and 53
The particle size is 0 to 5 μm, more than 5 μm and less than 10 μm, more than 10 μm and less than 15 μm, and more than 15 μm and less than 20 μm.
The changes in βi are shown for those less than m and more than 20 μm and less than 30 μm.

第4および第5図において、曲線が垂直に近い
程、わずかな風速の差で塔内残留と上部飛散の選
別ができ、分級性能が優れていることになる。第
4図および第5図から本発明に係る音波流動層装
置の優秀性が理解できる。
In FIGS. 4 and 5, the closer the curves are to the vertical, the better the classification performance is because the residual inside the column and the upper part can be separated with a slight difference in wind speed. The superiority of the sonic fluidized bed device according to the present invention can be understood from FIGS. 4 and 5.

比較例 1 第1図の装置中、スピーカーを取り外し、代り
に流動層装置を機械的に振動させる振動装置を組
み込んだ、いわゆる振動流動層分級装置を用い
て、応用例1に示したフライアツシユの分級を行
なつた。結果を第6図に示した。第6図は分級粒
子の粒度分布とガス流速の関係を第4図と同様に
して示したものである。第6図中、曲線54およ
び55は、ガス流速が3.0cm/secおよび18cm/
secのときの結果を示す。ただし、振動装置は、
振動数約2Hz、振幅0〜3mmのものを使用した。
Comparative Example 1 The fly ash shown in Application Example 1 was classified using a so-called vibrating fluidized bed classifier, in which the speaker in the equipment shown in Figure 1 was removed and a vibration device was installed to mechanically vibrate the fluidized bed device instead. I did this. The results are shown in Figure 6. FIG. 6 shows the relationship between the particle size distribution of classified particles and the gas flow rate in the same way as FIG. 4. In FIG. 6, curves 54 and 55 indicate gas flow rates of 3.0 cm/sec and 18 cm/sec.
Shows the results when sec. However, the vibration device
The vibration frequency was approximately 2 Hz and the amplitude was 0 to 3 mm.

比較例 2 応用例1において、音波を発振させないこと以
外、応用例1に準じて行なつた。ただし、ガス流
速を種々変化させて行なつたところ、ガス流速が
4cm/s以下では粒子の凝集のため粒子層はほと
んど流動化せず、従つてガス流速が4cm/s以下
では粒子の分級ができなかつた。ガス流速を5.5
cm/s及び7.5cm/sとしたときの分級粒子の粒
度分布の結果を第7図に累積重量(%)と粒径
(μm)の関係で示す。第7図中、曲線56はガ
ス流速5.5cm/sのときの結果及び曲線57はガ
ス流速7.5cm/sのときの結果を示す。また、こ
れらの結果から得られる部分分級効率βiとガス
流速の関係を第8図に示す。第8図中、曲線5
8,59,60,61及び62は、各々、粒子径
が0〜5μm、5μmを越え10μm以下、10μm
を越え15μm以下、15μmを越え20μm以下およ
び20μmを越え30μm以下のものに関するβiの
変化を示す。これらの結果から、音波の発振がな
い場合は、分級効率が著しく劣ることがわかる。
Comparative Example 2 Application Example 1 was carried out in accordance with Application Example 1, except that the sound waves were not oscillated. However, when the gas flow rate was varied variously, it was found that when the gas flow rate was 4 cm/s or less, the particle layer was hardly fluidized due to the agglomeration of particles, and therefore, when the gas flow rate was 4 cm/s or less, the particles could not be classified. I couldn't do it. Gas flow rate 5.5
The results of the particle size distribution of the classified particles at cm/s and 7.5 cm/s are shown in FIG. 7 as a relationship between cumulative weight (%) and particle diameter (μm). In FIG. 7, curve 56 shows the results when the gas flow rate is 5.5 cm/s, and curve 57 shows the results when the gas flow rate is 7.5 cm/s. Further, FIG. 8 shows the relationship between the partial classification efficiency βi and the gas flow rate obtained from these results. Curve 5 in Figure 8
8, 59, 60, 61 and 62 have particle diameters of 0 to 5 μm, more than 5 μm and 10 μm or less, and 10 μm, respectively.
The changes in βi are shown for those larger than 15 μm or less, more than 15 μm but not more than 20 μm, and more than 20 μm and not more than 30 μm. From these results, it can be seen that the classification efficiency is significantly inferior in the absence of sound wave oscillation.

