JPS6251974B2 - - Google Patents

Info

Publication number
JPS6251974B2
JPS6251974B2 JP5116184A JP5116184A JPS6251974B2 JP S6251974 B2 JPS6251974 B2 JP S6251974B2 JP 5116184 A JP5116184 A JP 5116184A JP 5116184 A JP5116184 A JP 5116184A JP S6251974 B2 JPS6251974 B2 JP S6251974B2
Authority
JP
Japan
Prior art keywords
amine
present
epoxy
cfrp
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5116184A
Other languages
Japanese (ja)
Other versions
JPS60197722A (en
Inventor
Tadahide Sato
Kuniaki Tobukuro
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP5116184A priority Critical patent/JPS60197722A/en
Publication of JPS60197722A publication Critical patent/JPS60197722A/en
Publication of JPS6251974B2 publication Critical patent/JPS6251974B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(技術分野) 本発明は伸度及び耐熱性の優れた炭素繊維プラ
スチツクス(以下CFRPと略す)を与える炭素繊
維プリプレグ用エポキシ樹脂組成物に関する。 (従来技術) 炭素繊維の比強度、比弾性率が高いという特性
を活かしたCFRPは航空機をはじめとする産業分
野で広く使用されている。その1つに超高速回転
の遠心分離機がある。かかる用途に使用される
CFRPに要求される特性として耐熱性は勿論のこ
と、その他に、90゜方向引張伸度、耐水性、及び
低温硬化性が要求されている。すなわち、超高速
回転の際の遠心力によりCFRPは異方性であるた
め炭素繊維に対して90゜方向にクラツクが入り易
い。このクラツクを防ぐため、マトリツクス樹脂
の伸度を大きくすることにより、90゜方向引張伸
度の大きくしたものが要求されている。また、
CFRPはマトリツクス樹脂の吸水に依り、寸法変
化を起しバランスを崩して高速回転させられな
い。このため回転させる際は脱水しなければなら
ず、耐水性の悪いものは脱水に長時間かかるた
め、耐水性の良いものが要求されている。さら
に、硬化温度が高いと成形時の熱残留歪みが大き
いため、成形品に歪みが発生しやすく、その結果
回転のバランスがとりにくい。 現在、耐熱性を必要とするCFRPに使用されて
いるエポキシ樹脂の硬化剤としては、4,4′―ジ
アミノジフエニルスルホンを使用している。この
硬化剤の欠点は硬化性が悪いことと共に、得られ
る硬化物の伸度が短く耐水性が悪いことである。
すなわち、硬化性が悪いため、硬化を十分行なわ
せるためには、200〜210℃で4時間以上の硬化が
必要であるので、生産性が低いばかりでなく、得
られるCFRPに大きな熱歪みが残る。 (本発明の目的) そこで、本発明者らは、耐熱性と共に90゜方向
引張伸度、耐水性、及び硬化性の優れたエポキシ
樹脂用の硬化剤を見い出すべく鋭意検討した結
果、本発明に到達した。 (本発明の構成) すなわち、一般式 (式中、Rは炭素数1〜3のアルキル基を表わ
し、nは1〜5の任意の数を表わす物を主として
含有する。) で示される化合物(以下AFアミンと略す)を
硬化剤として含有する炭素繊維プリプレグ用エポ
キシ樹脂組成物、 に関する。 本発明に使用されるAFアミンは公知の方法で
得ることができる。たとえば、炭素数1〜3のN
―アルキルアニリンを酸性条件下、ホルムアルデ
ヒドで縮合することにより得られる。炭素数1〜
3のN―アルキルアニリンとしては、たとえば、
N―メチルアニリン、N―エチルアニリン、N―
n―プロピルアニリン、N―i―プロピルアニリ
ン、が挙げられる。炭素数が4以上のN―アルキ
ルアニリンの場合、弾性率が低く、耐熱性が悪く
なり好ましくない。一般式で示されるAFアミン
のnは1〜5の範囲の任意の数である。ここで用
いるnは、炭素数1〜3のN―アルキルアニリン
とホルムアルデヒドの配合量より計算される。n
=(2y−x)/(x−y)、xは炭素数1〜3の
N―アルキルアニリンのモル数、yはホルムアル
デヒドのモル数を表わす。本発明のエポキシ樹脂
組成物は必要に応じてN,N′―ジメチル―4,
4′―ジアミノジフエニルメタン、N,N′―ジメチ
ル―3,3′―ジアミノジフエニルメタン、N,
N′―ジメチル―2,2′―ジアミノジフエニルメタ
ン、N,N′―ジエチル―4,4′―ジアミノジフエ
ニルメタンなどのN,N′―ジアルキル(炭素数
1〜3のアルキル基)ジアミノジフエニルメタン
を配合することができる。一般式で示されるAF
アミンとN,N′―ジアルキルジアミノジフエニ
ルメタンの配合比は重量比で100:0〜60:40、
より好ましくは100:0〜80:20である。この硬
化剤の添加量は理論的にはエポキシ1当量に対し
てアミン1当量になるよう添加すれば良いが、硬
化速度やシエルフライフの調整、及び得られる硬
化剤の耐熱性、耐水性、伸度からAFアミンの添
加量はエポキシ1当量に対して0.5〜1.5当量であ
り、より好ましくは0.8〜1.2当量である。また、
本発明において、AFアミンは、4,4′―ジアミ
ノジフエニルスルホンのような他の硬化剤と併用
することは勿論可能である。 本発明に使用されるエポキシ樹脂は、
ELM434、YL913、YH434などの商標名で市販さ
れているN,N,N′,N′―テトラグリシジルジ
アミノジフエニルメタン、ELM120、YDM120な
どの商標名で市販されているN,N,O―トリグ
リシジルメタアミノフエノール、Ep154、
Ep152、N740、DEN485、ESCN220L、N673など
の商標名で市販されているノボラツク型エポキシ
樹脂、Ep828、Ep1001、Ep1004、YD128、エピ
クロン855、エピクロン1050、ELA128、
DER332、DER661などの商標名で市販されてい
るビスフエノールA型エポキシ樹脂、及び、エピ
クロン152、ESB340、Ep1050、BREN―Sなど
の商標名で市販されているブロム化エポキシ樹脂
である。これらのエポキシ樹脂は単独又は数種類
配合して使用される。特に、これらのエポキシ樹
脂の中でN,N,N′,N′―テトラグリシジルジ
アミノジフエニルメタン又は、ノボラツク型エポ
キシ樹脂を配合すれば物性、及び耐熱性の優れた
