JPS63244001A - Prism - Google Patents

Prism

Info

Publication number
JPS63244001A
JPS63244001A JP7941987A JP7941987A JPS63244001A JP S63244001 A JPS63244001 A JP S63244001A JP 7941987 A JP7941987 A JP 7941987A JP 7941987 A JP7941987 A JP 7941987A JP S63244001 A JPS63244001 A JP S63244001A
Authority
JP
Japan
Prior art keywords
prism
enters
dichroic mirror
pentagonal
triangular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7941987A
Other languages
Japanese (ja)
Other versions
JPH0711601B2 (en
Inventor
Taisuke Endo
泰介 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP7941987A priority Critical patent/JPH0711601B2/en
Publication of JPS63244001A publication Critical patent/JPS63244001A/en
Publication of JPH0711601B2 publication Critical patent/JPH0711601B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To improve transmittance of a pentagonal roof prism to laser light by subjecting a part of said prism to dichroic mirror coating and attaching a triangular columnar prism directly to said part. CONSTITUTION:The laser light and visible light reflected by a target passes an objective lens 3 and enters the pentagonal columnar prism 1, transmits the dichroic mirror coated on the triangular columnar prism 2 side by optical paths A B and enters the triangular columnar prism 2. The laser light passes the optical paths B, G in the prism 2 and enters a photodetector 9. The visible light is reflected by the dichroic mirror and is passed through the part having no dichroic mirror by the optical paths A B C D E from which the light enters the prism 2 and enters the eye through the optical paths E F. The reduction of the size over the entire part of the device is thereby reduced and the transmittance of the laser light is increased by about 30%.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発FAは、レーザ光Iwを利用した測距装置におい
て、目標を規準するための可視光線と測距のための受信
レーザ光線の分離、および目標の正位像を得るために可
視光線の倒立を行うプリズムに関するものである。
[Detailed Description of the Invention] [Industrial Application Field] This FA is a distance measuring device using laser light Iw, which separates a visible light beam for standardizing a target and a received laser beam for distance measurement; and a prism that inverts visible light to obtain an orthogonal image of a target.

〔従来の技術〕[Conventional technology]

従来、この種のプリズムとして、第6図〜第12図に示
すものがあった。第6図はプリズムを組込んだ測距装置
の光学系、第7図〜第12図はプリズムの各部の形状を
示す図であり、第1図はダハプリズムの平面図、第8図
はダハプリズムの側面図、第9図は四角柱プリズムの平
面図、第10図は四角柱プリズムの側面図、第11図は
三角柱プリズムの平面図、第12図は三角柱プリズムの
側面図である。
Conventionally, as this type of prism, there have been those shown in FIGS. 6 to 12. Fig. 6 shows the optical system of a distance measuring device incorporating a prism, Figs. 7 to 12 show the shapes of each part of the prism, Fig. 1 is a plan view of the roof prism, and Fig. 8 shows the roof prism. 9 is a plan view of a quadrangular prism, FIG. 10 is a side view of a quadrangular prism, FIG. 11 is a plan view of a triangular prism, and FIG. 12 is a side view of a triangular prism.

第6図において、(1)はダハプリズム、(2)は三角
柱プリズム、(3:は対物レンズ、(4Iは規準用レチ
クル、(51は接にレンズ、(6)は眼、(7)はレー
ザ光集光レンズ、(81は受信視野を制限するためのピ
ンホール、(9)は光検出器、 (1(lはレーザ光送
信光学系、a*はレーザ発振器、 (13は四角柱プリ
ズムである。
In Fig. 6, (1) is a roof prism, (2) is a triangular prism, (3 is an objective lens, (4I is a reference reticle, (51 is a contact lens, (6) is an eye, and (7) is a laser beam. A light condensing lens, (81 is a pinhole for limiting the receiving field of view, (9) is a photodetector, (1 (l is a laser beam transmission optical system, a* is a laser oscillator, (13 is a square prism) be.

