JPS6252199B2 - - Google Patents

Info

Publication number
JPS6252199B2
JPS6252199B2 JP59191784A JP19178484A JPS6252199B2 JP S6252199 B2 JPS6252199 B2 JP S6252199B2 JP 59191784 A JP59191784 A JP 59191784A JP 19178484 A JP19178484 A JP 19178484A JP S6252199 B2 JPS6252199 B2 JP S6252199B2
Authority
JP
Japan
Prior art keywords
bearing
oil
rotating shaft
thrust
disk
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59191784A
Other languages
Japanese (ja)
Other versions
JPS6170295A (en
Inventor
Hiromi Taketaka
Takashi Furusawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP19178484A priority Critical patent/JPS6170295A/en
Publication of JPS6170295A publication Critical patent/JPS6170295A/en
Publication of JPS6252199B2 publication Critical patent/JPS6252199B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/66Special parts or details in view of lubrication
    • F16C33/6637Special parts or details in view of lubrication with liquid lubricant
    • F16C33/6659Details of supply of the liquid to the bearing, e.g. passages or nozzles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16NLUBRICATING
    • F16N7/00Arrangements for supplying oil or unspecified lubricant from a stationary reservoir or the equivalent in or on the machine or member to be lubricated
    • F16N7/14Arrangements for supplying oil or unspecified lubricant from a stationary reservoir or the equivalent in or on the machine or member to be lubricated the lubricant being conveyed from the reservoir by mechanical means
    • F16N7/16Arrangements for supplying oil or unspecified lubricant from a stationary reservoir or the equivalent in or on the machine or member to be lubricated the lubricant being conveyed from the reservoir by mechanical means the oil being carried up by a lifting device
    • F16N7/20Arrangements for supplying oil or unspecified lubricant from a stationary reservoir or the equivalent in or on the machine or member to be lubricated the lubricant being conveyed from the reservoir by mechanical means the oil being carried up by a lifting device with one or more members moving around the shaft to be lubricated
    • F16N7/22Arrangements for supplying oil or unspecified lubricant from a stationary reservoir or the equivalent in or on the machine or member to be lubricated the lubricant being conveyed from the reservoir by mechanical means the oil being carried up by a lifting device with one or more members moving around the shaft to be lubricated shaped as rings

