JPS6252478A - Acoustic depth sounder - Google Patents

Acoustic depth sounder

Info

Publication number
JPS6252478A
JPS6252478A JP60192484A JP19248485A JPS6252478A JP S6252478 A JPS6252478 A JP S6252478A JP 60192484 A JP60192484 A JP 60192484A JP 19248485 A JP19248485 A JP 19248485A JP S6252478 A JPS6252478 A JP S6252478A
Authority
JP
Japan
Prior art keywords
correlation
signal
waveform
water
acoustic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60192484A
Other languages
Japanese (ja)
Inventor
Mikio Mitamura
三田村 幹雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP60192484A priority Critical patent/JPS6252478A/en
Publication of JPS6252478A publication Critical patent/JPS6252478A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

PURPOSE:To make it possible to easily and accurately detect the depth of water even if there is disturbance, by taking the correlation between an estimated theoretical receiving wave from and an actually obtained receiving wavelength to detect the difference with an estimated value. CONSTITUTION:A correlation processor 9 receiving an estimated theoretical wave form (standard reflected wave form) signal 18 and a receiving signal 6 outputs the correlation signal 19 showing the correlation of input signals 18, 6. A max. correlation detector 10 outputs a depth-of-water signal 21a showing the depth-of-water value of a vertical component on the basis of the correlation shown by the correlation signal 19 and the delay time at the time of the max. correlation. As mentioned above, because the max. value of correlation may be detected by taking correlation, the depth of water can be easily and accurately detected even if the receiving wave form is distorted because of the presence of a disturbance factor.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、音響測深儀に関し、特に斜音響ビームを用い
る音響測深儀に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to an acoustic sounding instrument, and particularly to an acoustic sounding instrument using an oblique acoustic beam.

(従来の技術) 従来、この種の音響測深儀では、鉛直方向の音響ビーム
を用いて測深地点の直下の水深を測る方式が主に採用さ
れていた。このような従来方式の音響測深儀では、水底
面に垂直に入射しかつ反射することによる音響伝搬の特
性上、該当する水底からの反射受信信号波形の立上りを
とらえて時間−水深変換によって水深値を得る方法が用
いられて−た。
(Prior Art) Conventionally, this type of acoustic sounding instrument has mainly adopted a method of measuring the water depth directly below the sounding point using a vertical acoustic beam. In conventional acoustic sounding instruments, due to the characteristics of sound propagation due to perpendicular incidence on the water bottom and reflection, water depth values are determined by time-depth conversion by capturing the rising edge of the received signal waveform reflected from the water bottom. A method was used to obtain

(発明が解決しようとする問題点) 上述した従来の音響測深儀は鉛直方向の音響ビームを用
いているから直下方向の水深値しか得られず、測深効率
が悪い欠点がおる。そこで、斜方向の音響ビームを用い
て同時多点測深を行なう方式が考えられる。
(Problems to be Solved by the Invention) The conventional acoustic sounding device described above uses a vertical acoustic beam, so it can only obtain water depth values directly below, and has the disadvantage of poor sounding efficiency. Therefore, a method of performing simultaneous multi-point sounding using oblique acoustic beams may be considered.

しかしながら、斜方向の音響ビームを用いた場合、受信
波形は、鉛直方向の音響ビームを用いた場合に比べ、鉛
直方向からの角度及び水底に対する入射角の差異による
水底面の音響的な後方散乱強度、伝搬経路差による減衰
量、水底に於ける音響照射面積、音響ビームピターンの
影響により、歪を含んだものとなる。
However, when an oblique acoustic beam is used, compared to when a vertical acoustic beam is used, the received waveform has a lower acoustic backscatter intensity on the water bottom surface due to the difference in angle from the vertical direction and the angle of incidence with respect to the water bottom. , the amount of attenuation due to the propagation path difference, the sound irradiation area on the water bottom, and the effects of the sound beam pattern include distortion.

従って、この歪んだ受信波形から立上b−tとらえて水
深を測定したのでは、大きな誤差が避けられない。
Therefore, if the water depth is measured by capturing the rising b-t from this distorted received waveform, a large error is unavoidable.

(問題点を解決するための手段) 前述の問題点を解決するために本発明が提供する手段は
、鉛直に対して角度をなす送波及び受波斜音響ビームを
有する音響測深儀であって、前記音響ビームパターンに
よる水底の反射波形を予測して求まる標準の反射波形の
信号を発生する標準反射波形発生器と、受波波形を電気
変換した受信信号と前記標準反射波形信号との相関をと
る相互相関処理器と、相互相関処理器の出力の最大相関
値を検出する最大相関検出器と、前記最大相関値の時間
を水深に変換し出力する水深値演算出力器とを備えてな
る。
(Means for Solving the Problems) Means provided by the present invention to solve the above-mentioned problems is an acoustic sounding instrument having oblique transmitting and receiving oblique acoustic beams that are angled with respect to the vertical. , a standard reflected waveform generator that generates a signal with a standard reflected waveform determined by predicting the reflected waveform on the water bottom due to the acoustic beam pattern, and a correlation between the received signal obtained by electrically converting the received waveform and the standard reflected waveform signal. a maximum correlation detector that detects the maximum correlation value of the output of the cross-correlation processor; and a water depth value calculation output device that converts the time of the maximum correlation value into water depth and outputs the result.

