JPS6252477A - Optical system for optical range finder - Google Patents

Optical system for optical range finder

Info

Publication number
JPS6252477A
JPS6252477A JP19200085A JP19200085A JPS6252477A JP S6252477 A JPS6252477 A JP S6252477A JP 19200085 A JP19200085 A JP 19200085A JP 19200085 A JP19200085 A JP 19200085A JP S6252477 A JPS6252477 A JP S6252477A
Authority
JP
Japan
Prior art keywords
prism
light
objective lens
luminous flux
reflective
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19200085A
Other languages
Japanese (ja)
Other versions
JPH0769413B2 (en
Inventor
Tomio Isozaki
磯崎 十三夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SOTSUKISHIYA KK
Sokkisha Co Ltd
Original Assignee
SOTSUKISHIYA KK
Sokkisha Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SOTSUKISHIYA KK, Sokkisha Co Ltd filed Critical SOTSUKISHIYA KK
Priority to JP19200085A priority Critical patent/JPH0769413B2/en
Publication of JPS6252477A publication Critical patent/JPS6252477A/en
Publication of JPH0769413B2 publication Critical patent/JPH0769413B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Automatic Focus Adjustment (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

PURPOSE:To efficiently condense receiving luminous flux, by placing a prism behind an objective lens and reflecting the receiving luminous flux from the entire surface of the objective lens from the reflective surface of a reflective prism. CONSTITUTION:A focus matching prism 3 is placed behind an objective lens 1 and a composite prism consisting of a reflective prism 10 and a dichroic prism 2 is placed behind said prism 3. The emitted luminous flux from the infrared source 6 provided in opposed relation to a dichroic mirror 8 is reflected from the mirror 8 to be passed through a luminous flux passing hole while the reflected luminous flux is sent as shown by an arrow through a focus- matching lens 3 and the objective lens 1. The receiving luminous flux through the entire surface of the objective lens 1 and the focus-matching lens 3 is reflected from the reflective surface 11 of the reflective mirror 10 as it is to be condensed to a light receiving element 9. By this method, the receiving luminous flux is efficiently condensed and luminous fluxes for transmission reception are separated to make it possible to prevent stray light.

Description

【発明の詳細な説明】 〔発明の目的〕 産業上の利用分舒・・・・・・・・・・・・・・・この
発明は、対物レンズを送光用および受光用に共用すると
共に規準を同軸フ行う同軸型の光波測距儀において、光
束を送光用、受光用および規準用に分離することを可能
とする新規複合プリズムを利用した測距・規準用の光学
系に関するもの1ある。
[Detailed Description of the Invention] [Object of the Invention] Industrial Application This invention provides an objective lens that can be used both for transmitting light and for receiving light. Regarding an optical system for distance measurement and reference using a new composite prism that makes it possible to separate the luminous flux into light transmitting, light receiving and reference use in a coaxial type light wave rangefinder that uses coaxial reference.1 be.

従来の技術・・・・・・・・・・・・・・・この棟の光
波測距儀用光学系では、対物レンズの半円の一方側を送
光用に他方側を受光用に供する測距用光学系を設けると
共に、種々の形式の規準用光学系を構成している。
Conventional technology: In the optical system for the optical rangefinder in this building, one side of the semicircle of the objective lens is used for transmitting light and the other side is used for receiving light. In addition to providing a ranging optical system, various types of reference optical systems are also configured.

この規準用光学系には、測距用光学系とは別個にこれと
並列に配置した方式も見られるが!1frtが複雑とな
るの1、コンノ臂りト化を図るため測距用光学系中にダ
イクロイックミラーを置いて光束を測距用と規準用に分
離する櫟にしたものが用いられている。
There are also systems in which this reference optical system is separate from and parallel to the ranging optical system! One reason why 1frt is complicated is that in order to make it more compact, a dichroic mirror is placed in the ranging optical system to separate the light beam into one for ranging and one for reference.

