JPS6252206A - Counterbalance valve in hydraulic elevating device - Google Patents

Counterbalance valve in hydraulic elevating device

Info

Publication number
JPS6252206A
JPS6252206A JP19274385A JP19274385A JPS6252206A JP S6252206 A JPS6252206 A JP S6252206A JP 19274385 A JP19274385 A JP 19274385A JP 19274385 A JP19274385 A JP 19274385A JP S6252206 A JPS6252206 A JP S6252206A
Authority
JP
Japan
Prior art keywords
flow path
pressure
hydraulic
valve
counterbalance valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19274385A
Other languages
Japanese (ja)
Inventor
Makoto Yamamoto
良 山本
Makoto Sonoda
誠 園田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP19274385A priority Critical patent/JPS6252206A/en
Publication of JPS6252206A publication Critical patent/JPS6252206A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent a failure and a lowering of life of an upstream circuit apparatus and to promote energy saving by providing means for decreasing back pressure on an upstream counter balance valve. CONSTITUTION:A hydraulic actuator 5 provided with a counterbalance valve 6 and another downstream hydraulic actuator 7 are connected in series to a hydraulic pump 1 by center by-pass type directional control valves 2, 3, and a back pressure chamber 28 of the upstream counterbalance valve 6 is connected to a drain passage 29. Thus, upstream circuit pressure can be decreased to prevent a failure and a lowering of life of an upstream circuit apparatus. As pump driving power can be reduced, and further descending position energy of an upstream load is used for driving force of the downstream hydraulic actuator, energy can be effectively used.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は船舶、建設機械その他の物上げ機械に使用され
る油圧昇降装置又は油圧昇降装置を含む油圧駆動装置の
カウンタバランス弁に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a counterbalance valve for a hydraulic lifting device or a hydraulic drive device including a hydraulic lifting device used in ships, construction machines, and other lifting machines. .

〔従来の技術〕[Conventional technology]

一般にこの種の油圧昇降装置又は油圧昇降装置を含む油
圧駆動装置は複数の油圧アクチュエータを共通のポンプ
に直列に接続されたものが多い。
In general, this type of hydraulic lifting device or a hydraulic drive device including a hydraulic lifting device often has a plurality of hydraulic actuators connected in series to a common pump.

例えば第4図に示す従来装置は、油圧ポンプ1はセンタ
バイパス形方向切換弁2.3を介してタンク4に接続す
ると共に、方向切換弁2にはカウンタバランス弁6を介
して油圧モータ5を接続し、方向切換弁3にはカウンタ
バランス弁8を介して油圧モータ7を接続している。
For example, in the conventional device shown in FIG. 4, a hydraulic pump 1 is connected to a tank 4 via a center bypass type directional control valve 2.3, and a hydraulic motor 5 is connected to the directional control valve 2 via a counterbalance valve 6. A hydraulic motor 7 is connected to the directional control valve 3 via a counterbalance valve 8.

カウンタバランス弁6.8は流路20,25の油圧にス
プール27を介してばね26による設定圧及びカウンタ
バランス弁6,8の背圧、即ち流路17,22の油圧を
対抗させている。例えば第5図に示す実公昭51−37
251号公報記載のカウンタバランス弁は、Cポートに
導く外部パイロット圧にスプール27を介してばね26
による設定圧及びこのばね26を収容するばね室55に
小孔56を介して連通ずる流路17の油圧を対抗させて
いる。
The counterbalance valve 6.8 opposes the hydraulic pressure in the flow paths 20, 25 via the spool 27 with the set pressure by the spring 26 and the back pressure of the counterbalance valves 6, 8, that is, the oil pressure in the flow paths 17, 22. For example, as shown in Figure 5,
The counterbalance valve described in Publication No. 251 applies a spring 26 via a spool 27 to the external pilot pressure that leads to the C port.
The hydraulic pressure in the flow path 17 communicating with the spring chamber 55 housing the spring 26 through the small hole 56 is opposed.