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の技術分野〕 本発明はラジアル荷重およびスラスト荷重を支
承する軸受装置、特にオイルデイスクによる自己
給油方式の軸受装置に関する。 〔発明の技術的背景とその問題点〕 中、大容量の電動機や発電機等に代表される回
転電機には円板のオイルデイスク給油軸受がよく
用いられている。オイルデイスク給油軸受はオイ
ルリング給油軸受がリングの動きの監視を必要と
するのに比べ軸とデイスクが一体となつて回転す
るのでその点においてすこぶる有利な長所をもつ
ている。 しかしながら、その反面オイルデイスクが或る
周速を超えると潤滑油が飛散してしまうので所望
の油量が得られる自冷可能範囲が狭いという不満
がある。 たとえば第5図は軸受直径140mm、オイルデイ
スク直径290mmのものについて回転速度とくみあ
げ量の関係を示したものである。この図で明らか
なようにオイルデイスクの周速が略4m/secを
超えると飛散によりくみあげ量が減少し始める。
そこで今所望の油量2.5/minを得ようとする
回転機の場合はその回転速度範囲は120〜500rpm
に限られる。従来からこの飛散油をできるだけオ
イルデイスクの上方に搬送するためオイルデイス
クの外周部を包む導油カバーを設けるものが種々
提案されている(実開昭55−82596号公報)。しか
しながらくみあげ量の増加率はせいぜい1〜2割
程度にとどまり満足すべきものではなかつた。ま
た、導油カバーの装着により軸受装置が大形化す
る難点がある。一方、このオイルデイスクを給油
手段として使用するとともに回転軸に加わるスラ
スト力をオイルデイスクをスラストカラとなして
静止側で支承することも採用されている。 このスラスト軸受の構成は一般に二種類ありそ
の一つは第6図に示す事例のように軸受1の側面
にもバビツトメタル2を張り付けスラスト面Aを
形成しオイルデイスク3との間で摺接させ比較的
軽荷重を支承するものである。 しかしながら、このような軸受は軸受1の側面
にスラスト摺接面を形成するため、切削加工の段
取り替による作業時間の増加、この部分のバビツ
トメタルは円筒部と異る方法で張り付けなければ
ならないこと、等の理由によりこの部分は軸受製
作時間の35〜40%を占めるという生産性の面で不
利な要素をもつている。 また、他の種の事例は第7図に示したように軸
受箱4の両側にスラストパツド5,5を設けてオ
イルデイスク3aおよび3bを介してスラスト力
を支承するものである。この事例では右側のデイ
スク3aによりくみあげた潤滑油を油かき6によ
り軸受1に導入し、左側のデイスク3bはスラス
トカラの役目にのみ使用されている。このような
構成においてはパッドおよびその支持部材が大き
なスペースを占拠するため軸受装置の小形化を図
るうえで支障となつている。 そして、これらすべりスラスト軸受を併設した
軸受装置はスラスト軸受の損失が大きいので軸受
効率が低く、回転機の効率を向上させるうえで大
きな欠点となつている 〔発明の目的〕 本発明の目的は、軸の回転速度よりオイルデイ
スクの油くみあげ部の回転速度が低くなるように
してくみあげた油の飛散を抑制し軸受の自冷可能
範囲を高速領域に拡大できるとともに、このオイ
ルデイスクを利用することによりスラスト軸受損
失を低減できる軸受装置を提供するにある。 〔発明の概要〕 上記目的を達成するため本発明の軸受装置は、
回転軸と、この回転軸を支承し軸受箱に収納され
たジヤーナル軸受と、前記回転軸に前記軸受と隣
接して配置された軸受直径より大径の鍔部と、こ
の鍔部に外装しかつ周方向に配置され下部を軸受
箱の潤滑油に浸漬した複数個の転動体と、これら
転動体に内接しかつ静止側部材と遊びをもつて係
止するとともに側面で回転軸のスラスト力を受け
る外輪とを備えたことを特徴とし、回転軸が高速
回転してもオイルデイスクをその回転速度より遅
くせしめて潤滑油を有効に軸受に供給し、かつス
ラスト力を損失の小さい転り摩擦により支承する
ようにするものである。 〔発明の実施例〕 本発明の一実施例を図面により説明する。第1
図および第2図に示した軸受装置は、回転軸7を
支承するすべり軸受1を軸受箱4に支持し、軸受
1の側方にあつて軸上に装備したオイルデイスク
8により回転軸7の軸受面に潤滑油を供給すると
ともにオイルデイスク8の一部を成す静止外輪
(後述する)と軸受箱のスラスト受け座9との間
で矢印Bで示したスラスト力の伝達をするように
したものである。 次に第3図によりオイルデイスク8について説
明する。回転軸7の一部に突起した鍔部10を形
成する。この鍔部10の外周には環状の内輪11
が焼嵌により嵌着される。この内輪11の外周に
は凹状の軌道11aが形成してある。内輪11の
外側には転動層12を介して外輪13が設けられ
る。この外輪13の内周側にも凹状の軌道13a
が形成してある。そして上記環状層12は内外輪
11,13の間にあつて軌道に嵌め込まれ周方向
に転動可能な玉からなる複数の転動体14と、隣
接するこれら転動体の間隔を保つため転動体14
を両側から摺動可能に包む環状の保持器15とか
ら構成されている。外輪13の上部には軸方向に
延びる溝16が設けられており、この溝には前述
した油かき6から突出したピン17がゆるく挿入
されこのピン17により外輪13が回転しないよ
うにしている。 以上のように構成されたオイルデイスク8と潤
滑油の浸漬位置関係は内輪11の最下部の外周面
かそれよりもやゝ低くなるように油面OLを設定
する。 なお、第1図に示したようにオイルデイスク8
の外輪と軸受箱のスラスト受け座9との接触部に
はスプリングあるいはゴム等の弾性体18を介在
させ外輪13の微振動を抑制するとよい。 次に作用を説明する。回転軸7の回転により内
輪11も同じ回転速度で回転する。内輪11が回
転するとこれに接している転動体14は自転しな
がら軌道上を回転軸より遅い回転速度で公転す
る。転動体14の公転にともないこれに装着して
ある保持器15も転動体14と同じ回転速度で公
転する。つまり転動体14と保持器15とから構
成された転動層12は、その下部が潤滑油に浸漬
されているから回転軸7の回転速度より遅い回転
速度で油をくみあげるわけである。 この公転数は、ころがり軸受における転動体の
公転数を求める式により表わすことができる。す
なわち、公転数をnとすれば n=(1−dcosα/dm)N/2(rpm) …(1) ただし、 d:転動体の直径(mm) α:転動体の接触角(゜) dm:転動体のピツチ円直径(mm) N:回転軸の回転数(rpm) である。上記したような転動体を用いれば転動層
12の回転速度を、回転軸の回転速度の40%前後
に抑制することができる。 第4図はこの実施例によるオイルデイスクを用
いて実験した潤滑油のくみあげ量と回転軸の回転
速度との関係を表わしたものである。比較のため
従来の一体円板状のオイルデイスクによるくみあ
げ特性aも併記してあり、オイルデイスクの寸法
は同一に設定している。(この実験では外輪の内
径を従来のオイルデイスクの外径290mmと略同一
にし、転動体は8箇の球を等間隔に設けている)
この図で明らかなように、くみあげ特性bは高速
領域を大幅に凌駕する。たとえば今2.5/min
のくみあげ油量を必要とする軸受についてみれ
ば、前述した従来のデイスクによると120〜
500rpmの範囲に限られていたものが、本実施例
のデイスクによると230〜1200rpmの範囲のもの
に使用可能である。低速領域での若干の使用不能
範囲はその公転数特性の関係上やむをえないが、
高速領域の拡大範囲は大きく、このことから軸受
の自己給油での運転可能範囲を大幅に拡大させる
に極めて有効である。 この実施例における転動層12の構成はころが
り軸受のアンギユラ玉軸受のそれと同じである。
したがつて第1図のB矢印の方向にスラスト力が
加わると転動層12はスラスト力の伝達が可能な
構成であるから静止体同志である外輪13と軸受
箱4との間でスラスト力の支承ができる。よつて
スラスト力は摩擦損の微小なころがり摩擦となり
軸受損ひいては回転機の機械損を減少させるに有
効である。また、すべり軸受1は回転軸7のラジ
アル荷重だけを支承すればよいから作業性の悪い
側面のバビツト摺動面を形成しなくても済むこと
になる。 さらには、このオイルデイスク8は給油機能と
スラスト軸受機能とを兼ね備えているから従来の
ようにスペースを占拠するスラストパツドを設け
なくても済み、軸受装置の小形化を容易に可能と
するものである。 なお、上記実施例では回転軸7の鍔部10に内
輪11を嵌着しているが、鍔部10と内輪11と
は一体であつてもよく、また、外輪13を静止さ
せるため外輪13の溝16に油かき6のピン17
を係合させているが、外輪13の上部に丸穴を設
けてこの丸穴にピン17を遊貫させて外輪の廻り
止めとしてもよい。 さらに転動層の構成を種々変形することもでき
る。すなわち転動体14は玉に限らずころを使用
することもできる。表はこの転動層の形式と負荷
条件による組合せを示したものであつてスラスト
荷重の方向と回転軸の回転速度により適宜選択で
きる例である。(左端のアンギユラ玉は上記実施
のものである)スラスト力が両方向に作用するも
のは外輪13を軸受箱4と軸受1とで挟持して支
持する等、外輪13の支持構成は上記実施例に限
らず種々実施できることは勿論である。
[Technical Field of the Invention] The present invention relates to a bearing device that supports a radial load and a thrust load, and particularly to a self-lubricating type bearing device using an oil disc. [Technical background of the invention and its problems] Disc oil disc oil bearings are often used in rotating electric machines such as large-capacity electric motors and generators. Oil disc oil-filled bearings have a great advantage in that the shaft and disk rotate as one, compared to oil ring oil-filled bearings which require monitoring of the movement of the ring. However, on the other hand, if the oil disk exceeds a certain circumferential speed, the lubricating oil will scatter, so there is a dissatisfaction that the self-cooling range in which a desired amount of oil can be obtained is narrow. For example, FIG. 5 shows the relationship between rotational speed and pumping amount for a bearing with a diameter of 140 mm and an oil disk diameter of 290 mm. As is clear from this figure, when the circumferential speed of the oil disk exceeds approximately 4 m/sec, the pumped amount begins to decrease due to scattering.