第7図および第8図において、C1)はダハプリズム、
第9図および第1a図において、α3は四角柱プリズム
、 lI:lはダイクロイックミラーコート、第11図
および8112図において、(21は三角柱プリズムで
ある。
In Figures 7 and 8, C1) is a roof prism;
In FIG. 9 and FIG. 1a, α3 is a square prism, lI:l is a dichroic mirror coat, and in FIGS. 11 and 8112, (21 is a triangular prism).

次に動作について説明する。レーザ発振器aυから出る
レーザ光MAヲ送信党学系inを通して適当な広がり角
に調整し、測距しようとする目標に向けて送信する。送
信光学系舖の送信光軸は、後で述べる規準光軸と平行に
なるよう予め調整しであるので目標を規準することによ
りレーザ光を目標に向けて送信できる。目標からの可視
光およびレーザ反射光は対物レンズ(31を通りダハプ
リズム(11に入る。ダハプリズム(1)に入った可視
光およびレーザ光は光路A −+ 73−+ Q −+
 pを経て四角柱プリズム0に入る。四角柱プリズム0
3に入った可視光は。
Next, the operation will be explained. The laser beam MA emitted from the laser oscillator aυ is adjusted to an appropriate spread angle through the transmitter system in, and is transmitted toward the target to be measured. The transmission optical axis of the transmission optical system is adjusted in advance so that it is parallel to the reference optical axis, which will be described later, so that by setting the target as a reference, the laser beam can be transmitted toward the target. The visible light and laser reflected light from the target pass through the objective lens (31) and enter the roof prism (11).The visible light and laser light that entered the roof prism (1) pass through the optical path A −+ 73−+ Q −+
It enters the square prism 0 via p. square prism 0
What is the visible light that enters 3?

光路p −+ Jlj −* ’IPと進み、三角柱プ
リズム錦)と接する面にコートされたダイクロイックミ
ラーで反射後、光路31’ −p B−+にと進みレチ
クル(41および接眼レンズ(51ヲ通って、眼(6、
に入る。四角柱プリズムαaに入ったレーザ光は、光路
D−+E−+IFと進み。
The light passes through the optical path p -+ Jlj -* 'IP, and after being reflected by the dichroic mirror coated on the surface in contact with the triangular prism brocade), it advances to the optical path 31' -p B-+ and passes through the reticle (41 and eyepiece (51). Te, eyes (6,
to go into. The laser light entering the square prism αa follows the optical path D-+E-+IF.

三角柱プリズム(2)と接する面にコートされたダイク
ロイックミラーを透過して、三角柱プリズム(2)に入
り、光路p −+ 3と進み、集光レンズ(7)、ピン
ホール(8)を通って光検出器(9)に入る。目標から
の可視光線がレチクル(4+の中心を通るとき、目標か
らの反射レーザ光かピンホール(8)を通るよう、レチ
クル+41とピンホール(81の位置関係を予め調整し
ておくと、可視光でレチクル+41の中心に目標物が見
えるよう規準することにより、目標からの反射レーザ′
″lt、ヲ光検出器(9)で受光することができる。
The light passes through the dichroic mirror coated on the surface in contact with the triangular prism (2), enters the triangular prism (2), follows the optical path p −+ 3, and passes through the condenser lens (7) and pinhole (8). Enter the photodetector (9). If you adjust the positional relationship between the reticle +41 and the pinhole (81) in advance so that when the visible light from the target passes through the center of the reticle (4+), the reflected laser beam from the target will pass through the pinhole (81). By aiming the target so that the light can be seen at the center of the reticle +41, the reflected laser '
The light can be received by the photodetector (9).

