JPS6252251B2 - - Google Patents

Info

Publication number
JPS6252251B2
JPS6252251B2 JP54089343A JP8934379A JPS6252251B2 JP S6252251 B2 JPS6252251 B2 JP S6252251B2 JP 54089343 A JP54089343 A JP 54089343A JP 8934379 A JP8934379 A JP 8934379A JP S6252251 B2 JPS6252251 B2 JP S6252251B2
Authority
JP
Japan
Prior art keywords
pulse
optical
light
reflected
optical fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54089343A
Other languages
Japanese (ja)
Other versions
JPS5614739A (en
Inventor
Hideharu Tokiwa
Hiroharu Wakabayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KDDI Corp
Original Assignee
Kokusai Denshin Denwa KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kokusai Denshin Denwa KK filed Critical Kokusai Denshin Denwa KK
Priority to JP8934379A priority Critical patent/JPS5614739A/en
Publication of JPS5614739A publication Critical patent/JPS5614739A/en
Publication of JPS6252251B2 publication Critical patent/JPS6252251B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/071Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using a reflected signal, e.g. using optical time domain reflectometers [OTDR]

Description

【発明の詳細な説明】 本発明は光パルス・エコー法による光パルス・
エコー検知装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention is based on the optical pulse echo method.
This invention relates to an echo detection device.

光フアイバはその低損失性を生かした長距離大
容量な通信システムへの適用が有効であり、基幹
伝送路や国際間長距離海底ケーブル伝送路への適
用が具体的に検討され始めている。これらの長距
離システムでは、ケーブル製造時あるいは敷設時
前後において、予め光フアイバの破断などの伝送
路障害の有無を検査する技術あるいは障害時の障
害位置探索の技術が重要であり、従来の同軸ケー
ブル・システムで用いられて来たパルス・エコー
法を光通信系に適用した光パルス・エコー検知装
置の開発が切望されている。特に、低損失(0.2
〜1dB/Km)の光フアイバの場合、空気中での反
射率は最大でも約3.5%であり、海水中では最大
でも約0.2%程度であるので、微弱信号の増幅並
びに雑音低減化の技術すなわち信号対雑音比向上
の技術が重要となつている。
Optical fibers are effective when applied to long-distance, high-capacity communication systems by taking advantage of their low loss properties, and specific applications are beginning to be considered for backbone transmission lines and international long-distance submarine cable transmission lines. In these long-distance systems, it is important to have technology to test for transmission line failures such as optical fiber breaks beforehand before or after cable manufacturing or installation, or to locate failures in the event of a failure.・There is a strong need for the development of an optical pulse-echo detection device that applies the pulse-echo method used in optical communication systems to optical communication systems. In particular, low loss (0.2
In the case of optical fiber (~1 dB/Km), the reflectance in the air is about 3.5% at most, and about 0.2% at most in seawater, so techniques for amplifying weak signals and reducing noise are needed. Techniques for improving the signal-to-noise ratio are becoming important.

従来の光パルス・エコー検知装置は第1図に示
す様に3つの光入出力端子(以下「ポート」とい
う)の光分岐部1を用いて、レーザの如き発光源
2からの光パルスを障害点3を持つ光フアイバ4
へ送出し、障害点3で反射した光パルスは光分岐
部1内のハーフ・ミラー5によつて2分され、そ
の一部が光検出器6に入り、電気信号に変換され
た後、増幅器7によつて増幅され、積分効果を利
用して信号成分だけを取出す雑音処理器8を経て
オシロスコープなどの表示装置9で表示され、送
出パルスと反射パルスとの到達時間差を測定して
障害位置を求めていた。しかし、この構成では、
光分岐部1内に配置されているプリズムやハー
フ・ミラーあるいは各ポートに接続されている光
フアイバ端面などからの反射が避けられず、かつ
この反射パルスが障害点3からの微弱な反射パル
スに比べて非常に大きいために、増幅器7が飽和
してしまい、反射パルスを十分に増幅できないと
いう欠点と、送出光信号と受信光信号とを分離す
るためにハーフ・ミラーやプリズムを用いた光分
岐部1を使用しているために、原理的に反射パル
スは送出光信号に比べ6dBもの挿入損失を受ける
こととなり、信号対雑音比を低減させるという欠
点とがあつた。
As shown in Fig. 1, a conventional optical pulse/echo detection device uses an optical branching section 1 of three optical input/output terminals (hereinafter referred to as "ports") to detect optical pulses from a light emitting source 2 such as a laser. Optical fiber 4 with point 3
The optical pulse reflected at the failure point 3 is divided into two by the half mirror 5 in the optical branching section 1, a part of which enters the photodetector 6, where it is converted into an electrical signal and then sent to the amplifier. 7, the signal is amplified by a noise processor 8 that uses an integral effect to extract only the signal component, and then displayed on a display device 9 such as an oscilloscope.The signal is then displayed on a display device 9 such as an oscilloscope. I was looking for it. However, with this configuration,
Reflection from the prism or half mirror placed in the optical branch 1 or the end face of the optical fiber connected to each port is unavoidable, and this reflected pulse becomes a weak reflected pulse from the failure point 3. The disadvantage is that the amplifier 7 becomes saturated and the reflected pulse cannot be sufficiently amplified because it is very large compared to the other two, and optical branching using a half mirror or prism is required to separate the transmitted optical signal and the received optical signal. Because part 1 is used, the reflected pulse will theoretically suffer from an insertion loss of 6 dB compared to the transmitted optical signal, which has the disadvantage of reducing the signal-to-noise ratio.