(作用) 次に本発明について図面を参照して説明する。(effect) Next, the present invention will be explained with reference to the drawings.

第1図は本発明の詳細な説明するものである。FIG. 1 provides a detailed explanation of the invention.

斜音響ビームによる水底からの反射波の受信信号波形1
は水底傾斜等の影響により伸張した波形となっているが
、該当する水深値は受波レベルの最大値近傍の時間に対
応している。
Received signal waveform 1 of reflected waves from the water bottom due to oblique acoustic beam
Although the waveform is expanded due to the influence of the water bottom slope, etc., the corresponding water depth value corresponds to the time near the maximum value of the received wave level.

一方、第1図の標準反射波形2は、あらかじめ予測され
る水深値に基づいた理論上求められる波形であって既知
のものでちる。
On the other hand, the standard reflection waveform 2 in FIG. 1 is a known waveform that is theoretically determined based on a predicted water depth value.

受信信号波形1と標準反射波形2との時間領域に於ける
相互相関をとると、相互相関曲線は符号3で示す如くに
なり、最大相関点5と標準反射波形2の最大値との間に
は遅延時間Tだけ差がある。
When we take the cross-correlation in the time domain between the received signal waveform 1 and the standard reflected waveform 2, the cross-correlation curve becomes as shown by code 3, and there is a gap between the maximum correlation point 5 and the maximum value of the standard reflected waveform 2. are different by delay time T.

従って予測水深値に対する音響伝搬時間に比べて実際の
伝搬経路の伝搬時間は遅延時間Tだけの差があることに
なり、この時間差Tを伝搬距離に換算して該当水深値を
得る。
Therefore, compared to the acoustic propagation time for the predicted water depth value, the propagation time of the actual propagation path differs by the delay time T, and this time difference T is converted into a propagation distance to obtain the corresponding water depth value.

(実施例) 第2図は本発明の一実施例を示すブロック図である。受
信信号6は、相互相関処理器9に入力される。標準反射
波形発生器8は、予測される水深値から理論上求められ
る受信信号波形を表す標準反射波形信号18を発生する
。標準反射波形信号18と受信信号6とを受けた相互相
関処理器9は、入力信号18,6の相互相関を表す相関
信号19を出力する。最大相関検出器10は、相関信号
19が表す相互相関に基づき最大相関の時の遅延時間T
を表す遅延時間信号20を出力する。水深値演算出力器
11は、遅延時間信号20が表す遅延時間Tに基づき鉛
直成分の水深値を表す水深信号21aを出力する。また
、これら一連の処理は、送信トリガー7に同期して制御
器12から送出される制御信号22 a *  22 
b e  22 c −22dに合わせて漸次行われる
(Embodiment) FIG. 2 is a block diagram showing an embodiment of the present invention. The received signal 6 is input to a cross-correlation processor 9 . The standard reflection waveform generator 8 generates a standard reflection waveform signal 18 representing a received signal waveform that can be theoretically obtained from the predicted water depth value. A cross-correlation processor 9 receiving the standard reflected waveform signal 18 and the received signal 6 outputs a correlation signal 19 representing the cross-correlation of the input signals 18 and 6. The maximum correlation detector 10 determines the delay time T at the time of maximum correlation based on the cross-correlation represented by the correlation signal 19.
A delay time signal 20 representing . The water depth value calculation output device 11 outputs a water depth signal 21a representing the water depth value of the vertical component based on the delay time T represented by the delay time signal 20. In addition, these series of processes are performed using a control signal 22 a * 22 sent from the controller 12 in synchronization with the transmission trigger 7.
It is carried out gradually according to b e 22 c -22d.

(発明の効果) 以上説明したように本発明は、予測される理論上の受信
波形(標準反射波形)と実際に得られる受信波形との相
互相関をとることKよって予測値との差を検出して該当
水深値を得るものである。
(Effects of the Invention) As explained above, the present invention detects the difference between the predicted value and the predicted value by cross-correlating the predicted theoretical received waveform (standard reflected waveform) with the actually obtained received waveform. to obtain the corresponding water depth value.