また、可視光線により眼(6]で見える像は、対物レン
ズ(3)のみでは倒立像きなるが、ダハプリズム(11
のダハ面で上下か反転し、ダハプリズム口)中で2回、
四角柱プリズムυ中で3回1合計5回すなわち奇数回反
射するので左右も反転し、正立像となる。
In addition, the image seen by the eye (6) due to visible light is an inverted image with only the objective lens (3), but the image seen with the roof prism (11
Turn it upside down or upside down on the roof surface of the roof prism (opening) twice,
Since it is reflected three times in the square prism υ, a total of five times, that is, an odd number of times, the left and right sides are also reversed, resulting in an erect image.

〔発明か解決しようとする問題点〕[The problem that the invention attempts to solve]

従来のプリズムにおいては、可視光とレーザ光が13f
の角度を成して出て釆るので、測距装置に組込むとき、
スペースが活用しに<<*tii全体か大きくなるとい
う欠点かあった。また、レーザ光はプリズム中容透過す
るときダハ面以外で反射か2回(A→B −+ Qおよ
びD→E→?ン、境界面の透過か5回(A、D、F、G
:Dは薄い空気層かあり境界面は2聞ある。ンあるため
透過率か低い。特にこのうちDを含む面はA−+B−+
Cおよびp−+B→Eの全反射を行うために無反射コー
トかできず透過率は一面当り16%以上にはできない。
In conventional prisms, visible light and laser light are
Since it comes out at an angle of
There was a drawback that the entire space would be too large to utilize. Also, when the laser beam passes through the prism interior, it is reflected twice (A→B −+ Q and D→E→?) and transmitted through the boundary surface five times (A, D, F, G
:D has a thin air layer and two interfaces. The transmittance is low because of the In particular, the surface containing D is A-+B-+
Since total reflection of C and p-+B→E is performed, a non-reflection coating cannot be applied, and the transmittance cannot be increased to more than 16% per surface.

全体としての透過率は一例としてダハ面の反射率を85
%、ダイクロイックミラーの透過率を80チ、他の反射
・透過面の反射・透過率をs9−とすると全体として約
68%となる。更にプリズムはダハプリズム、四角柱プ
リズム、三角柱プリズムと3つもの部分から構成されて
おり、しかもダハプリズムと四角柱プリズムは全反射の
ために薄い空気層を設けて配置する必要があり2組立か
困難であった。
As an example, the overall transmittance is 85
%, the transmittance of the dichroic mirror is 80 cm, and the reflectance/transmittance of the other reflective/transmissive surfaces is s9-, the total is about 68%. Furthermore, the prism is composed of three parts: a roof prism, a square prism, and a triangular prism.Moreover, the roof prism and the square prism must be placed with a thin air layer in order to allow for total reflection, making it difficult to assemble. there were.

〔間か点を解決するための手段〕[Means for resolving gaps]

四角柱プリズム容態<シ、ダハプリズムを四角柱から五
角形に変更し、ダハプリズムの一部にグイクロイツクミ
ラーコートヲ緯し、ダハプリズムに直接三角柱プリズム
を付けた、 〔作用〕 この発明におけるプリズムでは、可視光とレーザ光か同
方向に出て、レーザ光に対する透過率か約88%に上昇
し、プリズムの構成要素か2つに減る。
The shape of the quadrangular prism is changed from a quadrangular prism to a pentagonal prism, and a part of the roof prism is covered with a mirror coat, and a triangular prism is attached directly to the roof prism. The light and the laser beam are emitted in the same direction, the transmittance for the laser beam increases to approximately 88%, and the number of components of the prism is reduced to two.

〔実施例〕〔Example〕

以下、この発明の一実棺例を説明する。第1図は、この
発明によるプリズム蛋用いたレーザ測距装置の光学系を
示す図で、第2図は五角柱プリズムの平面内、第3図は
五角柱プリズムのf1面図。
Hereinafter, an example of a coffin according to the present invention will be explained. FIG. 1 is a diagram showing the optical system of a laser ranging device using a prism according to the present invention, FIG. 2 is a view in the plane of a pentagonal prism, and FIG. 3 is a view from the f1 plane of the pentagonal prism.