か\る従来の同軸型光波測距儀の光学系の一例を第2図
により説明すれば次の通りである。即ち、対物レンズ1
の後方光軸上にダイクロプリズム2を置き、その後方に
合焦レンズ3、正文プリズム4、焦点板および接眼レン
ズ5を配設して規準用光学系とする。このとき、規準用
光束は第2図図示の如く対物レンズ1を通過したのち、
ダイクロプリズム8内に斜設した可視光透過かつ赤外光
反射のダイクロイックミラー8を通過したものが観測さ
れる。
An example of the optical system of such a conventional coaxial light wave range finder will be explained below with reference to FIG. That is, objective lens 1
A dichroic prism 2 is placed on the rear optical axis of the lens, and a focusing lens 3, a true text prism 4, a focusing plate, and an eyepiece 5 are arranged behind the dichroic prism 2 to form a reference optical system. At this time, the reference light beam passes through the objective lens 1 as shown in FIG.
The light that passes through the dichroic mirror 8 that transmits visible light and reflects infrared light that is installed obliquely within the dichroic prism 8 is observed.

一方、測距用光学系では光源6からの赤外光はプリズム
7を介しグイクロイックミラー81反射したのち対物レ
ンズ1を経て送光され、受光束は対物レンズ1を経てダ
イクロイックミラー8で反射して受光素子9に集光され
る。
On the other hand, in the ranging optical system, the infrared light from the light source 6 is reflected by the dichroic mirror 81 via the prism 7, and then transmitted via the objective lens 1, and the received light beam is reflected by the dichroic mirror 8 after passing through the objective lens 1. The light is then focused on the light receiving element 9.

この様な従来型の光学系では、対物レンズ1の半分の一
方側だけが受光用に供されるに過ぎないので、受光束の
対物レンズ1に対する利用率が低く集光能率が悪いため
測距範囲の拡大及び確保上の障害となっている。また、
受光精度を患くする迷光を防止するため、送受両光束を
分離する隔離板を送受先側に設は又は迷光防止板を対物
レンズ1に接設する等の手段(いずれも図示してない)
を必要とするの1装置複雑化の嫌いがあった。さらに、
利用される受光束は非対称形となり精密構出の点フ好ま
しくない。
In such a conventional optical system, only one half of the objective lens 1 is used for receiving light, so the utilization rate of the received light beam for the objective lens 1 is low and the light collection efficiency is poor, making it difficult to measure distance. This is an obstacle to expanding and securing the scope. Also,
In order to prevent stray light that impairs light reception accuracy, measures such as installing a separating plate to separate the transmitted and received light beams on the receiving and transmitting sides, or attaching a stray light prevention plate to the objective lens 1 (none of these are shown)
There was a dislike of complicating the equipment required. moreover,
The received light flux used is asymmetrical, which is undesirable from the point of view of precision construction.

発明が解決しようとする問題点・・・・・曲・・曲この
発明は、このような従来技術の諸問題を解決するために
成されたもの〒あって、対物レンズ全血から受光した光
束を集光すると共に、送受用両光束を分離して迷光を防
止することができる様にした光波測距儀用の簡易構造の
光波測距儀用光学系を提供することを目的としている。
Problems to be solved by the invention...Song...Song This invention was made to solve the problems of the prior art. It is an object of the present invention to provide an optical system for a light wave range finder with a simple structure, which is capable of condensing light and separating both transmitting and receiving light beams to prevent stray light.

〔発明の構成〕[Structure of the invention]