第4図において、方向切換弁2のみ位置A又はBに切り
換えれば、油圧ポンプ1からの圧油は流路17、チェッ
ク弁18、流路19又は流路20から油圧モータ5へ供
給され、戻り油は流路20又は流路19、カウンタバラ
ンス弁6、流路17から方向切換弁2、流路15、方向
切換弁3、戻り流路16を経てタンク4へ還流し、油圧
モータ5のみ駆動する。又、方向切換弁3のみ位置A又
はBに切り換えると、油圧ポンプ1からの圧油は流路1
4、方向切換弁2、流路15、方向切換弁3を通って流
路22、チェック弁23、流路24又は流路25から油
圧モータ7に供給され、戻り油は流路25又は流路24
、カウンタバランス弁8、流路22を通り方向切換弁3
、戻り流路21を経てタンク4へ還流し油圧モータ7の
み駆動することになる。
In FIG. 4, if only the directional control valve 2 is switched to position A or B, pressure oil from the hydraulic pump 1 is supplied to the hydraulic motor 5 from the flow path 17, the check valve 18, the flow path 19, or the flow path 20, The return oil is returned to the tank 4 from the flow path 20 or 19, the counterbalance valve 6, and the flow path 17 through the directional switching valve 2, the flow path 15, the directional switching valve 3, and the return flow path 16, and is returned to the tank 4 only to the hydraulic motor 5. Drive. Also, when only the directional control valve 3 is switched to position A or B, the pressure oil from the hydraulic pump 1 flows through the flow path 1.
4. The oil is supplied to the hydraulic motor 7 from the flow path 22, the check valve 23, the flow path 24, or the flow path 25 through the directional control valve 2, the flow path 15, and the directional control valve 3, and the return oil is supplied to the hydraulic motor 7 through the flow path 25 or the flow path. 24
, a counterbalance valve 8, a directional control valve 3 passing through a flow path 22
, through the return flow path 21 to the tank 4, and only the hydraulic motor 7 is driven.

次に、方向切換弁2を位置Bに切り換えると共に、方向
切換弁3を位置Aに切換えると、油圧ポンプ1からの圧
油は流路14、方向切換弁2、流路20、油圧モータ5
、流路19、カウンタバランス弁6、流路17、方向切
換弁2、流路15、方向切換弁3、流路22、チェック
弁23、流路24、油圧モータ7、流路25、方向切換
弁3を通り戻り流路21を経てタンク4へ還流する。即
ち、油圧モータ5と7ばポンプ1に直列に接続されて共
に駆動し、油圧モータ5は荷9を巻下げ、油圧モータ7
は荷を巻上げる。
Next, when the directional control valve 2 is switched to position B and the directional control valve 3 is switched to position A, the pressure oil from the hydraulic pump 1 is transferred to the flow path 14, the directional control valve 2, the flow path 20, and the hydraulic motor 5.
, flow path 19, counterbalance valve 6, flow path 17, directional switching valve 2, flow path 15, directional switching valve 3, flow path 22, check valve 23, flow path 24, hydraulic motor 7, flow path 25, directional switching It passes through the valve 3 and returns to the tank 4 via the return flow path 21. That is, the hydraulic motors 5 and 7 are connected in series to the pump 1 and driven together, the hydraulic motor 5 unloads the load 9, and the hydraulic motor 7 lowers the load 9.
hoists a load.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

前記従来装置において、上流側の油圧モータ5は巻下げ
ブレーキ有効圧で140 kg f lct&相当の荷
を巻下げ、下流側の油圧モータ7は有効圧140 kg
 f /c+A相当の荷を巻−ヒげているとすれば、流
路25の圧力が10 kg f / cJでは各流路の
圧力は次のようになる。即ち、流路24,22.15゜
17の圧力は10+140−150  (kgf/cJ
)、カウンタバランス弁6をばね26に抗して開くのに
必要な圧力を30 kg f /c+Jとすれば、流路
20の圧力は150+30=180 <kgf/C艷)
、流路19の圧力は180+140=320 (kgf
/ cJ )となる。
In the conventional device, the hydraulic motor 5 on the upstream side lowers a load equivalent to 140 kg f lct& at the effective pressure of the lowering brake, and the hydraulic motor 7 on the downstream side lowers the load equivalent to 140 kg at the effective pressure of the lowering brake.
Assuming that a load equivalent to f/c+A is being wound and unloaded, if the pressure in the flow path 25 is 10 kg f/cJ, the pressure in each flow path will be as follows. That is, the pressure in the flow paths 24 and 22.15°17 is 10+140-150 (kgf/cJ
), if the pressure required to open the counterbalance valve 6 against the spring 26 is 30 kgf/c+J, then the pressure in the flow path 20 is 150+30=180 <kgf/C>)
, the pressure in the flow path 19 is 180+140=320 (kgf
/cJ).