Therefore, in the case of a rotating machine that is trying to obtain the desired oil flow rate of 2.5/min, the rotation speed range is 120 to 500 rpm.
limited to. In order to convey this scattered oil as far above the oil disk as possible, various proposals have been made in the past in which an oil guide cover is provided to cover the outer periphery of the oil disk (Japanese Utility Model Publication No. 55-82596). However, the rate of increase in the pumped amount was at most 10 to 20%, which was not satisfactory. Additionally, there is a problem in that the bearing device becomes larger due to the attachment of the oil guide cover. On the other hand, it has also been adopted to use this oil disk as an oil supply means and to support the thrust force applied to the rotating shaft on the stationary side by using the oil disk as a thrust collar. There are generally two types of configurations of this thrust bearing, one of which is shown in the example shown in Fig. 6, in which Babbitt metal 2 is attached to the side surface of the bearing 1 to form a thrust surface A, which slides into contact with the oil disk 3 for comparison. It is designed to support light loads. However, since such a bearing forms a thrust sliding contact surface on the side surface of the bearing 1, there is an increase in working time due to changing the cutting process, and the Babbitt metal in this part must be attached in a different way from the cylindrical part. For these reasons, this part is disadvantageous in terms of productivity as it occupies 35 to 40% of the bearing manufacturing time. Another example, as shown in FIG. 7, is one in which thrust pads 5, 5 are provided on both sides of the bearing box 4 to support the thrust force via oil disks 3a and 3b. In this example, the lubricating oil pumped up by the right disk 3a is introduced into the bearing 1 by the oil paddle 6, and the left disk 3b is used only as a thrust collar. In such a configuration, the pad and its supporting member occupy a large space, which is an obstacle to downsizing the bearing device. Bearing devices equipped with these sliding thrust bearings suffer from large losses in the thrust bearings, resulting in low bearing efficiency, which is a major drawback in improving the efficiency of rotating machines. By making the rotation speed of the oil pumping part of the oil disk lower than the rotation speed of the shaft, it is possible to suppress the scattering of the pumped oil and expand the self-cooling range of the bearing to high-speed areas. An object of the present invention is to provide a bearing device that can reduce thrust bearing loss. [Summary of the Invention] In order to achieve the above object, the bearing device of the present invention has the following features:
a rotating shaft; a journal bearing that supports the rotating shaft and is housed in a bearing box; a flange portion having a diameter larger than the bearing diameter disposed adjacent to the bearing on the rotating shaft; A plurality of rolling elements arranged in the circumferential direction with their lower parts immersed in the lubricating oil of the bearing box, inscribed in these rolling elements and locked with the stationary side member with some play, and receiving the thrust force of the rotating shaft on the side surface. Even if the rotary shaft rotates at high speed, the oil disc is slowed down to a speed lower than that, effectively supplying lubricating oil to the bearing, and thrust force is supported by rolling friction with low loss. It is intended to do so. [Embodiment of the Invention] An embodiment of the present invention will be described with reference to the drawings. 1st
The bearing device shown in the figures and FIG. It supplies lubricating oil to the bearing surface and transmits the thrust force shown by arrow B between the stationary outer ring (described later) that forms part of the oil disk 8 and the thrust receiving seat 9 of the bearing box. It is. Next, the oil disc 8 will be explained with reference to FIG. A protruding flange portion 10 is formed on a part of the rotating shaft 7. An annular inner ring 11 is provided on the outer periphery of this collar portion 10.
is fitted by shrink fitting. A concave raceway 11a is formed on the outer periphery of this inner ring 11. An outer ring 13 is provided on the outside of the inner ring 11 with a rolling layer 12 in between. A concave raceway 13a is also formed on the inner circumferential side of the outer ring 13.
is formed. The annular layer 12 is disposed between the inner and outer rings 11 and 13 and has a plurality of rolling elements 14 formed of balls fitted into raceways and capable of rolling in the circumferential direction.