これらの欠点に対し、不要な反射パルスを発生
させず、かつ原理的な損失を従来の半分に抑える
方法(信学会技研報CS79−17参照)などが提案
されているが、不要な減衰を与えていることには
変りがない。
To address these shortcomings, methods have been proposed that do not generate unnecessary reflected pulses and reduce the theoretical loss to half of the conventional one (see IEICE Technical Report CS79-17), There is no difference in the fact that

本発明は光分岐手段からの不要な反射パルスも
なく、かつ原理的には挿入損失もない光分岐手段
を用いた信号対雑音比に優れた光パルス・エコー
検知装置を提供するものである。
The present invention provides an optical pulse/echo detection device which has an excellent signal-to-noise ratio and uses an optical branching means that has no unnecessary reflected pulses from the optical branching means and, in principle, no insertion loss.

この目的達成のために、本発明の光パルス・エ
コー検知装置は第1の状態では第1と第2のポー
トが導通となり、第2の状態では第2と第3のポ
ートが導通となる様に調整された電気あるいは音
響光学素子を使用した3ポートの光分岐装置を光
分岐手段として使用し、第1のポートには発光源
を第2のポートには光フアイバを第3のポートに
は光検出器をそれぞれ接続した上で、発光源から
の光パルスが当該光分岐装置を通過するまでは第
1の状態にあり、通過後直ちに第2の状態に切換
えるように構成されていることを特徴としてい
る。
To achieve this objective, the optical pulse echo detection device of the present invention is configured such that in the first state, the first and second ports are electrically connected, and in the second state, the second and third ports are electrically conductive. A three-port optical branching device using electric or acousto-optic elements adjusted to After connecting each of the photodetectors, it is configured such that the light pulse from the light emitting source is in the first state until it passes through the light branching device, and immediately switches to the second state after passing through the light branching device. It is a feature.

以下図面を用いて本発明を詳細に説明する。 The present invention will be explained in detail below using the drawings.

第2図は本発明の実施例であつて、発光源2か
ら送出された光パルスは光分岐装置11の第1の
ポート10を経て光分岐装置11の内部に入り、
そこで電気あるいは音響光学素子15による偏向
を受けて第2のポート12に接続されている光フ
アイバ4に入る。このとき、発光源2の駆動パル
スに同期して電気あるいは音響光学素子15へ偏
向用電気信号を供給する偏向信号供給源13は発
光源2から送出された光パルスが光分岐装置11
を通過するまでの時間のみ偏向信号を供給し、そ
れ以後は偏向信号が断の状態となる様に構成して
おく。現在の技術では、おおよそ10度程度の偏向
が数ナノ秒の速さで達成される。光フアイバ4に
送出された光パルスのうち一部は障害点3で反射
し、再び光フアイバ4を経て第2のポートから光
分岐装置11に入射するが、この時は前述の説明
で明らかなように電気あるいは音響光学素子15
には偏向信号が印加されていないので、反射パル
スは光分岐装置11内を直進し第3のポート14
を経て光検出器6に到達する。
FIG. 2 shows an embodiment of the present invention, in which a light pulse sent out from a light emitting source 2 enters the inside of the optical branching device 11 through the first port 10 of the optical branching device 11.
There, it is deflected by an electric or acousto-optic element 15 and enters the optical fiber 4 connected to the second port 12 . At this time, a deflection signal supply source 13 that supplies an electric signal for deflection to the electric or acousto-optic element 15 in synchronization with the driving pulse of the light emitting source 2 transmits the optical pulse sent from the light emitting source 2 to the optical branching device 11.
The configuration is such that the deflection signal is supplied only during the time it passes through, and thereafter the deflection signal is turned off. With current technology, deflections of approximately 10 degrees can be achieved in a few nanoseconds. A part of the optical pulse sent to the optical fiber 4 is reflected at the failure point 3, passes through the optical fiber 4 again, and enters the optical branching device 11 from the second port, but at this time, as is clear from the above explanation, Electric or acousto-optic elements 15
Since no deflection signal is applied to
The light then reaches the photodetector 6.