効果物が得られる。 本発明において、プリプレグに適した樹脂粘度
にするため、AFアミン、4,4′―ジアミノジフ
エニルスルホン及び、4,4′―ジアミノジフエニ
ルメタンで予備重合し樹脂粘度を調節してもさし
つかえない。さらに、本発明の樹脂組成物の特性
を損わない程度に熱可塑性樹脂を添加し樹脂の粘
度を調節したり硬化時の樹脂フローの調節をして
もさしつかえない。 本発明のエポキシ樹脂組成物はCFRPとして好
ましく用いられるが、この場合に使用される炭素
繊維とは、一定方向に配列されたテープ、シート
状物、マツト状物、織物等、どのような形態の炭
素繊維にも適用できる。さらに、ガラス繊維、ボ
ロン繊維、有機繊維など、通常FRPの補強機と
して用いられるものはすべて使用できる。 (本発明の効果) 本発明のエポキシ樹脂組成物はシエルフライフ
に影響せず硬化性が良く、さらに得られる硬化物
の耐水性が良く、かつ伸度が大きい。この結果、
150℃×2時間硬化させれば、吸水性が小さく伸
度が大きく、かつ、ガラス転位温度が160〜210℃
の高耐熱性の硬化物が得られる。このため、吸水
による寸法変化及び、熱残留歪みが小さく、90゜
方向引張伸度の大きなCFRPが得られる。 以下、実施例によつて本発明をさらに詳しく説
明する。 一般式のAFアミン(R:CH3、n=1)の製
造例 還流冷却器、温度計、滴下ロート、攪拌機を装
着した4ツ口1フラスコにN―メチルアニリン
321g(3モル)、36%塩酸319.4g(3.15モル)
蒸溜水121gを仕込み、液温を30〜40℃に保ちな
がら、37%ホルムアルデヒド水溶液162.2g(2
モル)を滴下ロートより1時間で滴下した。2時
間同温度で撹拌した後、90〜95℃に昇温し、更に
2時間撹拌した。反応液を室温に冷却し、48%水
酸化ナトリウム水溶液262.5g(3.15モル)で中
和した後、トルエン300c.c.で縮合物を抽出し、ト
ルエン溶液を100c.c.の水で4回水洗した。減圧下
(13mmHg)、160℃でトルエンを留去して50℃での
粘度33ポイズ、アミン価477のAFアミンを得た。 2級アニリンとホルムアルデヒド水溶液の配合
量をかえて、表1に記載の種々のAFアミンを製
造した。 実施例 1 N,N,N′,N′―テトラグリシジルジアミノ
ジフエニルメタン(エポキシ当量120)100gを予
め100℃に加熱した後、AFアミン(R:CH3、n
=1)92gを加え十分混合した。脱泡後、この樹
脂組成物を厚さ2mmの型に流し込み、150℃で2
時間硬化して硬化物を得た。この硬化物の引張物
性、ガラス転位点、及び20時間沸騰水浸漬後の吸
水率を表1に示す。 実施例 2〜5 AFアミン(R=CH3)のnを変えたもの、及び
AFアミン(n=1)のRを変えたものを、各々
N,N,N′,N′―テトラグリシジルジアミノジ
フエニルメタンに混合し、実施例1と同様に硬化
させて硬化物を得た。測定結果を表1に示す。 実施例 6 N,N,N′,N′―テトラグリシジルジアミノ
ジフエニルメタン40gとブロム化エポキシ樹脂
(エポキシ当量360)25gとビスフエノールA型エ
ポキシ樹脂(エポキシ当量189)35gを予め100℃
に加熱した後、AFアミン(R:CH3、n=1)
66gを加え十分混合した。脱泡後、この樹脂組成
物を厚さ2mmの型に流し込み、150℃で2時間硬
化して硬化物を得た。測定結果を表1に示す。 比較例 1 N,N,N′,N′―テトラグリシジルジアミノ
ジフエニルメタン100gと4,4′―ジアミノジフ
エニルスルホン51gを十分混合し、実施例1と同
様にして硬化物を得た。測定結果を表1に示す。 比較例 2〜4 一般式のR=CH3でn=0のもの、 R=n―C4H9でn=1のもの、及びR=Hでn
=1のものを各々N,N,N′,N′―テトラグリ
シジルジアミノジフエニルメタンと混合し実施例
1と同様にして硬化物を得た。測定結果を表1に
示す。
(Technical Field) The present invention relates to an epoxy resin composition for carbon fiber prepreg that provides carbon fiber plastics (hereinafter abbreviated as CFRP) with excellent elongation and heat resistance. (Prior art) CFRP, which takes advantage of carbon fiber's high specific strength and specific modulus, is widely used in industrial fields including aircraft. One of them is a centrifugal separator that rotates at ultra-high speed. used for such purposes
In addition to heat resistance, CFRP is also required to have tensile elongation in the 90° direction, water resistance, and low-temperature hardening properties. In other words, since CFRP is anisotropic, cracks tend to occur in the 90° direction relative to carbon fibers due to centrifugal force during ultra-high speed rotation. In order to prevent this crack, it is required to increase the tensile elongation in the 90° direction by increasing the elongation of the matrix resin. Also,