and an annular retainer 15 that slidably envelops the retainer 15 from both sides. A groove 16 extending in the axial direction is provided in the upper part of the outer ring 13, and a pin 17 protruding from the oil paddle 6 described above is loosely inserted into this groove to prevent the outer ring 13 from rotating. The immersion positional relationship between the oil disk 8 and the lubricating oil configured as described above is such that the oil level OL is set to be at or slightly lower than the outer peripheral surface of the lowest part of the inner ring 11. In addition, as shown in Fig. 1, the oil disk 8
It is preferable to interpose an elastic body 18 such as a spring or rubber at the contact portion between the outer ring and the thrust receiving seat 9 of the bearing box to suppress minute vibrations of the outer ring 13. Next, the action will be explained. As the rotating shaft 7 rotates, the inner ring 11 also rotates at the same rotational speed. When the inner ring 11 rotates, the rolling elements 14 in contact with the inner ring 11 rotate on their own axis and revolve around the orbit at a rotation speed slower than that of the rotating shaft. As the rolling elements 14 revolve, the cage 15 attached thereto also revolves at the same rotational speed as the rolling elements 14. In other words, since the lower part of the rolling layer 12 composed of the rolling elements 14 and the retainer 15 is immersed in lubricating oil, the rolling layer 12 pumps up oil at a rotation speed slower than the rotation speed of the rotating shaft 7. This number of revolutions can be expressed by an equation for determining the number of revolutions of the rolling elements in a rolling bearing. In other words, if the number of revolutions is n, then n=(1-dcosα/dm)N/2(rpm)...(1) where d: Diameter of rolling element (mm) α: Contact angle of rolling element (°) dm : Pitch diameter of rolling element (mm) N: Number of rotations of rotating shaft (rpm). By using the above-mentioned rolling elements, the rotational speed of the rolling layer 12 can be suppressed to about 40% of the rotational speed of the rotating shaft. FIG. 4 shows the relationship between the amount of lubricating oil pumped up and the rotational speed of the rotating shaft in an experiment using the oil disk according to this embodiment. For comparison, the pumping characteristics a of a conventional integral disk-shaped oil disk are also shown, and the dimensions of the oil disk are set to be the same. (In this experiment, the inner diameter of the outer ring was approximately the same as the outer diameter of a conventional oil disk, 290 mm, and the rolling elements were 8 balls arranged at equal intervals.)
As is clear from this figure, the pumping characteristic b greatly exceeds the high speed region. For example, now 2.5/min
Regarding bearings that require a pumping amount of oil, according to the conventional disc mentioned above, it is 120 to
The disc of this embodiment, which was previously limited to a range of 500 rpm, can be used for a range of 230 to 1200 rpm. Although some unusable range in the low speed region is unavoidable due to the characteristics of the revolution number,
The expansion range in the high-speed region is large, and therefore it is extremely effective in greatly expanding the range in which the bearing can be operated with self-lubrication. The structure of the rolling layer 12 in this embodiment is the same as that of an angular ball bearing of a rolling bearing.
Therefore, when a thrust force is applied in the direction of arrow B in FIG. can support. Therefore, the thrust force becomes rolling friction, which is a very small amount of friction loss, and is effective in reducing bearing loss and, in turn, mechanical loss of the rotating machine. Further, since the slide bearing 1 only needs to support the radial load of the rotating shaft 7, there is no need to form a Babbitt sliding surface on the side surface which is difficult to work with. Furthermore, since this oil disk 8 has both an oil supply function and a thrust bearing function, there is no need to provide a space-occupying thrust pad as in the past, and the bearing device can be easily miniaturized. . In the above embodiment, the inner ring 11 is fitted to the flange 10 of the rotary shaft 7, but the flange 10 and the inner ring 11 may be integrated. Pin 17 of oil paddle 6 in groove 16
However, it is also possible to provide a round hole in the upper part of the outer ring 13 and allow the pin 17 to pass freely through this round hole to prevent the outer ring from rotating. Furthermore, the structure of the rolling layer can be modified in various ways. That is, the rolling elements 14 are not limited to balls, but rollers can also be used. The table shows combinations based on the type of rolling layer and load conditions, and is an example that can be selected as appropriate depending on the direction of thrust load and the rotation speed of the rotating shaft. (The angular balls on the left end are those of the above embodiment.) In the case where the thrust force acts in both directions, the support structure of the outer ring 13 is the same as that of the above embodiment, such as supporting the outer ring 13 by sandwiching it between the bearing box 4 and the bearing 1. Of course, the present invention is not limited to this and can be implemented in various ways.

