JPS6251804B2 - - Google Patents

Info

Publication number
JPS6251804B2
JPS6251804B2 JP56085604A JP8560481A JPS6251804B2 JP S6251804 B2 JPS6251804 B2 JP S6251804B2 JP 56085604 A JP56085604 A JP 56085604A JP 8560481 A JP8560481 A JP 8560481A JP S6251804 B2 JPS6251804 B2 JP S6251804B2
Authority
JP
Japan
Prior art keywords
liquid nitrogen
thin
head space
internal pressure
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56085604A
Other languages
Japanese (ja)
Other versions
JPS57204825A (en
Inventor
Yukio Okazawa
Reiichi Murayama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Seikan Group Holdings Ltd
Original Assignee
Toyo Seikan Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Seikan Kaisha Ltd filed Critical Toyo Seikan Kaisha Ltd
Priority to JP8560481A priority Critical patent/JPS57204825A/en
Publication of JPS57204825A publication Critical patent/JPS57204825A/en
Publication of JPS6251804B2 publication Critical patent/JPS6251804B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Vacuum Packaging (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Food Preservation Except Freezing, Refrigeration, And Drying (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は正内圧を有する缶詰の製造方法に関
し、さらに詳しくは液体窒素により正内圧を賦与
された細口部を有する薄肉金属缶よりなる缶詰の
製造方法に関する。
Detailed Description of the Invention (Industrial Field of Application) The present invention relates to a method for manufacturing canned goods having positive internal pressure, and more specifically to a method for producing canned goods having a narrow mouth portion to which positive internal pressure is applied by liquid nitrogen. Regarding the manufacturing method.

(従来の技術) 最近絞り−しごき缶等のように胴壁部が薄肉の
薄肉金属缶(本明詳書においては少なくとも胴壁
部が薄肉、例えば厚さ約0.10〜0.20mmの金属缶を
薄肉金属缶とよぶ)が開発され、材料コストが低
いためその使用量が増えているが、反面薄肉の胴
壁部が凹み等の変形を起し易いため密封後の内圧
を正内圧(本明細書においては大気圧より高い内
圧を正内圧とよぶ)に保つて、上記変形を防止す
る必要がある。ビールや炭酸飲料等の発泡性液体
食品の場合は、単なる充填、密封により容易に正
内圧が得られるが、ジユース類、コーヒ、ミルク
セーキ、スープ、日本酒、ワイン等の非発泡性食
品の場合は、単なる充填、密封によつては正内圧
は得られない。そのため正内圧を比較的容易に得
る方法として、最近液体窒素の使用が提案されて
いる。これは第1図に示すように、従来の胴部1
aと開口部1bの直径がほぼ等しい金属缶1に内
容品2をヘツドスペース部3を残して充填した
後、液体窒素注入器(図示されない)の下部に設
けられたノズル4から内容品2上に液体窒素5を
注下し、その後蓋部(図示されない)を胴部1a
に2重巻締して密封し、密封後気化生成した窒素
ガスにより正内圧を確保する方法である。
(Prior art) Recently drawn - Thin-walled metal cans with thin body walls such as ironed cans (in this specification, thin-walled metal cans with thin body walls, for example approximately 0.10 to 0.20 mm in thickness) Metal cans (called metal cans) have been developed, and their use is increasing due to their low material cost.However, on the other hand, the thin body wall is prone to deformation such as dents, so the internal pressure after sealing is called positive internal pressure (hereinafter referred to as positive internal pressure). In order to prevent the above deformation, it is necessary to maintain an internal pressure higher than atmospheric pressure (called positive internal pressure). In the case of foaming liquid foods such as beer and carbonated drinks, positive internal pressure can be easily obtained by simply filling and sealing, but in the case of non-foaming foods such as juices, coffee, milkshakes, soups, sake, and wine, Positive internal pressure cannot be obtained by simply filling and sealing. Therefore, the use of liquid nitrogen has recently been proposed as a method for obtaining positive internal pressure relatively easily. As shown in Fig. 1, this is different from the conventional body 1
After the contents 2 are filled into a metal can 1 whose diameters a and opening 1b are approximately equal, leaving a head space 3, a nozzle 4 provided at the bottom of a liquid nitrogen injector (not shown) is injected onto the contents 2. Pour liquid nitrogen 5 into the body, and then insert the lid (not shown) into the body 1a.
In this method, the tube is double-sealed and sealed, and a positive internal pressure is ensured by nitrogen gas vaporized after sealing.

