JPS6252374A - Defroster for refrigerator - Google Patents

Defroster for refrigerator

Info

Publication number
JPS6252374A
JPS6252374A JP18972985A JP18972985A JPS6252374A JP S6252374 A JPS6252374 A JP S6252374A JP 18972985 A JP18972985 A JP 18972985A JP 18972985 A JP18972985 A JP 18972985A JP S6252374 A JPS6252374 A JP S6252374A
Authority
JP
Japan
Prior art keywords
defrosting
expansion valve
evaporator
valve
condenser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18972985A
Other languages
Japanese (ja)
Inventor
原 正誉
久保 道夫
博之 杠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP18972985A priority Critical patent/JPS6252374A/en
Publication of JPS6252374A publication Critical patent/JPS6252374A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [発明の技術分野j 本発明は冷凍装置の除7A装置に係り、特に比例膨張弁
を採用することにより除霜機構を改良した冷凍装置の除
霜装置に関Jるものである。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a 7A defrosting device for a refrigeration system, and particularly relates to a defrosting device for a refrigeration system whose defrosting mechanism is improved by adopting a proportional expansion valve. It is something.

[発明の技術的背景とその問題点」 一般に、冷凍装置を冷却する冷凍サイクルは第6図に示
す如く、圧縮機1.凝縮器2.膨張弁3.M発器4を順
次直列接続して冷凍Vイクル5が形成されている。
[Technical Background of the Invention and Problems Therewith] Generally, a refrigeration cycle for cooling a refrigeration system consists of a compressor 1. Condenser 2. Expansion valve 3. A refrigeration vehicle 5 is formed by sequentially connecting M generators 4 in series.

従来、この冷凍サイクル5には上記凝縮器2の入口側の
冷媒通路6から二方弁7を介して分岐されて上記蒸発器
4の入口側の冷媒通路6に接続されたバイパス冷媒通路
8が形成されおり、このバイパス冷奴通路8には電磁開
m弁9とドレン皿加熱用バイブ10が介設されて除雪装
置11が構成されていた。
Conventionally, this refrigeration cycle 5 includes a bypass refrigerant passage 8 that is branched from a refrigerant passage 6 on the inlet side of the condenser 2 via a two-way valve 7 and connected to the refrigerant passage 6 on the inlet side of the evaporator 4. A snow removal device 11 was constructed by interposing an electromagnetic opening m valve 9 and a drain dish heating vibrator 10 in this bypass cold tofu passage 8.

そして、上記除霜Rfa11を有する冷凍1)′イクル
5の運転は冷却運転時と除霜運転時との冷媒の流れを二
方弁7により変えていた。ドレン皿加熱用パイプ10に
はこの冷凍サイクル5の構成上除霜の時のみ冷奴(高温
)が流れるようなm造であった。また、膨張機構には上
記膨張弁3又は′1:1tピラリ−チューブ(図示せず
)が採用されていた。
In operation of the refrigeration cycle 5 having the defrosting Rfa11, the two-way valve 7 changes the flow of refrigerant between the cooling operation and the defrosting operation. Due to the structure of the refrigeration cycle 5, the drain dish heating pipe 10 was constructed so that cold tofu (high temperature) only flowed during defrosting. The expansion mechanism employed the expansion valve 3 or the '1:1t pillar tube (not shown).

ところで、この従来の冷凍装置の除霜装置にあっては次
の如き問題点があった。
However, this conventional defrosting device for a refrigeration system has the following problems.

ドレン皿が冷却運転時冷やされているので、除霜運転時
に残氷の虞れがあった。
Since the drain tray was cooled during the cooling operation, there was a risk of ice remaining during the defrosting operation.

また、冷凍サイクル5と除雪装置11との凝縮器2側及
び蒸発器4側の配管が困難で、冷凍サイクル5が複雑で
あるという問題があった。
Further, there was a problem in that the piping between the refrigeration cycle 5 and the snow removal device 11 on the condenser 2 side and the evaporator 4 side was difficult, making the refrigeration cycle 5 complicated.

更に、膨張弁3の弁開度を冷凍負荷に応じて調節するこ
とができなかった。
Furthermore, the opening degree of the expansion valve 3 could not be adjusted according to the refrigeration load.

また更に、上述の如く冷凍サイクル5が複雑であるため
製造コストが高いという問題があった。
Furthermore, as mentioned above, the refrigeration cycle 5 is complicated, so there is a problem that the manufacturing cost is high.