電気光学素子としてはLiNbO3又はLiTaO3の如
き電気光学効果を有する材料に適当な強さの直流
電界を印加するように形成してこの材料に光を通
すことにより実現することができ、又音響光学素
子としては、LiNbO3の如き音響光学効果を有す
る材料に適当な強さの超音波を印加するように形
成して、この材料に光を通すことにより実現する
ことができる。
An electro-optical element can be realized by applying a DC electric field of appropriate strength to a material having an electro-optic effect such as LiNbO 3 or LiTaO 3 and passing light through this material. The optical element can be realized by forming a material having an acousto-optic effect such as LiNbO 3 so as to apply an ultrasonic wave of appropriate intensity, and then passing light through this material.

本発明による光パルス・エコー検知装置は以上
説明した様な動作をするので光分岐部からの不要
な反射パルスもなく、かつ挿入損失も原理的には
無くする事ができる利点があり、信号対雑音比に
優れた光パルス・エコー検知装置である。
Since the optical pulse/echo detection device according to the present invention operates as described above, it has the advantage that there are no unnecessary reflected pulses from the optical branching section, and insertion loss can also be eliminated in principle. This is an optical pulse/echo detection device with excellent noise ratio.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の装置例を示すブロツク図、第2
図は本発明の実施例を示すブロツク図である。 1,11……光分岐部、2……発光源、3……
障害点、4……光フアイバ、5……ハーフ・ミラ
ー、6……光検出器、7……増幅器、8……雑音
処理器、9……オシロスコープ、10,12,1
4……ポート、13……偏向信号源。
Figure 1 is a block diagram showing an example of a conventional device; Figure 2 is a block diagram showing an example of a conventional device;
The figure is a block diagram showing an embodiment of the present invention. 1, 11... Light branching section, 2... Light emitting source, 3...
Failure point, 4... Optical fiber, 5... Half mirror, 6... Photodetector, 7... Amplifier, 8... Noise processor, 9... Oscilloscope, 10, 12, 1
4...Port, 13...Deflection signal source.

Claims (1)

【特許請求の範囲】[Claims] 1 光パルス発光源からの光パルスを被測定光フ
アイバに送出し、該被測定光フアイバの障害点で
反射されてくる反射パルスを反射パルス検出手段
で検出し、前記光パルスの送出時から該反射パル
スの検出時までの時間差から前記障害点を標定す
るように構成された光パルス・エコー検知装置に
おいて、前記光パルス発光源と前記被測定光フア
イバと前記反射パルス検出手段との間に第1の状
態では前記光パルス発光源と前記被測定光フアイ
バとの間に光路を形成し、第2の状態では前記被
測定光フアイバと前記反射パルス検出手段との間
に光路を形成する光分岐手段を設けるとともに、
該光分岐手段を前記第1の状態に設定して前記光
パルス発光源から光パルスを発光せしめ、該発光
後予め定めた時間経過後に該光分岐手段を前記第
2の状態に設定する制御手段を設けたことを特徴
とする光パルス・エコー検知装置。
1 Send a light pulse from a light pulse emission source to an optical fiber to be measured, detect a reflected pulse reflected at a fault point of the optical fiber to be measured by a reflected pulse detection means, and detect the reflected pulse from the time of sending out the light pulse. In the optical pulse/echo detection device configured to locate the failure point based on the time difference between detection of reflected pulses, an optical pulse echo detector is provided between the optical pulse emission source, the optical fiber to be measured, and the reflected pulse detection means. an optical branch that forms an optical path between the optical pulse emission source and the optical fiber to be measured in a first state, and forms an optical path between the optical fiber to be measured and the reflected pulse detection means in a second state; In addition to providing means,
Control means for setting the light branching means in the first state to cause the light pulse emission source to emit light pulses, and setting the light branching means in the second state after a predetermined time elapses after the light emission. An optical pulse/echo detection device characterized by being provided with.
JP8934379A 1979-07-16 1979-07-16 Light pulse echo detector Granted JPS5614739A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8934379A JPS5614739A (en) 1979-07-16 1979-07-16 Light pulse echo detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8934379A JPS5614739A (en) 1979-07-16 1979-07-16 Light pulse echo detector