応用例 2 応用例1において、フライアツシユとして10〜
15μmの粒子径のものを用い、音波の振動数を5
Hz、10Hz、30Hz、80Hz、200Hz、500Hz及び800Hz
と変化させて、他は応用例1に準じて行なつた。
これらの結果を第9図に、部分分級効率βiとガ
ス流速(cm/s)の関係として示す。第9図中、
▲で示すプロツトとは5Hzのときのもの、×で示
すプロツトは10Hzのときのもの、△で示すプロツ
トは30Hzのときのプロツト、□で示すプロツトは
80Hzのときのプロツト、〇で示すプロツトは200
Hzのときのプロツト、●で示すプロツトは500Hz
のときのプロツトおよびで示すプロツトは800
Hzのときのプロツトである。
Application example 2 In application example 1, 10~
Using particles with a diameter of 15 μm, the frequency of the sound wave was set to 5.
Hz, 10Hz, 30Hz, 80Hz, 200Hz, 500Hz and 800Hz
The process was otherwise carried out in accordance with Application Example 1.
These results are shown in FIG. 9 as a relationship between partial classification efficiency βi and gas flow rate (cm/s). In Figure 9,
The plot shown by ▲ is the one at 5Hz, the plot shown by × is the one at 10Hz, the plot shown by △ is the plot at 30Hz, and the plot shown by □ is the one at 30Hz.
The plot at 80Hz, the plot indicated by ○ is 200
Plot at Hz, plot indicated by ● is 500Hz
The plot when and the plot shown by is 800
This is the plot at Hz.

これらの結果から明らかなように、音波の振動
数として5〜800Hzであると本発明の効果を奏す
ることがわかる。
As is clear from these results, it can be seen that the effect of the present invention is achieved when the frequency of the sound wave is 5 to 800 Hz.

応用例および比較例から明らかなように、本発
明になる音波流動層分級装置を用いれば微粒子の
付着凝集がなくなり、効率のよい微粒子の分級が
できることがわかる。ガス流速を変えることで必
要とする粒子径の微粒子を分級することが可能で
あり工業的価置は大きい。
As is clear from the application examples and comparative examples, it can be seen that by using the sonic fluidized bed classification apparatus according to the present invention, adhesion and aggregation of fine particles can be eliminated and efficient classification of fine particles can be achieved. By changing the gas flow rate, it is possible to classify fine particles of the required particle size, and this method has great industrial value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る音波流動層分級装置の例
を示す模式図、第2図は本発明に係る音波流動層
分級装置を示す他の例を示す模式図である。第3
図は応用例1で使用したフライアツシユの粒経分
布を示すグラフ、第4図は応用例1における分級
結果をあるガス流速のときの粒経分布で示すグラ
フであり、第5図は同様に部分分級効率とガス流
速の関係で示す。第6図は、比較例1の結果をあ
るガス流速のときの粒経分布で示すグラフであ
る。第7図は、比較例2における分級結果をある
ガス流速のときの粒径分布で示すグラフであり、
第8図は同様に部分分級効率とガス流速の関係で
示す。第9図は、応用例2における分級効果をあ
るガス流速のときの部分分級効率とガス流速の関
係をプロツトで示す図である。 符号の説明、1……送風機、2……気体流入
口、3……分散板、4……容器、5……粒子供給
口、6……微粒子、7……充填物、8……発振
機、9……増幅機、10……スピーカー、11…
…排出口、12……捕集器、13……貯槽、14
……送風機、15,16,17……気体流入口、
18,19,20……分散板、21,22,23
……容器、24……ホツパー、25,26,2
7,28……捕集器、29,30,31,32…
…貯槽、33,34……捕集器兼ホツパー、3
5,36,37……スピーカー、38,39,4
0……増幅機、41,42,43……音波発振
器。
FIG. 1 is a schematic diagram showing an example of the sonic fluidized bed classifier according to the present invention, and FIG. 2 is a schematic diagram showing another example of the sonic fluidized bed classifier according to the present invention. Third
Figure 4 is a graph showing the particle size distribution of the fly ash used in Application Example 1, Figure 4 is a graph showing the classification results in Application Example 1 in terms of particle size distribution at a certain gas flow rate, and Figure 5 is a graph showing the particle size distribution of the fly ash used in Application Example 1. It is shown by the relationship between classification efficiency and gas flow rate. FIG. 6 is a graph showing the results of Comparative Example 1 in terms of particle size distribution at a certain gas flow rate. FIG. 7 is a graph showing the classification results in Comparative Example 2 in terms of particle size distribution at a certain gas flow rate;
FIG. 8 similarly shows the relationship between partial classification efficiency and gas flow rate. FIG. 9 is a diagram showing the classification effect in Application Example 2 by plotting the relationship between partial classification efficiency and gas flow rate at a certain gas flow rate. Explanation of symbols, 1...Blower, 2...Gas inlet, 3...Dispersion plate, 4...Container, 5...Particle supply port, 6...Fine particles, 7...Filling material, 8...Oscillator , 9...amplifier, 10...speaker, 11...
...Discharge port, 12...Collector, 13...Storage tank, 14
...Blower, 15,16,17...Gas inlet,
18, 19, 20... Dispersion plate, 21, 22, 23
... Container, 24 ... Hopper, 25, 26, 2
7, 28... Collector, 29, 30, 31, 32...
... Storage tank, 33, 34 ... Collector and hopper, 3
5, 36, 37...speaker, 38, 39, 4
0...Amplifier, 41, 42, 43...Sonic wave oscillator.