[発明の目的] 本発明は冷凍装置の除霜装置における14題森を解決す
べく創案されたらのである。
[Object of the Invention] The present invention was devised to solve 14 problems in defrosting devices of refrigeration equipment.

本発明の目的は構造が簡11r1効率の良い除霜が達成
でき、且つ、安価な冷凍装置の除霜装置を提供するもの
である。
An object of the present invention is to provide a defrosting device for a refrigeration system that has a simple structure, can achieve efficient defrosting, and is inexpensive.

[発明の概要] 上記目的を達成するために本発明は冷凍サイクルを構成
する凝縮器と蒸発器とを結ぶ冷媒通路に、冷凍負荷に応
じて比例的に弁の開度を:1節する比例膨張弁を設ける
と共に、除霜時に比例膨張弁を開放させ、蒸発器に凝縮
器側からホットガスを流過させる除霜回路を設けて構成
し、上記除霜回路が上記凝縮器と蒸発器との熱交換が停
止されたことを検知して、上記比例膨張弁を開放させる
ことにより、上記蒸発器に上記凝縮器からホットガスが
流過するので、構造が筒中な除霜装置で効率の良い除霜
が達成され、Hつ製3I!I−1ストの低減が図れるも
のである。
[Summary of the Invention] In order to achieve the above object, the present invention provides a refrigerant passage connecting a condenser and an evaporator that constitute a refrigeration cycle, with a proportional valve opening that is proportional to the refrigeration load. In addition to providing an expansion valve, the configuration includes a defrosting circuit that opens the proportional expansion valve during defrosting and allows hot gas to flow through the evaporator from the condenser side, and the defrosting circuit connects the condenser and evaporator. By detecting that the heat exchange has been stopped and opening the proportional expansion valve, hot gas from the condenser flows into the evaporator, which is highly efficient in a defrosting device with a cylinder structure. Defrosting has been achieved and H-3I! This allows reduction of I-1 stroke.

[発明の実施例] 次に本発明の実施例を添付図面に従って詳述する。[Embodiments of the invention] Next, embodiments of the present invention will be described in detail with reference to the accompanying drawings.

第1図は本発明の第1の実施例を示すものである。FIG. 1 shows a first embodiment of the invention.

図示するように、圧縮機1.凝縮器2.蒸発器4を有す
る通常の冷凍装置の冷凍ナイクル5の上記凝縮器2と蒸
発器4とを結ぶ冷媒通路6に比例膨張弁12が介設され
ている。この比例膨張弁12は冷凍負荷に応じて比例的
にその弁開度を調節し、冷凍サイクル5の冷媒流量を制
御するように形成されている。この比例膨張弁12には
除霜回路13が具備されている。また、上記凝縮器2と
蒸発器4とを結ぶ冷媒通路6に設けられた上記比例膨張
弁12より上流側には蓄力器14を具備したドレン皿加
熱用バイブ15が設けられており、上記蒸発器4の下方
に位置されている。更に、このドレン皿加熱用パイプ1
5の上流側の冷凍サイクル5には上記凝縮!2の入口側
から出口側に接続された除霜用冷媒通路16が設けられ
ており、この除霜用冷媒通路16には電磁開閉弁17が
介設されている。また更に、上記除霜回路13は上記凝
縮212と蒸発器4とに具備された送風−18゜19に
夫々接続されると共に、上記電磁開閉弁17に接続され
てJ3す、電子制御されて、冷凍装置の除霜装置11が
構成されている。
As shown, compressor 1. Condenser 2. A proportional expansion valve 12 is interposed in a refrigerant passage 6 connecting the condenser 2 and the evaporator 4 of a refrigerating system 5 of a normal refrigeration system having an evaporator 4 . The proportional expansion valve 12 is configured to proportionally adjust its valve opening depending on the refrigeration load and control the refrigerant flow rate of the refrigeration cycle 5. This proportional expansion valve 12 is equipped with a defrosting circuit 13. Further, on the upstream side of the proportional expansion valve 12 provided in the refrigerant passage 6 connecting the condenser 2 and the evaporator 4, a drain dish heating vibe 15 equipped with a power storage device 14 is provided. It is located below the evaporator 4. Furthermore, this drain dish heating pipe 1
The above condensation is in the refrigeration cycle 5 on the upstream side of 5! A defrosting refrigerant passage 16 connected from the inlet side to the outlet side of the defrosting refrigerant passage 16 is provided, and an electromagnetic on-off valve 17 is interposed in this defrosting refrigerant passage 16. Furthermore, the defrosting circuit 13 is connected to the air blower -18°19 provided in the condenser 212 and the evaporator 4, respectively, and is also connected to the electromagnetic on-off valve 17 and is electronically controlled. A defrosting device 11 of the refrigeration system is configured.