第4図は三角柱プリズムの平面図、第5図は三角柱プリ
ズムの側面図を示す図である。
FIG. 4 is a plan view of the triangular prism, and FIG. 5 is a side view of the triangular prism.

第1図において、 (1)は五角柱プリズム、(2)は
三角柱プリズム、(3Iは対物レンズ、(41はレチク
ル。
In Fig. 1, (1) is a pentagonal prism, (2) is a triangular prism, (3I is an objective lens, and (41 is a reticle).

(51は接眼レンズ、(6;は眼、(7)はレーザ光集
光レンズ、(8)はピンホール、(9)は光検出器、(
1αはレーザ光送信光学系、 (112.はレーザ発振
器である。第2図において、(1)は五角柱プリズム、
α3はダイクロイックミラーコート、第3図において、
(1)は五角柱プリズム、第4図および第5図において
(2)は三角柱プリズムである。
(51 is an eyepiece lens, (6; is an eye, (7) is a laser beam condensing lens, (8) is a pinhole, (9) is a photodetector, (
1α is a laser beam transmission optical system, (112. is a laser oscillator. In Fig. 2, (1) is a pentagonal prism,
α3 is dichroic mirror coat, in Figure 3,
(1) is a pentagonal prism, and in FIGS. 4 and 5, (2) is a triangular prism.