Due to the water absorption of the matrix resin, CFRP causes dimensional changes and loses balance, making it impossible to rotate at high speeds. For this reason, they must be dehydrated when they are rotated, and since it takes a long time to dehydrate those with poor water resistance, there is a demand for those with good water resistance. Furthermore, if the curing temperature is high, thermal residual strain during molding is large, which tends to cause distortion in the molded product, and as a result, it is difficult to balance rotation. Currently, 4,4'-diaminodiphenylsulfone is used as a curing agent for epoxy resins used in CFRP, which requires heat resistance. The disadvantages of this curing agent are that it has poor curability and the resulting cured product has short elongation and poor water resistance.
In other words, due to its poor curing properties, it requires curing at 200 to 210°C for 4 hours or more to achieve sufficient curing, which not only lowers productivity but also leaves large thermal distortions in the resulting CFRP. . (Objective of the present invention) Therefore, the present inventors conducted intensive studies to find a curing agent for epoxy resin that has excellent heat resistance, 90° tensile elongation, water resistance, and curability, and as a result, the present invention was developed. Reached. (Structure of the present invention) That is, the general formula (In the formula, R represents an alkyl group having 1 to 3 carbon atoms, and n represents an arbitrary number of 1 to 5.) A compound represented by (hereinafter abbreviated as AF amine) is used as a curing agent. An epoxy resin composition for carbon fiber prepreg containing the present invention. The AF amine used in the present invention can be obtained by known methods. For example, N with 1 to 3 carbon atoms
- Obtained by condensing an alkylaniline with formaldehyde under acidic conditions. Carbon number 1~
For example, the N-alkylaniline in No. 3 is,
N-methylaniline, N-ethylaniline, N-
Examples include n-propylaniline and Ni-propylaniline. In the case of N-alkylaniline having 4 or more carbon atoms, the elastic modulus is low and the heat resistance is poor, which is not preferable. In the AF amine represented by the general formula, n is an arbitrary number in the range of 1 to 5. The value n used here is calculated from the amount of N-alkylaniline having 1 to 3 carbon atoms and formaldehyde. n
=(2y-x)/(x-y), x represents the number of moles of N-alkylaniline having 1 to 3 carbon atoms, and y represents the number of moles of formaldehyde. The epoxy resin composition of the present invention may optionally contain N,N'-dimethyl-4,
4'-diaminodiphenylmethane, N,N'-dimethyl-3,3'-diaminodiphenylmethane, N,
N,N'-dialkyl (alkyl group having 1 to 3 carbon atoms) diamino such as N'-dimethyl-2,2'-diaminodiphenylmethane and N,N'-diethyl-4,4'-diaminodiphenylmethane. Diphenylmethane can be blended. AF expressed by the general formula
The blending ratio of amine and N,N′-dialkyldiaminodiphenylmethane is 100:0 to 60:40 by weight.
More preferably, the ratio is 100:0 to 80:20. Theoretically, the amount of curing agent to be added should be 1 equivalent of amine per 1 equivalent of epoxy. From the viewpoint of elongation, the amount of AF amine added is 0.5 to 1.5 equivalents, more preferably 0.8 to 1.2 equivalents, based on 1 equivalent of epoxy. Also,