この場合、油圧ポンプ1に必要な圧力は流路20の圧力
と同じ180kgf/cJであってポンプ駆動動力が大
きくなり上流側の荷の位置エネルギが活用されていない
。しかも上流側回路の液圧が高圧のために油圧モータ5
が故障し易く、又油圧モータ5の軸受寿命が著しく低下
する欠点があったそこで本発明は、簡潔な手段により上
流側回路圧を低下せしめることにより、上流側回路機器
の故障及び寿命の低下を防止すると共に、ポンプ駆動動
力の軽減及び上流側の荷の降下位置エネルギを下流側の
荷の巻上げ動力に利用して省エネルギ化を図ることを目
的とする。
In this case, the pressure required for the hydraulic pump 1 is 180 kgf/cJ, which is the same as the pressure in the flow path 20, and the pump driving power becomes large, so that the potential energy of the load on the upstream side is not utilized. Moreover, because the hydraulic pressure in the upstream circuit is high, the hydraulic motor 5
Therefore, the present invention reduces the upstream circuit pressure by simple means, thereby preventing failures and shortening the life of the upstream circuit equipment. The purpose of the present invention is to reduce pump drive power and utilize the lowering potential energy of the load on the upstream side as the power to hoist the load on the downstream side, thereby saving energy.

〔問題点を解決するための手段〕[Means for solving problems]

前記の目的を達成するための本発明の構成を実施例に対
応する第1図〜第3図を用いて説明する。カウンタバラ
ンス弁6を配設した油圧アクチュエータ5とその下流の
他の油圧アクチュエータ7とを、センタバイパス形方向
切換弁2.3により油圧ポンプ1に直列に接続すると共
に、同時に駆動できるようにした油圧昇降装置又は油圧
昇降装置を含む油圧駆動装置において、上流側のカウン
タバランス弁6に背圧を低下させる手段を設ける。例え
ばカウンタバランス弁6の背圧室28を全部又は背圧室
28.42のうち背圧室28をドレン通路29に接続す
る。
The structure of the present invention for achieving the above object will be explained using FIGS. 1 to 3 corresponding to embodiments. A hydraulic actuator 5 equipped with a counterbalance valve 6 and another hydraulic actuator 7 downstream thereof are connected in series to the hydraulic pump 1 by a center bypass type directional control valve 2.3, and can be driven simultaneously. In a hydraulic drive device including a lifting device or a hydraulic lifting device, a counterbalance valve 6 on the upstream side is provided with means for reducing back pressure. For example, all of the back pressure chambers 28 of the counterbalance valve 6 or only one of the back pressure chambers 28.42 is connected to the drain passage 29.

〔作 用〕[For production]

第1図において、方向切換弁2を位置Bに、方向切換弁
3を位置Aに切換えると、油圧ポンプ1からの圧油は流
路14、方向切換弁2、流路20、油圧アクチュエータ
5、流路19、カウンタバランス弁6、流路17、方向
切換弁2、流路15、方向切換弁3、流路22、チェッ
ク弁23、流路24、油圧アクチュエータ7、流路25
、方向切換弁3、戻り流路21を経てタンク4へ還流し
、油圧アクチュエータ5は荷9を巻下げ、油圧アクチュ
エータ7は荷を巻上げる。
In FIG. 1, when the directional control valve 2 is switched to position B and the directional control valve 3 is switched to position A, the pressure oil from the hydraulic pump 1 is transferred to the flow path 14, the directional control valve 2, the flow path 20, the hydraulic actuator 5, Flow path 19, counterbalance valve 6, flow path 17, directional switching valve 2, flow path 15, directional switching valve 3, flow path 22, check valve 23, flow path 24, hydraulic actuator 7, flow path 25
, the directional switching valve 3, and the return passage 21 to the tank 4, the hydraulic actuator 5 lowers the load 9, and the hydraulic actuator 7 hoists the load.