次に動作について説明する。レーザ発振器aυから出て
送信元学系αaを通り送イgされ目標で反射されたレー
ザ光と、目標からの可視光は対物レンズ(3)ヲ通り、
五角柱プリズム(1+に入る。五角柱プリズム(1)に
入ったレーザ光は光路A −+ Bにより五角柱プリズ
ム+11 %通過後、五角柱プリズム+11の三角柱プ
リズム+21 Qにコートしたダイクロイックミラー2
透過し三角柱プリズム(2)に入る。レーザ光は三角柱
プリズム(2)中を光路B、Gにより通り1県元レンズ
(7)、ピンホール(81蛋経て、光検出器(9)に入
る。五角柱プリズムに入った可視光は、上記ダイクロイ
ックミラーで反射され、五角柱プリズム中を光路A−+
B−+C−4D→Eにより通り、ダイクロイックミラー
コートのない部分を通って三角柱プリズム(2)に入り
、光路E→Fにより三角柱プリズムを通り、レチクル(
41,接眼レンズ(51ヲ経て眼(6:に入る。レーザ
11プリズム中でグイクロイックミラー1面(B)と入
射角(A)、出射面(G)を透過するのみであり、従来
技術の例と同じ透過率を仮定すると透過率は88%とな
る。
Next, the operation will be explained. The laser light emitted from the laser oscillator aυ, transmitted through the source system αa, and reflected at the target, and the visible light from the target pass through the objective lens (3).
Enters the pentagonal prism (1+).The laser beam that has entered the pentagonal prism (1) passes through the pentagonal prism +11% via the optical path A - + B, and then passes through the pentagonal prism +11 triangular prism +21 Q coated dichroic mirror 2.
It passes through and enters the triangular prism (2). The laser light passes through the triangular prism (2) through optical paths B and G, passes through the 1x lens (7) and the pinhole (81x), and enters the photodetector (9).The visible light that has entered the pentagonal prism is Reflected by the above dichroic mirror, the optical path A-+ passes through the pentagonal prism.
B-+C-4 D→E, enters the triangular prism (2) through the part without the dichroic mirror coat, passes through the triangular prism (2) via the optical path E→F, and enters the reticle (
41. Enters the eye (6:) through the eyepiece lens (51).The laser 11 only passes through one surface (B) of the guichroic mirror in the prism, the angle of incidence (A), and the exit surface (G), which is different from the conventional technology. Assuming the same transmittance as in the example, the transmittance is 88%.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、プリズムより出る可
視光とレーザ光か平行になるので測距装置内に光学系を
組み込むときスペースを有効に活用でき、装置全体を小
型化できる。また、レーザ光のプリズム中での反射がダ
ハ面での2回を含む4回から0回に、透過面か5面から
3面になるので透過率か約30チ上昇する。更にプリズ
ムを構成する部品点数か3個から2個となり、空気層も
不要となるので組立か容易になる。
As described above, according to the present invention, since the visible light emitted from the prism and the laser light are parallel to each other, space can be effectively utilized when incorporating an optical system into a distance measuring device, and the entire device can be miniaturized. In addition, the number of reflections of the laser beam in the prism goes from 4 times including 2 times on the roof surface to 0 times, and from 5 transmitting surfaces to 3, the transmittance increases by about 30 degrees. Furthermore, the number of parts constituting the prism is reduced from three to two, and there is no need for an air layer, making assembly easier.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明によるプリズムを用いたレーザ測距v
ctの光学系を示す図、第2図はこの発明による五角柱
プリズムの平面図、第3図は同側面図、第4図は三角柱
プリズムの平面図、第5図は同側面図、第6図は従来技
術によるプリズムを用いたレーザ測距装置の光学系を示
す図、第7図は従来技術によるダハプリズムの平面図、
第8図は同側面一、第8図は四角柱プリズムの平面図、
第10図は同側面図、第11図は三角柱プリズムの平面
図、第12図は同側面図であり2図中、 +11は五角
柱プリズムまたはダハプリズム#(2)は三角柱プリズ
ム、(3)は対物レンズ、(41はレチクル、(51は
接眼レンズ、(6)は眼、(7)はレーザ光集光レンズ
。 (8)はピンホール、(θ2は光検出器、 anはレー
ザ光送信光学系、α暮jレーザ発振器、α2は四角柱プ
リズムである。 なお、各図中同一符号は同一または相幽部分を示す。
Figure 1 shows a laser distance measurement v using a prism according to the present invention.
2 is a plan view of a pentagonal prism according to the present invention, FIG. 3 is a side view of the prism, FIG. 4 is a plan view of a triangular prism, FIG. The figure shows an optical system of a laser range finder using a prism according to the prior art, and FIG. 7 is a plan view of a roof prism according to the prior art.
Figure 8 is the same side view, Figure 8 is a plan view of the square prism,
Figure 10 is a side view of the same, Figure 11 is a plan view of the triangular prism, and Figure 12 is a side view of the same. Objective lens, (41 is reticle, (51 is eyepiece, (6) is eye, (7) is laser beam condensing lens. (8) is pinhole, (θ2 is photodetector, an is laser beam transmission optical system, α-J laser oscillator, α2 is a quadrangular prism. Note that the same reference numerals in each figure indicate the same or parallel parts.

Claims (1)