In the present invention, it is of course possible to use AF amine in combination with other curing agents such as 4,4'-diaminodiphenylsulfone. The epoxy resin used in the present invention is
N,N,N',N'-tetraglycidyldiaminodiphenylmethane, which is commercially available under trade names such as ELM434, YL913, and YH434; Glycidylmethaminophenol, Ep154,
Novolac type epoxy resins commercially available under trade names such as Ep152, N740, DEN485, ESCN220L, N673, Ep828, Ep1001, Ep1004, YD128, Epiclon 855, Epiclon 1050, ELA128,
Bisphenol A type epoxy resins are commercially available under trade names such as DER332 and DER661, and brominated epoxy resins are commercially available under trade names such as Epiclon 152, ESB340, Ep1050, and BREN-S. These epoxy resins may be used alone or in combination. Particularly, if N,N,N',N'-tetraglycidyldiaminodiphenylmethane or a novolak type epoxy resin is blended among these epoxy resins, an effect product with excellent physical properties and heat resistance can be obtained. In the present invention, in order to make the resin viscosity suitable for prepreg, it is possible to adjust the resin viscosity by prepolymerizing with AF amine, 4,4'-diaminodiphenyl sulfone, and 4,4'-diaminodiphenylmethane. . Further, a thermoplastic resin may be added to adjust the viscosity of the resin or the flow of the resin during curing by adding a thermoplastic resin to an extent that does not impair the properties of the resin composition of the present invention. The epoxy resin composition of the present invention is preferably used as CFRP, but the carbon fibers used in this case can be in any form such as tapes, sheets, mats, textiles, etc. arranged in a certain direction. It can also be applied to carbon fiber. Furthermore, all the materials normally used as reinforcing materials for FRP, such as glass fiber, boron fiber, and organic fiber, can be used. (Effects of the present invention) The epoxy resin composition of the present invention has good curability without affecting shelf life, and furthermore, the obtained cured product has good water resistance and high elongation. As a result,
If cured at 150℃ for 2 hours, it will have low water absorption, high elongation, and a glass transition temperature of 160 to 210℃.
A cured product with high heat resistance is obtained. Therefore, CFRP with small dimensional changes due to water absorption, low thermal residual strain, and high tensile elongation in the 90° direction can be obtained. Hereinafter, the present invention will be explained in more detail with reference to Examples. Production example of AF amine (R: CH 3 , n=1) of the general formula N-methylaniline was placed in a 4-neck flask equipped with a reflux condenser, thermometer, dropping funnel, and stirrer.
321g (3 moles), 36% hydrochloric acid 319.4g (3.15 moles)
Pour 121g of distilled water and add 162.2g of 37% formaldehyde aqueous solution (2