問題点を解決するための手段・・・・・・・・・・・・
・・・上記目的を達成するため本発明では、光束通過用
の細孔を貫設した反射プリズムとダイクロイックミラー
を有するダイクロプリズムとを接合して成る特徴ある複
合プリズムを利用して、測距用の送受用両光束は勿論規
準用光束を分離する構造を可能に、即ち送光束は上記ダ
イクロイックミラーで反射したのち反射プリズムの光束
通過孔内を通って送光すると共に、受光束は該反射プリ
ズムの反射面フ反射して集光し、かつ規準用可視光束は
該光束通過孔内を通ってダイクロイックミラーを透過す
る如くに構成した。そして、この複合プリズムを対物レ
ンズの後方に置き対物レンズ全面からの受光束が上記の
反射プリズム反射面f反射して集光する如くして集光率
を高めた。さらに、合焦レンズを対物レンズと該複合プ
リズムの間に置いて光束通過孔内を通る光束を細く絞る
ことによって、該通過孔の細孔化を図って受光束の利用
率低下を防ぐ嘩にしたものである。
Means to solve problems・・・・・・・・・・・・
...In order to achieve the above object, the present invention utilizes a characteristic composite prism made by joining a reflecting prism with a hole for passing a light beam and a dichroic prism having a dichroic mirror, to achieve distance measurement. It is possible to create a structure in which both the sending and receiving light beams and the reference light beam are separated, that is, the transmitted light beam is reflected by the dichroic mirror and then transmitted through the light beam passing hole of the reflecting prism, and the received light beam is transmitted through the reflecting prism. The reflective surface of the dichroic mirror was used to reflect and condense the light, and the standard visible light beam passed through the light beam passage hole and was transmitted through the dichroic mirror. Then, this composite prism was placed behind the objective lens so that the light beam received from the entire surface of the objective lens was reflected by the reflecting surface f of the reflecting prism and focused, thereby increasing the light collection efficiency. Furthermore, by placing a focusing lens between the objective lens and the compound prism to narrow down the light flux passing through the light flux passing hole, the light flux passing through the hole can be made smaller to prevent a decrease in the utilization rate of the received light flux. This is what I did.

〔実施例〕〔Example〕

第4図は、本発明の一実施例の安部構成を示すものであ
って対物レンズlの後方に合焦レンズ3、その後方に反
射プリズムIOとダイクロプリズム2とから成る複合プ
リズムを置くoこの複合プリズムは、反射プリズム10
の側面12とダイクロプリズム2の側面14とを接合し
て成り、ダイクロプリズム2は2個の分割プリズム2a
°2bの肉皮射面を接合すると共にこの接合面に赤外光
反射かつ可視光透過のダイクロイックミラー8を公知技
法〒形成した。そして、反射プリズム10には、予めそ
の反射面11と側面12とを貫く光束通過孔13である
細孔をレーザ加工等により設けておくものとし、反射面
11には外面反射鏡を形成した。
FIG. 4 shows the construction of an embodiment of the present invention, in which a focusing lens 3 is placed behind the objective lens l, and a compound prism consisting of a reflection prism IO and a dichroic prism 2 is placed behind it. The composite prism is a reflective prism 10
The side surface 12 of the dichroic prism 2 is joined to the side surface 14 of the dichroic prism 2, and the dichroic prism 2 has two divided prisms 2a.
The flesh-and-skin radiation surface of .degree. 2b was joined together, and a dichroic mirror 8 that reflected infrared light and transmitted visible light was formed on this joint surface using a known technique. The reflective prism 10 is provided with a small hole, which is a light beam passage hole 13, which penetrates the reflective surface 11 and the side surface 12 by laser machining or the like, and the reflective surface 11 is formed with an external reflecting mirror.

?ぎに、ダイクロイックミー)−8に対設した赤外光源
6からの送光束は、該ミラ−8−e1反射したのち光束
通過孔8内を通り合焦レンズ3と対物レンズ1を経て矢
印の如く送光する櫟に形成すると共に、対物レンズ1全
面と合焦レンズ3を経た受光束は、そのま\反射プリズ
ムlOの反射面111反射して受光素子9に集光する如
くして測距用光学系を構成する。そして、対物レンズ1
を通過した規準用可視光束は合焦レンズ3ffi絞られ
て光束通過孔13を通りダイクロイックミラー8を通過
し、例へば正立プリズム、焦点板および接眼レンズを経
て規準光路を形成する罎な規準用光学系を構成する。
? Next, the transmitted light beam from the infrared light source 6 installed opposite to the dichroic mirror 8-8 is reflected by the mirror 8-e1, passes through the light beam passing hole 8, passes through the focusing lens 3 and the objective lens 1, and then reaches the point indicated by the arrow. At the same time, the received light flux that has passed through the entire surface of the objective lens 1 and the focusing lens 3 is directly reflected from the reflective surface 111 of the reflective prism 10 and condensed onto the light receiving element 9 for distance measurement. Configure the optical system for use. And objective lens 1
The reference visible light flux that has passed through is focused by the focusing lens 3ffi, passes through the light flux passage hole 13, passes through the dichroic mirror 8, and passes through, for example, an erecting prism, a focus plate, and an eyepiece to form a reference optical path. Configure the system.