(発明が解決しようとする問題点) 従来の上記のような金属缶1を使用する場合
は、密封までの間に、ヘツドスペース部3におい
て実線の矢印6で示すように液体窒素5より窒素
ガスが気化して元々存在した空気を追い出す筈で
あるが、実際はそのさい同時に点線の矢印7で示
すように開口部1bの周辺より外部の空気が侵入
したり、あるいは巻締工程への金属缶1の搬送中
や巻締時に起る缶外周辺の空気の流れによつてヘ
ツドスペース部3内に空気が巻込まれたりして、
ヘツドスペース部3内の空気を完全に窒素ガスに
よつて置換することは困難であつて、ヘツドスペ
ース部3に空気、従つて酸素が残留する場合が多
い。しかも缶のヘツドスペース部の空気を排出す
るに際しては、缶内圧を所定値に収めるために、
液体窒素の注下量、および注下後密封までの時間
をコントロールする必要があるが、このようなコ
ントロールが可能でしかも生産性の高いものは現
在のところ見当らない。そのため保存中内容品2
のフレーバー、色調等の品質が劣化したり、ある
いは缶内面の腐食が促進されるという問題を有す
る。この問題を解決するため特開昭56−4521号に
は液体窒素の滴下と平行して、缶蓋および缶口外
側方から窒素ガスを吹付け、密封する方法が提案
されているが、この場合は窒素ガスを吹付けるた
めの特殊の装置と操作を必要とし、工程が複雑に
なるという問題がある。
(Problems to be Solved by the Invention) When using the conventional metal can 1 as described above, nitrogen gas is supplied from the liquid nitrogen 5 in the head space 3 as shown by the solid arrow 6 before sealing. is supposed to vaporize and expel the air that originally existed, but in reality, at the same time, as shown by the dotted arrow 7, outside air enters from around the opening 1b, or when the metal can 1 enters the seaming process. Air may be drawn into the head space 3 due to air flow around the outside of the can during transportation or seaming.
It is difficult to completely replace the air in the head space 3 with nitrogen gas, and air, and thus oxygen, often remains in the head space 3. Moreover, when discharging the air from the head space of the can, in order to keep the internal pressure within the can to a predetermined value,
Although it is necessary to control the amount of liquid nitrogen poured and the time from pouring to sealing, there is currently no method that allows such control and is highly productive. Therefore, the contents being stored 2
The problem is that the quality of the flavor, color, etc. of the can deteriorates, or corrosion of the inside of the can is accelerated. To solve this problem, Japanese Patent Application Laid-Open No. 56-4521 proposes a method of spraying nitrogen gas from the outside of the can lid and mouth in parallel with the dripping of liquid nitrogen to seal the can. This method requires special equipment and operations for spraying nitrogen gas, making the process complicated.