次に第1の実施例の作用を述べる。Next, the operation of the first embodiment will be described.

冷却運転時には上記除霜用冷媒通路16に介設された電
磁開閉弁17は閉成されている。圧縮機1により圧縮さ
れた冷媒は凝縮器2を経で、ドレン皿加熱用パイプ15
及び蓄力器14に至り、蒸発器4にて蒸発され吸熱し、
冷却運転する。この時、比例膨張弁12は上記除霜回路
13によりスーパーヒート制御されて過熱度を一定に保
持している。
During cooling operation, the electromagnetic on-off valve 17 provided in the defrosting refrigerant passage 16 is closed. The refrigerant compressed by the compressor 1 passes through the condenser 2 and is then passed through the drain plate heating pipe 15.
and reaches the power accumulator 14, is evaporated in the evaporator 4 and absorbs heat,
Run cooling operation. At this time, the proportional expansion valve 12 is superheated by the defrosting circuit 13 to keep the degree of superheat constant.

次に除霜運転時には蒸発器4に着霜して除霜信号を−り
記除霜回路13が検知すると、除霜回路13が電磁量■
1弁17及び比例膨張弁12を全開放に制御すると共に
、上記凝縮器2と蒸発器4との熱交換を停止さμる。す
ると、ホットガスが蒸発器4に流入して除霜を行うこと
になる。尚、除霜の終了は蒸発器4出口近傍に取り付け
た温度ピン°す゛(図示せず)等にて行うものとする。
Next, during defrosting operation, when the evaporator 4 is frosted and the defrosting signal is detected, the defrosting circuit 13 detects the electromagnetic amount
1 valve 17 and proportional expansion valve 12 are controlled to be fully open, and heat exchange between the condenser 2 and evaporator 4 is stopped. Then, the hot gas flows into the evaporator 4 to perform defrosting. Note that defrosting is terminated using a temperature pin (not shown) installed near the evaporator 4 outlet.

このように運転がなされることにより、冷却運転時に3
0〜40℃程度の冷媒でドレン皿加熱用パイプ15が高
温に保持されるので、ドレン皿が常時加熱され、ドレン
皿の氷結が防止されることになる。また、上記ドレン皿
加熱用バイブ15にて過冷却効果が発生し、冷凍能力E
ERが向上Jることになる。更に、除霜運転時にはドレ
ン皿加熱用パイプ15がさらに高温となり、完全にドレ
ン皿の除霜が成されることになる。
By operating in this way, 3.
Since the drain tray heating pipe 15 is maintained at a high temperature with a refrigerant of approximately 0 to 40° C., the drain tray is constantly heated and freezing of the drain tray is prevented. In addition, a supercooling effect occurs in the drain dish heating vibrator 15, and the refrigerating capacity E
ER will improve. Furthermore, during the defrosting operation, the drain tray heating pipe 15 becomes even hotter, and the drain tray is completely defrosted.

次に第2図は第2の実施例を示すものである。Next, FIG. 2 shows a second embodiment.

図示するように、本実施例にあっては第1の実施例にお
ける冷凍サイクル5の蓄力器14を具備したドレン叫加
熱用パイプ15と電磁開閉弁17の介設された除霜用冷
媒通路16とを削除し、構造を簡単にした除霜装置11
である。
As shown in the figure, in this embodiment, a defrosting refrigerant passage in which a drain heating pipe 15 equipped with a power storage device 14 of the refrigeration cycle 5 in the first embodiment and an electromagnetic shut-off valve 17 are interposed. Defrosting device 11 with simplified structure by removing 16 and 11
It is.