なお、合焦レンズ3を複合レンズレンズ後方に電くこと
も可能であるが前方におくことにより、上述の如く光束
通週孔13の経を小さくなし得るほか各光束の同時合焦
を可能にしている。
Although it is possible to place the focusing lens 3 at the rear of the compound lens lens, by placing it at the front, the diameter of the luminous flux aperture 13 can be made smaller as described above, and it is also possible to focus each luminous flux simultaneously. ing.

〔効果〕〔effect〕

以上の説明から明かな嘩に本発明を利用すると、受光束
を能率よく集光するうへ迷光を効果的に防止フきるのフ
、測距範囲の拡張が可能となり更に目標点に置くべきコ
ーナキ二ピツクを省略した測゛距法を実現し得る嘩にな
る。しかも、従来必要としていた迷光防止手段を要しな
いうへ同軸合焦をなし得るので装置が簡素に成る。
From the above explanation, it is clear that if the present invention is used, the received light beam can be efficiently focused, stray light can be effectively prevented, the range of distance measurement can be extended, and the cone beam that should be placed at the target point can be effectively used. This makes it possible to realize a distance measurement method that eliminates two picks. Moreover, since coaxial focusing can be achieved without the need for stray light prevention means, which was conventionally required, the apparatus becomes simple.

【図面の簡単な説明】[Brief explanation of drawings]

第1(8)は本発明の要部を示す光路図、第2図は従来
型における光路図である。 1・・・対物レンズ、2・・・ダイクロプリズム、3・
・・合焦レンズ、8・・・グイクロイックミラー、IO
・・・反射プリズム、13・・・光束通過孔、11・・
・反射面0第1図 ゝ2 男2図
1(8) is an optical path diagram showing the essential parts of the present invention, and FIG. 2 is an optical path diagram of a conventional type. 1... Objective lens, 2... Dichroic prism, 3...
・・Focusing lens, 8・・Gemicroic mirror, IO
...Reflection prism, 13...Light flux passing hole, 11...
・Reflective surface 0 Figure 1 2 Male figure 2

Claims (1)

【特許請求の範囲】[Claims] 対物レンズ1を送光用と受光用に供する同軸型の光波測
距儀において、対物レンズ1の後方に合焦レンズ3を置
き、その後方に反射プリズム10とダイクロプリズム2
から成る複合プリズムであつて反射面11と反射プリズ
ム側面12とを貫く光束通過孔13を設けた該反射プリ
ズムの該側面12とダイクロイツクミラー8を内設した
該ダイクロプリズム2のダイクロプリズム側面14とを
接合したものを配設し、光源からの送光束は該ダイクロ
イツクミラー8で反射し光束通過孔13内を通つて上記
合焦レンズ3及び対物レンズ1を通過するように形成す
ると共に、受光束は該対物レンズ1と合焦レンズ3を経
て上記反射プリズム10の反射面11で反射して受光素
子9に焦光する様に形成した測距用光学系と、この対物
レンズ1と合焦レンズ3を経た規準用光束は上記光束通
過孔13内を通りダイクロイックミラー8を透過して受
光する様に形成した規準用光学系とから構成したことを
特徴とする光波測距儀用光学系。
In a coaxial optical rangefinder in which an objective lens 1 is used for transmitting and receiving light, a focusing lens 3 is placed behind the objective lens 1, and a reflecting prism 10 and a dichroic prism 2 are placed behind it.
The side surface 12 of the reflecting prism is provided with a light beam passing hole 13 passing through the reflecting surface 11 and the side surface 12 of the reflecting prism, and the side surface 14 of the dichroic prism 2 has a dichroic mirror 8 therein. The light flux from the light source is reflected by the dichroic mirror 8, passes through the light flux passage hole 13, and passes through the focusing lens 3 and objective lens 1. The received light flux passes through the objective lens 1 and the focusing lens 3, is reflected by the reflective surface 11 of the reflective prism 10, and is focused on the light receiving element 9 by a distance measuring optical system and the objective lens 1. An optical system for a light wave rangefinder, comprising a reference optical system formed such that the reference light beam that has passed through the focusing lens 3 passes through the light beam passage hole 13, is transmitted through the dichroic mirror 8, and is received. .
JP19200085A 1985-09-02 1985-09-02 Lightwave rangefinder Expired - Lifetime JPH0769413B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19200085A JPH0769413B2 (en) 1985-09-02 1985-09-02 Lightwave rangefinder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19200085A JPH0769413B2 (en) 1985-09-02 1985-09-02 Lightwave rangefinder