【表】 〔発明の効果〕 本発明によれば、軸受に給油するオイルデイス
クを回転しない外輪とこの外輪と回転軸との間に
あつて両者の間をスラスト力が伝達可能でありさ
らに回転軸の回転速度より遅い回転速度で回転し
て油をくみあげる転動層とから構成し、外輪を静
止側に支持するようにしたので、油の飛散を抑制
し軸受の自冷可能範囲を高速領域に拡大できると
ともにスラスト軸受損失を低減できる。
[Table] [Effects of the Invention] According to the present invention, the oil disk for lubricating the bearing is provided between the non-rotating outer ring and the outer ring and the rotating shaft, and thrust force can be transmitted between the two, and the rotating shaft It consists of a rolling layer that rotates at a rotational speed slower than the rotational speed of It is possible to expand the bearing capacity and reduce thrust bearing loss.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す軸受装置の正
面図、第2図は第1図の−線に沿つて切断し
矢印方向にみた断面図、第3図は第1図のオイル
デイスクを一部を断面で示した斜視図、第4図は
回転軸の回転速度とくみあげ油量との関係を従来
のものと比較して示した特性曲線図、第5図は従
来のオイルデイスクによる回転速度とくみあげ油
量との関係を示す曲線図、第6図および第7図は
それぞれ従来の軸受装置の断面図である。 1……軸受、4……軸受箱、7……回転軸、8
……オイルデイスク、9……スラスト受け座、1
1……内輪、12……転動層、13……外輪、1
4……転動体、15……保持器。
Fig. 1 is a front view of a bearing device showing an embodiment of the present invention, Fig. 2 is a sectional view taken along the - line in Fig. 1 and seen in the direction of the arrow, and Fig. 3 is an oil disk of Fig. 1. Figure 4 is a characteristic curve diagram showing the relationship between the rotational speed of the rotating shaft and the amount of pumped oil in comparison with a conventional oil disc. Figure 5 is a diagram showing a conventional oil disc. A curve diagram showing the relationship between rotational speed and pumped oil amount, and FIGS. 6 and 7 are sectional views of a conventional bearing device, respectively. 1...bearing, 4...bearing box, 7...rotating shaft, 8
...Oil disc, 9...Thrust receiver, 1
1... Inner ring, 12... Rolling layer, 13... Outer ring, 1
4...Rolling element, 15...Cage.