第2の実施例の作用に関しては、第1の実施例と同様に
、冷r4I運転時には比例膨張弁12の弁開度が除霜回
路13によって比例的に制御され、比例膨張弁12の出
口温度と蒸発器4の温度との差温が一定に保持されるも
のである。また、除霜運転時には、上記除霜回路13に
より比例膨張弁12の弁開度が全開放されると共に、上
記凝縮器2と蒸発器4との熱交換が停止されて、ホット
ガスが蒸発器4に流入し除霜されるものである。
Regarding the operation of the second embodiment, as in the first embodiment, the opening degree of the proportional expansion valve 12 is proportionally controlled by the defrosting circuit 13 during cold r4I operation, and the outlet temperature of the proportional expansion valve 12 is controlled proportionally. The temperature difference between the temperature of the evaporator 4 and the temperature of the evaporator 4 is kept constant. Further, during defrosting operation, the defrosting circuit 13 fully opens the proportional expansion valve 12, and the heat exchange between the condenser 2 and the evaporator 4 is stopped, so that the hot gas is transferred to the evaporator. 4 and is defrosted.

このように第2の実施例によれば除霜装置11を含む冷
凍サイクル5の構造が簡単になると共に、除霜運転時に
おける比例膨張弁12の弁開度を上記除霜回路13にて
設定することにより、冷媒流量の制御が成されるもので
ある。尚、本実施例にあっては、除霜タイマ(図示せず
)との連動だけでなくデマンド・デフロスト方式のもの
を採用しても良い。更に、比例膨張弁12の弁開度も全
開放に限らず、低圧、a圧等を感知して弁開度を制御す
るようにしても良い。
In this way, according to the second embodiment, the structure of the refrigeration cycle 5 including the defrosting device 11 is simplified, and the opening degree of the proportional expansion valve 12 during defrosting operation is set by the defrosting circuit 13. By doing so, the refrigerant flow rate can be controlled. In addition, in this embodiment, a demand defrost method may be adopted in addition to interlocking with a defrost timer (not shown). Furthermore, the valve opening degree of the proportional expansion valve 12 is not limited to full opening, but may be controlled by sensing low pressure, a pressure, etc.

次に第3図は第3の実施例を示すものである。Next, FIG. 3 shows a third embodiment.

図示Jるように、第3の実施例は第2の実施例にて示し
た冷凍サイクル5の庫内20にサーミスタセンサ■ll
iと、比例膨張弁12の出口にサーミスタセンナTII
Qと、蒸発@4の出口にサーミスタセンサTll5が設
けられたものである。
As shown in the figure, the third embodiment has a thermistor sensor installed in the refrigerator interior 20 of the refrigeration cycle 5 shown in the second embodiment.
i and a thermistor sensor TII at the outlet of the proportional expansion valve 12.
A thermistor sensor Tll5 is provided at the outlet of Q and evaporation @4.

以下に第3の実施例の作用を述べる。The operation of the third embodiment will be described below.

サーミスタセンサTHeとTll5との感知温度を夫々
Te、Ts、とりる。第4図に示す如く、冷却運転時に
は庫内20の温度と比例−張弁12の出口温度Te、蒸
発器4の一出口温1fTsとの関係は庫内20の温度が
下がればTs 、Teも下がる。
The temperatures sensed by the thermistor sensors THe and Tll5 are taken as Te and Ts, respectively. As shown in FIG. 4, during cooling operation, the relationship between the temperature inside the refrigerator 20, the outlet temperature Te of the proportional tension valve 12, and the outlet temperature 1fTs of the evaporator 4 is such that as the temperature inside the refrigerator 20 decreases, Ts and Te also decrease. Go down.