【特許請求の範囲】[Claims] 内角が、順に、112.5°、112.5°、135°
、67.5°、112.5°の不等辺五角柱の側面のう
ち、内角112.5°および内角135°のりよう線を
含む側面に隣り合う、両側を内角112.5°のりよう
線に囲まれた側面を、五角柱の底面に平行なりよう線を
持つ角度90°のダハ面とし、ダハ面に反射コートを内
角67.5°および内角112.5°のりよう線を含む
側面の内角112.5のりよう線側半分にダイクロイッ
クミラーコートを施した五角柱プリズムと、内角が、2
2.5°、67.5°、90°の三角柱プリズムとを、
五角柱プリズムの内角67.5°および112.5°の
りよう線を含む側面が、三角柱プリズムの内角90°の
りよう線を含まぬ側面に、五角柱プリズムの内角67.
5°のりよう線と三角柱プリズムの内角67.5°のり
よう線が同じ側になるよう密着して配置したことを特徴
とするプリズム。
The interior angles are 112.5°, 112.5°, and 135°.
, 67.5°, 112.5° of the sides of the scalene pentagonal prism, adjacent to the sides that include the internal angle 112.5° and internal angle 135° horizontal lines, both sides are the internal angle 112.5° horizontal lines. The enclosed side surface is a roof surface with an angle of 90° with a vertical line parallel to the base of the pentagonal prism, and a reflective coating is applied to the roof surface at an internal angle of 67.5° and an internal angle of 112.5°. 112.5 A pentagonal prism with a dichroic mirror coated half on the horizontal line side and an inner angle of 2.
2.5°, 67.5°, 90° triangular prisms,
The side surface of the pentagonal prism that includes the internal angles 67.5° and 112.5° is connected to the side surface that does not include the internal angle of 90° of the triangular prism, and the internal angle 67.5° of the pentagonal prism.
A prism characterized in that the 5° glue line and the 67.5° inner angle glue line of the triangular prism are arranged in close contact so that they are on the same side.
JP7941987A 1987-03-31 1987-03-31 prism Expired - Lifetime JPH0711601B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7941987A JPH0711601B2 (en) 1987-03-31 1987-03-31 prism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7941987A JPH0711601B2 (en) 1987-03-31 1987-03-31 prism

Publications (2)

Publication Number Publication Date
JPS63244001A true JPS63244001A (en) 1988-10-11
JPH0711601B2 JPH0711601B2 (en) 1995-02-08

Family

ID=13689347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7941987A Expired - Lifetime JPH0711601B2 (en) 1987-03-31 1987-03-31 prism

Country Status (1)

Country Link
JP (1) JPH0711601B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012098200A (en) * 2010-11-04 2012-05-24 Nikon Vision Co Ltd Laser range finder
US8384884B2 (en) 2007-09-05 2013-02-26 Nikon Vision Co., Ltd. Range finder
US8477290B2 (en) 2009-06-22 2013-07-02 Nikon Vision Co., Ltd. Range finder
US8638423B2 (en) 2009-06-22 2014-01-28 Nikon Vision Co., Ltd. Range finder

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8384884B2 (en) 2007-09-05 2013-02-26 Nikon Vision Co., Ltd. Range finder
US8477290B2 (en) 2009-06-22 2013-07-02 Nikon Vision Co., Ltd. Range finder
US8605259B2 (en) 2009-06-22 2013-12-10 Nikon Vision Co., Ltd. Range finder
US8638423B2 (en) 2009-06-22 2014-01-28 Nikon Vision Co., Ltd. Range finder
JP2012098200A (en) * 2010-11-04 2012-05-24 Nikon Vision Co Ltd Laser range finder

Also Published As

Publication number Publication date
JPH0711601B2 (en) 1995-02-08

Similar Documents

Publication Publication Date Title
US4534637A (en) Camera with active optical range finder
JPH0548171Y2 (en)
US2374475A (en) Sighting device
CN109387847B (en) Optical beam splitting system of laser ranging telescope
JPH0498236A (en) Camera
JPH037901A (en) Constant flexing type optical reflector
JPH071344B2 (en) Light splitting device
US4063261A (en) View finder optical system
JPS63244001A (en) Prism
JP3414164B2 (en) LCD projector
JPH10301056A (en) Light projecting and receiving device
JP3548282B2 (en) Optical branching optical system
US2410757A (en) Optical prism system
US1843007A (en) Plural image optical system
JP2734637B2 (en) Projection display device
JPH0769413B2 (en) Lightwave rangefinder
JPH0262801B2 (en)
JPS6020061Y2 (en) Lightwave ranging device
JP3554373B2 (en) Distance measuring optical system
JPS6370113A (en) Automatic leveling apparatus
JPH09133868A (en) Erect optical system
SU871015A1 (en) Device for checking optical system alignment
SU1268983A1 (en) Device for checking the centring of optical systems
US2403732A (en) Range finder
JPS62127683A (en) Noctovision