この巻上げ巻下げ操作において、前記従来装置と同様に
、油圧アクチュエータ5は巻下げブレーキ有効圧で14
0kgf/cn+相当の荷を巻下げ、下流側の油圧モー
タ7は有効圧14. Okg f lca相当の荷を巻
上げているとすれば、流路25の圧力が10 kg f
 /ctaでは流路24,22,15.17の圧力は1
0+140−150 (kgf/cJ)である。又、カ
ウンタバランス弁6をばね26に抗して開くのに必要な
圧力を30 kg f / cJ、カウンタバランス弁
6の背圧が零では、流路20の圧力ば0+30=30 
(kgf/crA) 、流路19の圧力は30+140
=170 (kgf/cJ)となる。又、カウンタバラ
ンス弁6のスプールの1/3の断面積に流路17の圧力
が作用するのであれば、流路20の圧力は150X1/
3+30=80  (kgf/aa)、流路19の圧力
は86+140=220  <kgf/cJ)となる。
In this hoisting and lowering operation, similarly to the conventional device, the hydraulic actuator 5 is operated at a lowering brake effective pressure of 14
A load equivalent to 0 kgf/cn+ is lowered, and the hydraulic motor 7 on the downstream side has an effective pressure of 14. If a load equivalent to 10 kg f lca is being hoisted, the pressure in the flow path 25 is 10 kg f lca.
/cta, the pressure in channels 24, 22, 15.17 is 1
0+140-150 (kgf/cJ). Also, if the pressure required to open the counterbalance valve 6 against the spring 26 is 30 kg f / cJ, and the back pressure of the counterbalance valve 6 is zero, the pressure in the flow path 20 is 0 + 30 = 30.
(kgf/crA), the pressure in the flow path 19 is 30+140
=170 (kgf/cJ). Furthermore, if the pressure in the flow path 17 acts on 1/3 of the cross-sectional area of the spool of the counterbalance valve 6, the pressure in the flow path 20 will be 150X1/
3+30=80 (kgf/aa), and the pressure in the flow path 19 is 86+140=220<kgf/cJ).

従って、油圧ポンプ1に要求される圧力は、油圧ポンプ
1が方向切換弁2を介して流路20と接続しているから
30乃至80 kg f /ct&であり、同一負荷、
同一操作条件の前記従来装置が180kgf/cJとな
るのに比べ100乃至150kgf/cJも低い圧力で
従来装置と同様の巻下げ巻上げ操作を行うことができる
。又、流路19の圧力も前記従来装置では320kgf
/cJであったのが170乃至220kgf/ciと大
幅に低減できる。
Therefore, the pressure required for the hydraulic pump 1 is 30 to 80 kg f /ct & because the hydraulic pump 1 is connected to the flow path 20 via the directional control valve 2, and the pressure required for the same load is 30 to 80 kg f /ct&.
The same lowering and hoisting operations as the conventional device can be performed at a pressure 100 to 150 kgf/cJ lower than that of the conventional device under the same operating conditions, which is 180 kgf/cJ. In addition, the pressure in the flow path 19 was also 320 kgf in the conventional device.
/cJ can be significantly reduced to 170 to 220 kgf/ci.

〔実 施 例〕〔Example〕

本発明の実施例を第1図〜第3図について説明する。第
1図において、油圧ポンプ1はセンタバイパス形の方向
切換弁2.3を介してタンク4に接続し、方向切換弁2
はカウンタバランス弁6を介して油圧モータ5に、方向
切換弁3はカウンタバランス弁8を介して油圧モータ7
に接続している。
Embodiments of the present invention will be described with reference to FIGS. 1 to 3. In FIG. 1, a hydraulic pump 1 is connected to a tank 4 via a center bypass type directional valve 2.3.
is connected to the hydraulic motor 5 via the counterbalance valve 6, and the directional control valve 3 is connected to the hydraulic motor 7 via the counterbalance valve 8.
is connected to.