Claims (1)

【特許請求の範囲】[Claims] 1 回転軸と、この回転軸を支承し軸受箱に収納
されたジヤーナル軸受と、前記回転軸に前記軸受
と隣接して配置された軸受直径より大径の鍔部
と、この鍔部に外装しかつ周方向に配置され下部
を軸受箱の潤滑油に浸漬した複数個の転動体と、
これら転動体に内接しかつ静止側部材と遊びをも
つて係止するとともに側面で回転軸のスラスト力
を受ける外輪とを備えた軸受装置。
1. A rotating shaft, a journal bearing that supports this rotating shaft and is housed in a bearing box, a flange portion having a diameter larger than the bearing diameter disposed adjacent to the bearing on the rotating shaft, and an exterior covering on this flange portion. and a plurality of rolling elements arranged in the circumferential direction and having their lower portions immersed in lubricating oil of the bearing box;
A bearing device comprising an outer ring that is inscribed in these rolling elements, locks with the stationary side member with play, and receives the thrust force of the rotating shaft on its side surface.
JP19178484A 1984-09-14 1984-09-14 Bearing unit Granted JPS6170295A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19178484A JPS6170295A (en) 1984-09-14 1984-09-14 Bearing unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19178484A JPS6170295A (en) 1984-09-14 1984-09-14 Bearing unit