(問題点を解決するための手段及び作用) この発明は上記の点に鑑みなされたものであつ
て、缶詰を製造する方法として、細口部を有する
薄肉金属缶にヘツドスペース部を残して内容品を
充填した後、薄肉金属缶をターレツトのポケツト
部に挿入して、ターレツトの回転中に近接スイツ
チ・ヘツドが対極に対向して移動する期間だけ、
液体窒素を所定量細口部より注入して、ヘツドス
ペース部の空気を注入された液体窒素の1部の気
化により生成した窒素ガスによつて置換し、その
後金属缶内に液体窒素が残留している間に、蓋部
により細口部を密封するようにしたものであり、
ヘツドスペース部に外部の空気の侵入や巻込みを
招くことがなく、ヘツドスペース部の空気を完全
に窒素ガスと置換することができ、保存中内容品
の品質劣化を防止できるばかりでなく、しかも密
封後は缶内圧を正圧に保つているので、胴壁部に
外圧が加わつても凹み等の変形が防止できる。
(Means and effects for solving the problem) The present invention has been made in view of the above points, and is a method for manufacturing canned goods, in which a head space is left in a thin metal can having a narrow mouth, and the contents are packed in a thin metal can with a narrow mouth. After filling the can, insert the thin-walled metal can into the pocket of the turret and hold it for a period of time during which the proximity switch head moves against the opposite pole while the turret is rotating.
A predetermined amount of liquid nitrogen is injected from the narrow opening, and the air in the head space is replaced by nitrogen gas generated by vaporizing a part of the injected liquid nitrogen. After that, liquid nitrogen remains in the metal can. The narrow opening is sealed by the lid while the product is in use.
The air in the head space can be completely replaced with nitrogen gas without allowing outside air to enter or get caught in the head space, which not only prevents quality deterioration of the contents during storage, but also Since the internal pressure of the can is maintained at a positive pressure after sealing, deformation such as denting can be prevented even if external pressure is applied to the body wall.

そして特に液体窒素の注下量並びに注下後密封
までの時間をコントロールできるので缶内圧を所
定値に収めることができ、且つ生産性も極めて高
い。
In particular, since the amount of liquid nitrogen poured and the time from pouring until sealing can be controlled, the internal pressure of the can can be kept within a predetermined value, and productivity is also extremely high.

(実施例) 以下図面を参照しながらこの発明について説明
する。
(Example) The present invention will be described below with reference to the drawings.

第2図において8は薄肉金属缶であつて、細口
部9を有する上部カツプ体10と底部11aを有
する下部カツプ体11よりなり、上部カツプ体1
0の下端部10aと下部カツプ体11の上端部1
1bは接着剤層12(例えばポリアミド樹脂より
なる)によつて気密接合されている。底部11a
には正立安定性のための複数箇の脚部13が1体
成形により形成されている。薄肉金属缶8に図示
されない充填装置によつてヘツドスペース部3を
残して内容品2が充填された後、ノズル4によつ
て液体窒素5が所定量缶内、すなわち内容品2の
上面に注下される。注下された液体窒素5の一部
は気化して矢印14に示されるように細口部9を
通つて、ヘツドスペース部3に元々存在した空気
を伴つて流出するが、開口部である細口部9は内
径が小さい(通常約10〜30mm)ので、外部から空
気が侵入するおそれがない。従つてヘツドスペー
ス部3の容積、注下された液体窒素5の量、内容
品2の温度等によつて定まる所定時間を経過すれ
ば、ヘツドスペース部3内の空気は完全に窒素ガ
スと置換され、内部に酸素が残留するおそれがな
い。上記所定時間経過後、第3図に示すように蓋
部15(内部周縁部に図示されないガスケツトを
有する)を細口部9のカール部9aにクリンチす
ることによつて細口部9を密封する。細口部9の
内径が小さいので、密封工程への搬送中および密
封作業中にも、外部の空気が巻込まれるおそれは
ない。
In FIG. 2, reference numeral 8 denotes a thin-walled metal can consisting of an upper cup body 10 having a narrow mouth portion 9 and a lower cup body 11 having a bottom portion 11a.
0 lower end 10a and upper end 1 of lower cup body 11
1b is hermetically sealed by an adhesive layer 12 (made of polyamide resin, for example). Bottom part 11a
A plurality of leg portions 13 for erecting stability are formed by integral molding. After the thin-walled metal can 8 is filled with the contents 2 leaving a head space 3 by a filling device (not shown), a predetermined amount of liquid nitrogen 5 is poured into the can, that is, onto the top surface of the contents 2 by the nozzle 4. It will be lowered. A part of the poured liquid nitrogen 5 is vaporized and flows out through the narrow opening 9 as shown by the arrow 14, along with the air that originally existed in the head space 3, but the narrow opening is the opening. 9 has a small inner diameter (usually about 10 to 30 mm), so there is no risk of air entering from the outside. Therefore, after a predetermined period of time determined by the volume of the head space 3, the amount of liquid nitrogen 5 poured, the temperature of the contents 2, etc., the air in the head space 3 is completely replaced with nitrogen gas. There is no risk of oxygen remaining inside. After the predetermined time has elapsed, the narrow opening 9 is sealed by clinching the lid 15 (which has a gasket (not shown) on the inner peripheral edge) to the curled portion 9a of the narrow opening 9, as shown in FIG. Since the inner diameter of the narrow opening 9 is small, there is no fear that outside air will be drawn in during transportation to the sealing process and during sealing work.