Publications (2)

Publication Number Publication Date
JPS6252477A true JPS6252477A (en) 1987-03-07
JPH0769413B2 JPH0769413B2 (en) 1995-07-31

Family

ID=16283937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19200085A Expired - Lifetime JPH0769413B2 (en) 1985-09-02 1985-09-02 Lightwave rangefinder

Country Status (1)

Country Link
JP (1) JPH0769413B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012098200A (en) * 2010-11-04 2012-05-24 Nikon Vision Co Ltd Laser range finder
JP2013210378A (en) * 2009-12-08 2013-10-10 Denso Wave Inc Laser radar device
US8605259B2 (en) 2009-06-22 2013-12-10 Nikon Vision Co., Ltd. Range finder
US8638423B2 (en) 2009-06-22 2014-01-28 Nikon Vision Co., Ltd. Range finder
JP2014206458A (en) * 2013-04-12 2014-10-30 パナソニック デバイスSunx株式会社 Reflection type photoelectric sensor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8605259B2 (en) 2009-06-22 2013-12-10 Nikon Vision Co., Ltd. Range finder
US8638423B2 (en) 2009-06-22 2014-01-28 Nikon Vision Co., Ltd. Range finder
JP2013210378A (en) * 2009-12-08 2013-10-10 Denso Wave Inc Laser radar device
JP2012098200A (en) * 2010-11-04 2012-05-24 Nikon Vision Co Ltd Laser range finder
JP2014206458A (en) * 2013-04-12 2014-10-30 パナソニック デバイスSunx株式会社 Reflection type photoelectric sensor

Also Published As

Publication number Publication date
JPH0769413B2 (en) 1995-07-31

Similar Documents

Publication Publication Date Title
US7259838B2 (en) Optical beam separation element, measuring apparatus and method of measuring
JP2008039600A (en) Surveying equipment with light split by dichroic prism
JPS6252477A (en) Optical system for optical range finder
JP2003536061A (en) Optical ranging device
US6040566A (en) Device to control the aiming and focusing of laser systems on a target
CN205749884U (en) A kind of Amici prism assembly and beam splitting system
CN2906644Y (en) Wide-view-field optical device for laser echo detection
JPH06281740A (en) Distance measuring instrument
JPS59204726A (en) Flame detector
JP2002350543A (en) Laser range finder
JP3252401B2 (en) Distance measuring device
JP2006023626A (en) Collimation adjusting mechanism, and optical antenna system and collimation adjusting method using same
JPH06333289A (en) Optical head
JPS5852545Y2 (en) light wave distance meter
JPS5921513B2 (en) Optical system of light wave distance meter
JP2715506B2 (en) Spatial optical transmission equipment
JPS6020061Y2 (en) Lightwave ranging device
JPS63244001A (en) Prism
JPS61243385A (en) Light wave distance measuring apparatus
JP2810470B2 (en) Assembly method of optical semiconductor module
JPH04501171A (en) Electromagnetic radiation transmission and reception device
KR100501082B1 (en) Optical system applying pulse type laser diode
RU2002113499A (en) The range simulation method and the optical device for its implementation
JPH05232406A (en) Optical circulator
JPH11109022A (en) Light wave range-finding device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term