尚、油圧モータ7には図示されていないが油圧モータ5
と同様、荷を取付けるウィンチドラムを連結している。
Although not shown in the diagram, the hydraulic motor 5
Similarly, a winch drum is connected to which the load is attached.

11.12.13はそれぞれリリーフ弁である。11, 12, and 13 are relief valves, respectively.

以上の構成は第4図に示す従来装置と同様である。又、
カウンタバランス弁8は、ばね26による設定圧と°流
路22から導かれた油圧とをスプール27を介して流路
25の油圧と対抗させているので、従来装置のカウンタ
バランス弁8と同様の構成である。これに対し、カウン
タバランス弁6は背圧室であるばね室28をドレン通路
29に解放している。
The above configuration is similar to the conventional device shown in FIG. or,
The counterbalance valve 8 uses the set pressure by the spring 26 and the oil pressure led from the flow path 22 to oppose the oil pressure in the flow path 25 via the spool 27, so it is similar to the counterbalance valve 8 of the conventional device. It is the composition. On the other hand, the counterbalance valve 6 opens the spring chamber 28, which is a back pressure chamber, to the drain passage 29.

第2図はカウンタバランス弁6の具体的構成例を示す。FIG. 2 shows a specific example of the configuration of the counterbalance valve 6. As shown in FIG.

図において、ケーシング31に進退動可能に嵌挿された
スプール27の一端部には流路20に連通する通孔32
,33、絞り孔34を設け、この絞り孔34はスプール
端が臨む液室35に接続している。一方、スプール27
の他端が臨む背圧室であるばね室28は通孔39を介し
てドレン通路29に連通しているので、流路17からス
プール嵌挿孔38とスプール27との隙間を経てばね室
28に溜る作動油はドレン通路29を経て排出される。
In the figure, a through hole 32 communicating with the flow path 20 is provided at one end of the spool 27 which is fitted into the casing 31 so as to be movable forward and backward.
, 33, and a throttle hole 34 is provided, and this throttle hole 34 is connected to a liquid chamber 35 facing the spool end. On the other hand, spool 27
The spring chamber 28, which is a back pressure chamber whose other end faces, communicates with the drain passage 29 through the through hole 39, so that the spring chamber 28 is connected to the drain passage 29 from the flow passage 17 through the gap between the spool insertion hole 38 and the spool 27. The hydraulic oil accumulated in the drain passage 29 is discharged through the drain passage 29.

従って、ばね室28の背圧は零であり、スプール27を
介して流路20の圧力と対抗するのばばね26だけであ
る。
Therefore, the back pressure in the spring chamber 28 is zero and only the spring 26 opposes the pressure in the flow path 20 via the spool 27.

第3図に示すいま一つの実施例は第2図に示す構成にダ
ンピング機構40を付加したもので、背圧室がばね室2
8とダンピング機構40のダンピング室42からなり、
ばね室28はドレン通路29に通じ、流路17の圧力が
作用するダンピング室42は断面積をスプール27の断
面積の1/3にとっているため、スプールにかかる背圧
は従来装置の1/3となる。この実施例はスプール27
に一部背圧を生ぜしめる代わりにダンピング機能を付加
したというものである。
Another embodiment shown in FIG. 3 is one in which a damping mechanism 40 is added to the configuration shown in FIG.
8 and a damping chamber 42 of a damping mechanism 40,
The spring chamber 28 communicates with the drain passage 29, and the damping chamber 42 on which the pressure of the flow passage 17 acts has a cross-sectional area of 1/3 of the cross-sectional area of the spool 27, so the back pressure applied to the spool is 1/3 of that of the conventional device. becomes. In this example, the spool 27
Instead of creating some back pressure, a damping function is added.