密封後、気化することなく缶内に残留していた
液体窒素5が気化することにより、缶内圧は正圧
となる。そして内容品2の種類に従つて、必要に
応じ加熱殺菌処理(パスツリゼーシヨンもしくは
スターリゼーシヨン)を行なう。缶内圧は通常約
0.5〜2.0Kg/cm2(20℃におけるゲージ圧)に保た
れることが好ましい。約0.5Kg/cm2より小さいと
缶胴壁部が外部よりの衝撃等の外圧により凹み等
の変形を生じ易く、一方約2.0Kg/cm2より高くし
ても凹み等に対する変形抵抗はさほど上昇せず、
逆に加熱殺菌処理のさい等に蓋部15の飛出し等
のトラブルを招き易いからである。
After the can is sealed, the liquid nitrogen 5 remaining in the can without being vaporized is vaporized, so that the internal pressure of the can becomes positive. Then, depending on the type of the contents 2, heat sterilization treatment (pastorization or starization) is performed as necessary. The internal pressure of the can is usually approx.
It is preferable to maintain the pressure at 0.5 to 2.0 Kg/cm 2 (gauge pressure at 20° C.). If it is less than about 0.5 Kg/cm 2 , the can body wall will be susceptible to deformation such as dents due to external pressure such as external impact, while if it is higher than about 2.0 Kg/cm 2 , the deformation resistance against dents will not increase much. Without,
On the contrary, this is because troubles such as the lid portion 15 popping out during heat sterilization treatment are likely to occur.

缶内圧を所定値に収めるためには、液体窒素の
注下量、および注下後密封までの時間をコントロ
ールする必要がある。第4図、第5図にはこのよ
うなコントロールが可能で、しかも生産速度の大
きい液体窒素注入装置16の例を示す。17はタ
ーレツトであり、シヤフト18を介して図示され
ない駆動装置により矢印A方向に一定速度で回転
されている。ターレツト17の周辺部には複数箇
(図では8箇)のポケツト部17aが等間隔に設
けられており、装入ステーシヨンXにおいて、図
示されない装入機構により矢印B方向に向つて内
容品の充填された薄肉金属缶8がポケツト部17
aに装入される。Yは送出ステーシヨンであり、
後述のようにして液体窒素を所定量注下された薄
肉金属缶8が、当該ステーシヨンから矢印C方向
に定速回転する送出ターレツト19に送出され、
所定時間後図示されない密封装置において蓋部1
5により薄肉金属缶8は密封される。
In order to keep the internal pressure within the can within a predetermined value, it is necessary to control the amount of liquid nitrogen poured and the time from pouring until sealing. FIGS. 4 and 5 show an example of a liquid nitrogen injection device 16 that is capable of such control and has a high production rate. Reference numeral 17 denotes a turret, which is rotated at a constant speed in the direction of arrow A by a drive device (not shown) via a shaft 18. A plurality of pockets 17a (eight in the figure) are provided at equal intervals around the turret 17, and at the charging station X, the contents are filled in the direction of arrow B by a charging mechanism (not shown). The thin-walled metal can 8 is placed in the pocket portion 17.
A is charged. Y is the sending station;
A thin metal can 8 into which a predetermined amount of liquid nitrogen has been poured as described below is delivered from the station to a delivery turret 19 that rotates at a constant speed in the direction of arrow C.
After a predetermined time, a sealing device (not shown) closes the lid part 1.
5, the thin metal can 8 is sealed.