mol) was added dropwise from the dropping funnel over 1 hour. After stirring at the same temperature for 2 hours, the temperature was raised to 90-95°C and further stirred for 2 hours. After cooling the reaction solution to room temperature and neutralizing it with 262.5 g (3.15 mol) of 48% aqueous sodium hydroxide solution, the condensate was extracted with 300 c.c. of toluene, and the toluene solution was added four times with 100 c.c. of water. Washed with water. Toluene was distilled off at 160°C under reduced pressure (13mmHg) to obtain AF amine having a viscosity at 50°C of 33 poise and an amine value of 477. Various AF amines listed in Table 1 were produced by changing the blending amounts of secondary aniline and formaldehyde aqueous solution. Example 1 After preheating 100 g of N,N,N',N'-tetraglycidyldiaminodiphenylmethane (epoxy equivalent: 120) to 100°C, AF amine (R: CH 3 , n
=1) 92g was added and mixed thoroughly. After defoaming, this resin composition was poured into a 2 mm thick mold and heated at 150°C for 2 hours.
A cured product was obtained by curing for a period of time. Table 1 shows the tensile properties, glass transition point, and water absorption rate of this cured product after immersion in boiling water for 20 hours. Examples 2 to 5 AF amines (R=CH 3 ) with different n, and
AF amine (n=1) with different R was mixed with N, N, N', N'-tetraglycidyldiaminodiphenylmethane and cured in the same manner as in Example 1 to obtain a cured product. . The measurement results are shown in Table 1. Example 6 40 g of N,N,N',N'-tetraglycidyldiaminodiphenylmethane, 25 g of brominated epoxy resin (epoxy equivalent: 360), and 35 g of bisphenol A type epoxy resin (epoxy equivalent: 189) were heated at 100°C in advance.
AF amine (R: CH 3 , n=1)
66g was added and thoroughly mixed. After defoaming, this resin composition was poured into a 2 mm thick mold and cured at 150° C. for 2 hours to obtain a cured product. The measurement results are shown in Table 1. Comparative Example 1 100 g of N,N,N',N'-tetraglycidyldiaminodiphenylmethane and 51 g of 4,4'-diaminodiphenyl sulfone were thoroughly mixed, and a cured product was obtained in the same manner as in Example 1. The measurement results are shown in Table 1. Comparative Examples 2 to 4 In the general formula, R = CH 3 and n = 0, R = n-C 4 H 9 and n = 1, and R = H and n
=1 were mixed with N, N, N', N'-tetraglycidyldiaminodiphenylmethane, respectively, and a cured product was obtained in the same manner as in Example 1. The measurement results are shown in Table 1.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 一般式 (式中、Rは炭素数1〜3のアルキル基を表わ
し、nは1〜5の任意の数を表わす物を主として
含有する。) で示される化合物を硬化剤として含有する炭素
繊維プリプレグ用エポキシ樹脂組成物。
[Claims] 1. General formula (In the formula, R represents an alkyl group having 1 to 3 carbon atoms, and n represents an arbitrary number of 1 to 5.) An epoxy for carbon fiber prepreg containing a compound represented by the following as a curing agent: Resin composition.
JP5116184A 1984-03-19 1984-03-19 Epoxy resin composition for carbon fiber prepreg Granted JPS60197722A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5116184A JPS60197722A (en) 1984-03-19 1984-03-19 Epoxy resin composition for carbon fiber prepreg