ダンピング機構40は、スプール27のばね26側端部
にピストン41を嵌挿したダイビング室42を設け、ピ
ストン41はダンピング室42に配設したばね43によ
りばね受は座44のばね案内軸45に当接し、ダンピン
グ室42は通孔46、ダンピング室42へのみ流体流れ
を許すチェ・7り弁47、通路48.49を介して流路
17に、又、絞り孔50、スプール27の環状溝51を
介して流路17に連通している。この構成によりスプー
ル27が弁開方向(図において右方向)へ移動するとき
には絞り孔50がダンピング室42からの圧油を絞るた
めスプールのダンピング作用が得られ、流量急減、負荷
急増等によりスプールが弁閉方向に移動するときにはチ
ェック弁47が開きダンピング室42と流路17とが連
通して速やかに弁を閉じる。
The damping mechanism 40 includes a diving chamber 42 in which a piston 41 is inserted into the end of the spool 27 on the spring 26 side. The damping chamber 42 is in contact with the flow passage 17 via the through hole 46, the check valve 47 that allows fluid flow only into the damping chamber 42, the passage 48, 49, and the throttle hole 50, the annular groove of the spool 27. It communicates with the flow path 17 via 51. With this configuration, when the spool 27 moves in the valve opening direction (rightward in the figure), the throttle hole 50 throttles the pressure oil from the damping chamber 42, so a damping action of the spool is obtained, and a sudden decrease in flow rate, sudden increase in load, etc. When moving in the valve closing direction, the check valve 47 opens, the damping chamber 42 and the flow path 17 communicate with each other, and the valve is quickly closed.

第1図において、油圧モータ5による荷9の巻下げと油
圧モータ7による荷の巻上げを同時に行うべく、方向切
換弁2を位置Bに、方向切換弁3を位置Aに切換えると
、油圧ポンプ1からの吐出油は流路14、方向切換弁2
、流路20、油圧モータ5、流路I9、カウンタバラン
ス弁6、流路17、方向切換弁2、流路15、方向切換
弁3、流路22、チェック弁23、流路24、油圧モー
タ7、流路25、方向切換弁3、戻り流路21を経てタ
ンク4へ還流し、油圧モータ5は荷巻下げ方向に駆動し
、油圧モータ7は荷巻上げ方向に駆動する。
In FIG. 1, when the directional switching valve 2 is switched to position B and the directional switching valve 3 is switched to position A, in order to lower the load 9 by the hydraulic motor 5 and hoist the load by the hydraulic motor 7 at the same time, the hydraulic pump 1 The oil discharged from the flow path 14 and the directional control valve 2
, flow path 20, hydraulic motor 5, flow path I9, counterbalance valve 6, flow path 17, directional switching valve 2, flow path 15, directional switching valve 3, flow path 22, check valve 23, flow path 24, hydraulic motor 7, the flow is returned to the tank 4 via the flow path 25, the direction switching valve 3, and the return flow path 21, the hydraulic motor 5 is driven in the load lowering direction, and the hydraulic motor 7 is driven in the load hoisting direction.

この巻下げ巻上げ操作において、前記従来装置と同様に
油圧モータ5は巻下げブレーキ有効圧で140 kg 
f / cA相当の荷を巻下げ、油圧モータ7は有効圧
140kgf/cil相当の荷を巻上げているとすれば
、流路25の圧力が10 kg f /cJでは、流路
24.22,15.17の圧力は10+140−150
  (k+rf /CJ) 、カウンタバランス弁6を
ばね26に抗して開くのに必要な圧力を30kgf /
 cAとすると、流路20の圧力は、第2図に示すよう
にスプール27のばね側端部に背圧が作用しないカウン
タバランス弁6では3 Q kg f /cJ、流路1
9の圧力は30+140=170 (kgf/cJ)と
なる。又、第3図に示すように断面積がスプール断面積
の1/3となるダンピング室42を有するカウンタバラ
ンス弁6では流路20の圧力は30+150X1/3=
80 (kgf/c+It)となり、流路19の圧力は
80+140=220 (kgf/ci)となる。
In this lowering and hoisting operation, the hydraulic motor 5 has a lowering brake effective pressure of 140 kg, similar to the conventional device described above.
f/cA, and the hydraulic motor 7 is hoisting a load equivalent to an effective pressure of 140 kgf/cil. If the pressure in the flow path 25 is 10 kgf/cJ, the flow paths 24, 22, 15 .17 pressure is 10+140-150
(k+rf/CJ), the pressure required to open the counterbalance valve 6 against the spring 26 is 30kgf/
cA, the pressure in the flow path 20 is 3 Q kg f /cJ in the counterbalance valve 6 where no back pressure acts on the spring side end of the spool 27 as shown in FIG. 2, and the pressure in the flow path 1
The pressure at point 9 is 30+140=170 (kgf/cJ). Further, as shown in FIG. 3, in the counterbalance valve 6 having the damping chamber 42 whose cross-sectional area is 1/3 of the spool cross-sectional area, the pressure in the flow path 20 is 30+150X1/3=
80 (kgf/c+It), and the pressure in the flow path 19 is 80+140=220 (kgf/ci).