Claims (1)

【特許請求の範囲】[Claims] 1 容器内の下部に通気性のある分散板、分散板
の下方に気体の流入口、容器の上部に気体の排出
口および5〜800Hzの音波を発生できる音波発生
器を備えてなる微粒子を分級するのに適した音波
流動層分級装置。
1 Classifies fine particles by equipping a container with an air-permeable dispersion plate at the bottom, a gas inlet below the dispersion plate, a gas outlet at the top of the vessel, and a sonic generator capable of generating sound waves of 5 to 800Hz. Sonic fluidized bed classification equipment suitable for
JP9580179A 1979-07-26 1979-07-26 Fluidized layer equipment using sound wave Granted JPS5621638A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9580179A JPS5621638A (en) 1979-07-26 1979-07-26 Fluidized layer equipment using sound wave

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9580179A JPS5621638A (en) 1979-07-26 1979-07-26 Fluidized layer equipment using sound wave

Publications (2)

Publication Number Publication Date
JPS5621638A JPS5621638A (en) 1981-02-28
JPS6252616B2 true JPS6252616B2 (en) 1987-11-06

Family

ID=14147528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9580179A Granted JPS5621638A (en) 1979-07-26 1979-07-26 Fluidized layer equipment using sound wave

Country Status (1)

Country Link
JP (1) JPS5621638A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6480436A (en) * 1987-09-22 1989-03-27 Meitec Corp Method and device for forming fluidized bed of superfine particle
CA2501106A1 (en) * 2001-10-04 2003-04-10 The University Of Nottingham Separation of fine granular materials
MXPA04012712A (en) * 2002-06-27 2005-03-23 Nektar Therapeutics Device and method for controlling the flow of a powder.
JP4867476B2 (en) * 2006-05-31 2012-02-01 ブラザー工業株式会社 Aerosol generator and film forming apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4956879A (en) * 1972-10-06 1974-06-03

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4956879A (en) * 1972-10-06 1974-06-03

Also Published As

Publication number Publication date
JPS5621638A (en) 1981-02-28

Similar Documents

Publication Publication Date Title
Morse Sonic energy in granular solid fluidization
US7658340B2 (en) System and method for nanoparticle and nanoagglomerate fluidization
JP4819008B2 (en) Fluidized bed equipment
EP0116196B1 (en) Bin activator apparatus
JP4641508B2 (en) Dry separation device
US3084876A (en) Vibratory grinding
CN107442416A (en) A kind of ultrasonic vibration microvesicle fluid bed dry separation device and method
US3842978A (en) Process and apparatus for separating sand from botanical materials
WO2007094224A1 (en) Powder separator and method of powder separation
JPS6252616B2 (en)
US6464737B1 (en) Production method and system for granulating powdered material
JPH07109031A (en) Device for feeding and dispersing powder/grain in quantity
JPS60143842A (en) Device for crushing, grinding, washing, powder-separating orsorting material
Guichard Aerosol generation using fluidized beds
JPS60161740A (en) Sonic wave stirring fluidized bed apparatus
Wang et al. The characteristics of wave propagation in a vibrating fluidized bed
EP0122112A2 (en) Improvements in or relating to a process and apparatus for spraying a powder with liquid
CN208912525U (en) A kind of strength particle screening device
GB2130906A (en) Improvements in or relating to apparatus for dispensing a dust suspension
JPS602098B2 (en) Close-packing orienting device for granular materials
JPH0341220B2 (en)
SU688247A1 (en) Granular matter classifier
HU202127B (en) Device for producing granules by rolling-layer technology
JP3065921B2 (en) Gas disperser for fluidized bed
JPS5850135B2 (en) Fluidized bed equipment