Publications (2)

Publication Number Publication Date
JPS6170295A JPS6170295A (en) 1986-04-11
JPS6252199B2 true JPS6252199B2 (en) 1987-11-04

Family

ID=16280479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19178484A Granted JPS6170295A (en) 1984-09-14 1984-09-14 Bearing unit

Country Status (1)

Country Link
JP (1) JPS6170295A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113606137B (en) * 2021-09-06 2023-03-31 珠海格力节能环保制冷技术研究中心有限公司 Rotary oil containing mechanism and horizontal compressor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4719642U (en) * 1971-01-27 1972-11-06

Also Published As

Publication number Publication date
JPS6170295A (en) 1986-04-11

Similar Documents

Publication Publication Date Title
US3811741A (en) Bearing
JP5261664B2 (en) Vacuum pump
JP2007032612A (en) Roller bearing
JP2008240796A (en) Angular contact ball bearing with seal, and spindle device
JP2001140870A5 (en)
JP6690462B2 (en) Ball bearings, spindle devices and machine tools
JP2008286296A (en) Cage for angular ball bearing and angular ball bearing
JP2008151181A (en) Roller bearing
JP2003184888A (en) Roller bearing
KR101871043B1 (en) Tilting Pad Journal Bearings with Ball-Socket
JPH09291942A (en) Radial rolling bearing
JPS6252199B2 (en)
JP2003042160A (en) Angular contact ball bearing and main bearing
US6280089B1 (en) Rotational shaft for a non-ball type bearing
KR102647697B1 (en) Tandem Ball Bearing
JP2000120707A (en) Rolling bearing
JP4341743B2 (en) Roller bearing
JPS6155498A (en) Self oil supply device of bearing
JP2554634Y2 (en) Rolling bearing
JP7453899B2 (en) Rolling bearing holding structure and rotating machinery using it
JPH10227314A (en) Cage for ball bearing
JPH11336772A (en) Rolling bearing
JPH0240882B2 (en) HAIBURITSUDOKEIJIKUKESOCHI
JPS6288817A (en) Thrust slide bearing device
JPH05180232A (en) Ball bearing