即ち、本実施例ではポンプ吐出圧力は30乃至80 k
g f /cJであり、本実施例と同一負荷、同一操作
条件の前記従来装置が1.80 kg f /cJとな
るのに比べ著しく低圧化できる。又、油圧モータ制動圧
も従来装置が320kgf/c+Nであったのが170
乃至220 kg f / cJと大幅に低下すること
になる。
That is, in this embodiment, the pump discharge pressure is 30 to 80 k
g f /cJ, which can be significantly lower than that of the conventional device under the same load and operating conditions as in this embodiment, which is 1.80 kg f /cJ. Additionally, the hydraulic motor braking pressure has been reduced from 320 kgf/c+N to 170 kgf/c+N in the conventional system.
This results in a significant decrease of 220 kg f/cJ.

尚、前記作用効果は下流側の油圧アクチュエータ7に走
行用モータ、アーム旋回用モータ等昇隆用モータ以外の
ものを用いても得ることができる〔発明の効果〕 以上の説明より明らかなように本発明によれば、外部パ
イロット圧にスプールを介してばねによる設定圧及び背
圧を対抗させるカウンタバランス弁を配設した油圧アク
チュエータとその下流の油圧アクチュエータとを共通の
油圧ポンプに直列に接続し且つ同時に駆動できるように
した油圧昇降装置又は油圧昇降装置を含む油圧駆動装置
において、上流側のカウンタバランス弁に設けた背圧低
下手段により上流側回路圧を低下せしめているので、上
流側回路機器の故障及び寿命の低下を防止できると共に
、ポンプ駆動動力を軽減し、さらに上流側の荷の降下位
置エネルギを下流側油圧アクチュエータの駆動力に利用
できてエネルギの有効利用を図ることができる。
Note that the above-mentioned effects can also be obtained by using something other than the elevating motor, such as a traveling motor or an arm turning motor, for the downstream hydraulic actuator 7. [Effects of the Invention] As is clear from the above explanation, According to the present invention, a hydraulic actuator equipped with a counterbalance valve that opposes a set pressure and a back pressure caused by a spring to an external pilot pressure via a spool and a downstream hydraulic actuator are connected in series to a common hydraulic pump. In addition, in a hydraulic lifting device or a hydraulic drive device including a hydraulic lifting device that can be driven at the same time, the upstream circuit pressure is reduced by the back pressure reducing means provided in the upstream counterbalance valve, so that the upstream circuit equipment It is possible to prevent breakdowns and shortened service life of the hydraulic actuator, reduce pump drive power, and use the potential energy of the load on the upstream side to drive the downstream hydraulic actuator, making effective use of energy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例の油圧回゛路図、第2図及び第
3図はそれぞれ実施例に用いられたカランタバランス弁
の断面図、第4図は従来装置の油圧回路図、第5図は従
来装置に使用されているカウンタバランス弁の断面図で
ある。 1・・油圧ポンプ、5.7・・油圧アクチュエータ(油
圧モータ)、6.8・・カウンタバランス弁、26・・
ばね、27・・スプール、28・・ばね室、29・・ド
レン通路。
FIG. 1 is a hydraulic circuit diagram of an embodiment of the present invention, FIGS. 2 and 3 are sectional views of the Calanta balance valve used in the embodiment, and FIG. 4 is a hydraulic circuit diagram of a conventional device. FIG. 5 is a sectional view of a counterbalance valve used in a conventional device. 1...Hydraulic pump, 5.7...Hydraulic actuator (hydraulic motor), 6.8...Counter balance valve, 26...
Spring, 27...Spool, 28...Spring chamber, 29...Drain passage.