この時、比例膨張弁12の弁開度Xは差温ΔT(Ts 
−Te )が常に一定と成るように制御されている。即
ち、冷却運転中には過熱度(ΔT−TS−TO)が一定
で運転されることになる。また、第5図は庫内20の温
度11111時の圧縮Ia1と比例膨張弁12の弁開度
の動作状態図である。庫内20の温度の制御は庫内20
の空気温度を感知するサーミスタセンサTl1iにより
制御される。即ち冷却運転中には圧縮機1は駆a(ON
)され、比例膨張弁12の弁開度Xは上述の如く、ΔT
=一定となるよう制御されている。庫内20の温度が下
がり、予め設定した設定温度Teaに達すると同時に、
弁開度(x=0)すなわち全閉成として、その後t[な
る時間だけ圧縮機1の駆動(ON)を続けて、時間tf
経過後に圧縮機1は停止(OFF >するようにしであ
る。庫内20の温度が設定湿度Tea以上になると、再
度、上述の如く、冷却運転を行う(ポンプダウン制御)
。最低停止時間をtsとすると、上記圧縮機1の駆動(
ON)時間【fは最低停止時間tmよりも短い時間に設
定されている。
At this time, the valve opening degree X of the proportional expansion valve 12 is the temperature difference ΔT (Ts
-Te) is controlled so that it is always constant. That is, during cooling operation, the degree of superheat (ΔT-TS-TO) is kept constant. Moreover, FIG. 5 is an operation state diagram of the compression Ia1 and the valve opening degree of the proportional expansion valve 12 when the temperature inside the refrigerator 20 is 11111. The temperature inside the refrigerator 20 is controlled by the refrigerator interior 20.
It is controlled by a thermistor sensor Tl1i that senses the air temperature. That is, during the cooling operation, the compressor 1 is turned on (ON).
), and the valve opening X of the proportional expansion valve 12 is ΔT as described above.
= Controlled to be constant. At the same time as the temperature inside the refrigerator 20 decreases and reaches the preset temperature Tea,
With the valve opening degree (x=0), that is, fully closed, the compressor 1 continues to be driven (ON) for a period of time t[, and the time tf
After the time has elapsed, the compressor 1 is set to stop (OFF). When the temperature inside the refrigerator 20 reaches the set humidity Tea or higher, the cooling operation is performed again as described above (pump down control).
. If the minimum stop time is ts, the drive of the compressor 1 (
ON) time [f is set to a time shorter than the minimum stop time tm.

尚、圧縮fi1の駆動(ON)信号が発信された場合に
は圧りの均衡をとるために比例膨張弁12はtv秒だけ
全開に制御された後、圧縮機1は駆動(ON)°  さ
れる。
In addition, when the drive (ON) signal of the compression fi1 is transmitted, the proportional expansion valve 12 is controlled to be fully open for tv seconds in order to balance the pressure, and then the compressor 1 is driven (ON). Ru.

このように過熱度一定制御方式であるので、効率の良い
冷却運転が成されることに成り、負荷変動の激しい場合
にも適用でき省エネルギ化が達成できる。
As described above, since the superheat degree is constant control system, efficient cooling operation is achieved, and it can be applied even in cases where there are severe load fluctuations, and energy saving can be achieved.

また、その構造は上記比例膨張弁12に独立させてサー
ミスタセン1ノTtle、’ Tl1s、 Tl1iを
設けるだけの簡単な構造であり、サービス性が向上する
In addition, the structure is simple as thermistor sensors Ttle, Tl1s and Tl1i are provided independently of the proportional expansion valve 12, and serviceability is improved.

更に、冷凍サイクル5のマツチングは過熱度の設定とガ
ス化の選定とによって容易になされることになる。
Furthermore, matching of the refrigeration cycle 5 can be easily done by setting the degree of superheating and selecting the gasification.

また更に、ポンプダウン制御311と均衡作用により、
圧縮11の起動負荷が軽減でき省エネルギ化が達成でき
る。
Furthermore, due to the pump down control 311 and the balancing action,
The starting load on the compression unit 11 can be reduced and energy savings can be achieved.

そして、特に均衡回路を設けなくとも、比例膨張弁12
を全開放することにより圧力に均衡が図れる。
And, even without providing a particular balancing circuit, the proportional expansion valve 12
By fully opening the valve, the pressure can be balanced.

[発明の効果] 以上型するに本発明によれば次の如き優れた効果を発揮
する。
[Effects of the Invention] In summary, the present invention exhibits the following excellent effects.

(1)  凝縮器と蒸発器とを結ぶ冷媒通路に冷凍負荷
に応じて比例的に弁の開度を調節する比例膨張弁を設け
たので、従来のようなバイパス冷奴通路を必要とせず、
冷凍サイクルの構造が簡単に    ゛できる。
(1) A proportional expansion valve is installed in the refrigerant passage connecting the condenser and evaporator to proportionally adjust the opening of the valve according to the refrigeration load, eliminating the need for a bypass cold storage passage like in the past.
The structure of the refrigeration cycle can be easily constructed.

(2)  除霜時におtプる比例膨張弁の開瓜を設定す
る事により、ボットガスの流か制御ができ、効率の良い
除TI運転ができる。
(2) By setting the opening of the proportional expansion valve that is turned on during defrosting, the flow of bot gas can be controlled and efficient TI removal operation can be achieved.