Publications (2)

Publication Number Publication Date
JPS5614739A JPS5614739A (en) 1981-02-13
JPS6252251B2 true JPS6252251B2 (en) 1987-11-04

Family

ID=13968047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8934379A Granted JPS5614739A (en) 1979-07-16 1979-07-16 Light pulse echo detector

Country Status (1)

Country Link
JP (1) JPS5614739A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5773633A (en) * 1980-10-27 1982-05-08 Nippon Telegr & Teleph Corp <Ntt> Light pulse testing device
JPS58113831A (en) * 1981-12-28 1983-07-06 Fujitsu Ltd Measuring device for loss distribution
DE3506884A1 (en) * 1985-02-27 1986-08-28 Philips Patentverwaltung Gmbh, 2000 Hamburg OPTICAL TIME AREA REFLECTOR WITH HETERODYN RECEPTION

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS512379A (en) * 1974-06-24 1976-01-09 Mitsubishi Electric Corp FUJUN BUTSUKAKUSANHOHO
JPS5149737A (en) * 1974-10-25 1976-04-30 Nippon Electric Co HIKARIFUAI BADANSENKEN SASOCHI
JPS5773633A (en) * 1980-10-27 1982-05-08 Nippon Telegr & Teleph Corp <Ntt> Light pulse testing device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS512379A (en) * 1974-06-24 1976-01-09 Mitsubishi Electric Corp FUJUN BUTSUKAKUSANHOHO
JPS5149737A (en) * 1974-10-25 1976-04-30 Nippon Electric Co HIKARIFUAI BADANSENKEN SASOCHI
JPS5773633A (en) * 1980-10-27 1982-05-08 Nippon Telegr & Teleph Corp <Ntt> Light pulse testing device

Also Published As

Publication number Publication date
JPS5614739A (en) 1981-02-13

Similar Documents

Publication Publication Date Title
JP4782798B2 (en) Network evaluation
US5343286A (en) OTDR having optically switched amplified output onto test fibre to suppress optical amplifier noise between OTDR pluses
US5062704A (en) Optical time domain reflectometer having pre and post front panel connector testing capabilities
US6046797A (en) Optical time domain reflectometer and method
US6028684A (en) Path to provide OTDR measurements of an optical transmission system that includes optical isolators
JPS6252251B2 (en)
JPS5811563B2 (en) Hikari Eye Bar Tsuushin Houshiki
CA1224936A (en) Test method for optical fibers and apparatus therefor
JPS63313030A (en) Optical fiber testing device
JP3059580B2 (en) Optical pulse tester
JP3072865B2 (en) Optical amplifier for optical pulse tester
JPS62123327A (en) Coherent otdr apparatus
JPS5871740A (en) Monitoring system for optical fiber line
JPH09210847A (en) Monitoring method for optical repeater in optical transmission system and optical repeater used for it
JP3244093B2 (en) Test method and apparatus for branch type optical line
JPS6154421A (en) Light pulse testing instrument
JPH0532746Y2 (en)
JPH0130097B2 (en)
JP2511265B2 (en) Optical transmission equipment test circuit
JP3018772B2 (en) Optical amplifier
JPH058979B2 (en)
JPH0793054B2 (en) Humidity detection method for power cable lines
CN117129732A (en) All-fiber current transformer with high optical signal-to-noise ratio
JPH0210241A (en) Method for testing optical fiber line
US20010022340A1 (en) Electro-optic probe