そこで、本発明によれば、相互相関をとることによって
相関の最大値を検出すれば良いから、外乱要素が6って
受信波形が歪んでいても水深が容易に正確に検出できる
Therefore, according to the present invention, since the maximum value of the correlation can be detected by taking the cross-correlation, the water depth can be easily and accurately detected even if the number of disturbance elements is 6 and the received waveform is distorted.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の概念を示す図、第2図は本発明の一実
施例を示すブロック図でらる。 1・・・受信信号波形、2・・・標準反射波形、3・・
・相互相関曲線% 5・・・最大相関点、6・・・受信
信号、7・・・送信トリガー、8・・・標準反射波形発
生器、9・・・相互相関処理器、10・・・最大相関検
出器、11・・・水深値演算出力器、12・・・制御器
。 代理人 弁理士 本 庄 伸 介 第1図 第2図
FIG. 1 is a diagram showing the concept of the invention, and FIG. 2 is a block diagram showing an embodiment of the invention. 1... Received signal waveform, 2... Standard reflected waveform, 3...
- Cross-correlation curve % 5... Maximum correlation point, 6... Received signal, 7... Transmission trigger, 8... Standard reflection waveform generator, 9... Cross-correlation processor, 10... Maximum correlation detector, 11...water depth value calculation output device, 12...controller. Agent Patent Attorney Shinsuke Honjo Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 鉛直に対し角度をなす送波及び受波斜音響ビームを有す
る音響測深儀において、前記音響ビームのパターンによ
る水底の反射波形を予測して求まる標準の反射波形の信
号を発生する標準反射波形発生器と、受波波形を電気変
換した受信信号と前記標準反射波形信号との相関をとる
相互相関処理器と、相互相関処理器の出力の最大相関値
を検出する最大相関検出器と、前記最大相関値の時間を
水深に変換し出力する水深値演算出力器とを備えてなる
音響測深儀。
A standard reflection waveform generator that generates a standard reflection waveform signal determined by predicting the reflection waveform of the water bottom due to the pattern of the acoustic beam in an acoustic sounding instrument having oblique transmission and reception oblique acoustic beams forming an angle with respect to the vertical. a cross-correlation processor that correlates the received signal obtained by electrically converting the received waveform with the standard reflected waveform signal; a maximum correlation detector that detects the maximum correlation value of the output of the cross-correlation processor; An acoustic sounding instrument comprising a water depth value calculation output device that converts the time value into water depth and outputs the result.
JP60192484A 1985-08-31 1985-08-31 Acoustic depth sounder Pending JPS6252478A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60192484A JPS6252478A (en) 1985-08-31 1985-08-31 Acoustic depth sounder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60192484A JPS6252478A (en) 1985-08-31 1985-08-31 Acoustic depth sounder

Publications (1)

Publication Number Publication Date
JPS6252478A true JPS6252478A (en) 1987-03-07

Family

ID=16292062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60192484A Pending JPS6252478A (en) 1985-08-31 1985-08-31 Acoustic depth sounder

Country Status (1)

Country Link
JP (1) JPS6252478A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000304862A (en) * 1999-04-06 2000-11-02 Leica Geosystems Ag Distance measuring method for at least one target object
JP2014174069A (en) * 2013-03-12 2014-09-22 Mitsubishi Electric Corp Laser range finding device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000304862A (en) * 1999-04-06 2000-11-02 Leica Geosystems Ag Distance measuring method for at least one target object
JP2014174069A (en) * 2013-03-12 2014-09-22 Mitsubishi Electric Corp Laser range finding device

Similar Documents

Publication Publication Date Title
GB2036969A (en) Device for measuring aquatic currents
JP4930130B2 (en) Active sonar device, received signal processing method for sonar, and signal processing program thereof
JP2007078545A (en) Object detection system and voice conference system
JP2006242619A (en) Ultrasonic sensor signal processing system
US7239580B2 (en) Noise adaptive sonar signal processor
JPS6252478A (en) Acoustic depth sounder
JP2014020907A (en) Underwater detection device, underwater detection method and program
JPS6264973A (en) Ultrasonic range finder
JP2018021810A (en) Ultrasonic displacement measuring device and ultrasonic displacement measuring method
JP3528580B2 (en) Object measuring device
JP3583838B2 (en) Ultrasonic underwater detector
JPH03248082A (en) Sea bottom detector
JP2900631B2 (en) Sector scan indication circuit
JP5259076B2 (en) Ultrasonic transceiver and scanning sonar
JPH011993A (en) acoustic sounding instrument
JPH02262082A (en) Fish-finder
JP2883679B2 (en) Ultrasonic reflection intensity measurement device
JPH03180794A (en) Method and instrument for ultrasonic distance measurement
JPS6327785A (en) Apparatus for displaying topography of sea bottom
JPH0395477A (en) Ultrasonic detector
SU1585750A1 (en) Method of determining direction to source of acoustic signals
JPH04346092A (en) Measuring apparatus of intensity of ultrasonic wave reflection
JPH11326031A (en) Measuring device and measuring method of propagation time by sound wave
JP5098131B2 (en) Multi-beam sonar and signal processing method thereof
JP2982765B2 (en) Transmission level measurement device