(3)(1)項の如く、構造が簡単に成ったので製造コ
ストが低減でき、安価な除霜装置が得られる。
(3) As mentioned in item (1), since the structure is simple, the manufacturing cost can be reduced and an inexpensive defrosting device can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1の実施例を承り系統図、第2図は
本発明の第2の実施例を示す系統図、第3図は本発明の
第3の実施例を示す系統図、第4図は第3の実施例の運
転中のセンサー感知温度、比例膨張弁の弁開度と庫内温
度との関係図、第5図は庫内温度制御時の圧縮機と比例
膨張弁の弁開度の動作状態図、第6図は従来例を示す系
統図である。 図中、2は凝縮器、4は蒸発器、5は冷凍サイクル、6
は冷媒通路、11は除T1装置、12は比例膨張弁、1
3は除霜回路である。 第2図 第3図 第4図
Fig. 1 is a system diagram showing the first embodiment of the present invention, Fig. 2 is a system diagram showing the second embodiment of the invention, and Fig. 3 is a system diagram showing the third embodiment of the invention. , Fig. 4 is a diagram of the relationship between the temperature detected by the sensor during operation of the third embodiment, the valve opening of the proportional expansion valve, and the temperature inside the refrigerator, and Fig. 5 shows the compressor and the proportional expansion valve when controlling the temperature inside the refrigerator. FIG. 6 is a system diagram showing a conventional example. In the figure, 2 is a condenser, 4 is an evaporator, 5 is a refrigeration cycle, and 6
1 is a refrigerant passage, 11 is a T1 device, 12 is a proportional expansion valve, 1
3 is a defrosting circuit. Figure 2 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 冷凍サイクルを構成する凝縮器と蒸発器とを結ぶ冷媒通
路に、冷凍負荷に応じて比例的に弁の開度を調節する比
例膨張弁を設けると共に、除霜時に比例膨張弁を開放さ
せ、蒸発器に凝縮器側からホットガスを流過させる除霜
回路を設けたことを特徴とする冷凍装置の除霜装置。
A proportional expansion valve is installed in the refrigerant passage connecting the condenser and evaporator that make up the refrigeration cycle, and the opening degree of the valve is adjusted proportionally according to the refrigeration load. A defrosting device for a refrigeration system, characterized in that a defrosting circuit is provided in the container to allow hot gas to flow from the condenser side.
JP18972985A 1985-08-30 1985-08-30 Defroster for refrigerator Pending JPS6252374A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18972985A JPS6252374A (en) 1985-08-30 1985-08-30 Defroster for refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18972985A JPS6252374A (en) 1985-08-30 1985-08-30 Defroster for refrigerator

Publications (1)

Publication Number Publication Date
JPS6252374A true JPS6252374A (en) 1987-03-07

Family

ID=16246211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18972985A Pending JPS6252374A (en) 1985-08-30 1985-08-30 Defroster for refrigerator

Country Status (1)

Country Link
JP (1) JPS6252374A (en)

Similar Documents

Publication Publication Date Title
US7004246B2 (en) Air-to-air heat pump defrost bypass loop
AU699381B2 (en) Tandem refrigeration system
US4197716A (en) Refrigeration system with auxiliary heat exchanger for supplying heat during defrost cycle and for subcooling the refrigerant during a refrigeration cycle
US5669222A (en) Refrigeration passive defrost system
US7028494B2 (en) Defrosting methodology for heat pump water heating system
WO1995013510A9 (en) Tandem refrigeration system
JPS636368A (en) Air conditioner
US4420943A (en) Method and apparatus for refrigerator defrost
US2907181A (en) Hot gas defrosting refrigerating system
US20080016896A1 (en) Refrigeration system with thermal conductive defrost
KR102240394B1 (en) Simultaneous Refrigeration and Defrost Operating System of Low Temperature Refrigeration Warehouse
JPH0730979B2 (en) Air conditioner
JP2526716B2 (en) Air conditioner
JPH09318205A (en) Refrigerating device
JPS6252374A (en) Defroster for refrigerator
WO2001020235A1 (en) Apparatus and method for evaporator defrosting
JPH01123966A (en) Refrigerator
KR0135133B1 (en) Evaporator structure for cooler with double evaporators
JPH0712439A (en) Binary refrigerator
JP2990441B2 (en) Thermoelectric element control device for vehicle refrigerator-freezer
JP2003139459A (en) Refrigerator
JPH065572Y2 (en) Refrigeration equipment
JPS6350629B2 (en)
JPH0334614Y2 (en)
JPS58217177A (en) Cooling device