Claims (1)

【特許請求の範囲】[Claims] 外部パイロット圧にスプールを介してばねによる設定圧
及び背圧を対抗させるカウンタバランス弁を配設した油
圧アクチュエータとその下流の他の油圧アクチュエータ
とを共通の油圧ポンプに直列に接続し且つ同時に駆動で
きるようにした油圧昇降装置又は油圧昇降装置を含む油
圧駆動装置において、上流側のカウンタバランス弁に背
圧を低下させる手段を備えたことを特徴とする油圧昇降
装置におけるカウンタバランス弁。
A hydraulic actuator equipped with a counterbalance valve that counteracts the set pressure and back pressure generated by a spring with external pilot pressure via a spool and other downstream hydraulic actuators can be connected in series to a common hydraulic pump and driven simultaneously. A counterbalance valve in a hydraulic lifting device, characterized in that, in the hydraulic lifting device or the hydraulic drive device including the hydraulic lifting device, the upstream counterbalance valve is provided with means for reducing back pressure.
JP19274385A 1985-08-30 1985-08-30 Counterbalance valve in hydraulic elevating device Pending JPS6252206A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19274385A JPS6252206A (en) 1985-08-30 1985-08-30 Counterbalance valve in hydraulic elevating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19274385A JPS6252206A (en) 1985-08-30 1985-08-30 Counterbalance valve in hydraulic elevating device

Publications (1)

Publication Number Publication Date
JPS6252206A true JPS6252206A (en) 1987-03-06

Family

ID=16296315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19274385A Pending JPS6252206A (en) 1985-08-30 1985-08-30 Counterbalance valve in hydraulic elevating device

Country Status (1)

Country Link
JP (1) JPS6252206A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020051585A (en) * 2018-09-28 2020-04-02 コベルコ建機株式会社 Hydraulic equipment for construction machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020051585A (en) * 2018-09-28 2020-04-02 コベルコ建機株式会社 Hydraulic equipment for construction machine

Similar Documents

Publication Publication Date Title
US5930997A (en) Driving device for a hydraulic motor
US6868671B2 (en) Hydraulic circuit for a crane
JPS6252206A (en) Counterbalance valve in hydraulic elevating device
JPH0240595B2 (en)
US4720975A (en) Control valve
JPH0517961B2 (en)
JPH10331801A (en) Hydraulic control device
KR950007891Y1 (en) A oil-pressure control circuit of excavator
JPS5914641B2 (en) Pressure compensated multi-control valve with actuator stop device
JP2020051585A (en) Hydraulic equipment for construction machine
JPS6357494A (en) Hydraulic controller for lifting smelting ladle
JP2545176Y2 (en) Compound control valve
US4194366A (en) Two speed valves and bi-directional motor system
JPS61226495A (en) Hydraulic device with automatic stop device
JPH0544702A (en) Elevatable cylinder proportional control circuit
JPH04224302A (en) Inversion prevention valve
JPH03267425A (en) Control circuit for hydraulic motor
JPS6037428Y2 (en) Hydraulic crane winch hydraulic control circuit device
CN115402955A (en) Winch balance valve, winch hydraulic system and hoisting engineering machinery
JPH021343Y2 (en)
JP2886189B2 (en) Control valve device
KR900003524Y1 (en) Pressure reducing valve for driving motor fluid circuit
JPS6283996A (en) Low horse-power type hydraulic winch controller
JPH0663265B2 (en) Hydraulic circuit of construction machinery
JPS62228702A (en) Constant pressure hydraulic device