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5116184A JPS60197722A (en) 1984-03-19 1984-03-19 Epoxy resin composition for carbon fiber prepreg

Publications (2)

Publication Number Publication Date
JPS60197722A JPS60197722A (en) 1985-10-07
JPS6251974B2 true JPS6251974B2 (en) 1987-11-02

Family

ID=12879098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5116184A Granted JPS60197722A (en) 1984-03-19 1984-03-19 Epoxy resin composition for carbon fiber prepreg

Country Status (1)

Country Link
JP (1) JPS60197722A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62263218A (en) * 1986-05-09 1987-11-16 Sanyo Chem Ind Ltd Epoxy resin composition

Also Published As

Publication number Publication date
JPS60197722A (en) 1985-10-07

Similar Documents

Publication Publication Date Title
US9815235B2 (en) Controlling crosslinking density and processing parameters of phthalonitriles
EP0127198B1 (en) Preimpregnated reinforcements and high strength composites therefrom
US2801229A (en) Curing glycidyl polyethers
US5599856A (en) Epoxy resin systems containing modifiers
JPH0693103A (en) High-modulus silicone as reinforcement for epoxy resin
NO840294L (en) EPOXY PREPARATIONS CONTAINING OLIGOMER DIAMOND HARDENERS AND COMPOSITION MATERIALS USING THESE
EP0679165B1 (en) Substituted resorcinol-based epoxy resins
TW487721B (en) 1-imidazolylmethyl-2-naphthols as catalysts for curing epoxy resins
JPH0784530B2 (en) Fiber reinforced composite material
US4705833A (en) Thermosettable heat-resistant resin compositions
JPS6251974B2 (en)
KR0154122B1 (en) Epoxy resin composition for use in carbon fiber reinforced plastics
US3214409A (en) Epoxidized novolac-fatty guanamine composition
CN114195769B (en) Polyimide modifier, composition and preparation method thereof
CN115322523B (en) Epoxy resin composition containing amphiphilic liquid crystal block copolymer and preparation method thereof
JPS6140318A (en) Curing agent for epoxy resin
JP2736442B2 (en) Epoxy resin composition for carbon fiber composite material
JPH01287130A (en) Epoxy resin composition for composite material
JPS6023424A (en) Heat-resistant resin composition
EP0234609A2 (en) Novel polyglycidyl amines
JP2022026476A (en) Epoxy resin composition, prepreg and fiber-reinforced composite material
JP2736444B2 (en) Epoxy resin composition
Mcdaniel et al. Poly (arylene ether-co-imidazole) s as toughness modifiers for epoxy resins
JPH01110524A (en) Resin composition for composite material
JPH10120749A (en) Curing of biphenol resin