20は液体窒素注入器であつて、液体窒素槽2
1を備えている。液体窒素槽21は支持体22に
よつてターレツト17に固設されており、その下
部周辺部にはポケツト部17aに対応する位置に
複数箇(図では8箇)のノズル4が設けられてい
る。ノズル4にはノズル開閉機構23が付設され
ており、ノズル開閉機構23は、各ポケツト部1
7aに対応して設けられた複数箇の近接スイツチ
のヘツド24(その他のスイツチ、例えば光電ス
イツチ、リミツトスイツチ等を用いてもよい)に
接続して近接スイツチ・ヘツド24のON、OFF
に伴ないノズル4を開放、閉鎖するように構成さ
れている。一方近接スイツチ・ヘツド24は回転
中、その対極25′に対向している間のみONとな
るように構成されており、従つてノズル4より液
体窒素5が薄肉金属缶8内に注下される時間は、
ターレツト17の周速度と、対極25′の長さに
よつて定められる。
20 is a liquid nitrogen injector, and a liquid nitrogen tank 2
1. The liquid nitrogen tank 21 is fixed to the turret 17 by a support 22, and a plurality of nozzles 4 (eight in the figure) are provided at the lower peripheral portion of the tank at positions corresponding to the pocket portions 17a. . A nozzle opening/closing mechanism 23 is attached to the nozzle 4, and the nozzle opening/closing mechanism 23 is attached to each pocket portion 1.
7a (other switches such as photoelectric switches, limit switches, etc. may be used) to turn the proximity switch heads 24 ON and OFF.
It is configured to open and close the nozzle 4 accordingly. On the other hand, the proximity switch head 24 is configured to be ON only while it is facing the counter electrode 25' during rotation, so that liquid nitrogen 5 is poured from the nozzle 4 into the thin metal can 8. the time is,
It is determined by the peripheral speed of the turret 17 and the length of the counter electrode 25'.

25は液体窒素5の液面レベル制御スイツチで
あつて、第4図の場合は放射線式のものが用いら
れており、25aは放射線源、25bは検出器で
ある。液体窒素5は図示されない液体窒素タンク
から導管26、バルブ27、ロータリシール・ジ
ヨイント28、垂直管29を通つて液体窒素槽2
1に供給される。そして検出器25bはバルブ2
7と電気的に接続しており、バルブ27は検出器
25bの信号に応じて開閉して、液体窒素5の液
面レベルが一定に保たれるように構成されてい
る。30は圧力計付リリーフバルブであつて、液
体窒素槽21内の空間部21aの圧力を一定値に
保つ作用を有する。以上のように液体窒素注入器
20は、液体窒素5の液面レベルおよび空間部2
1aの圧力が一定となるように制御されているの
で、ノズル4より薄肉金属缶8に注下される液体
窒素5の量は、ノズル4の開放時間に比例する。
従つてターレツト17の周速度に応じて近接スイ
ツチ対極25′の長さを定めることにより、上記
注下量を所定値に定めることができる。
25 is a liquid level control switch for the liquid nitrogen 5, and in the case of FIG. 4, a radiation type switch is used, 25a is a radiation source, and 25b is a detector. Liquid nitrogen 5 is passed from a liquid nitrogen tank (not shown) through a conduit 26, a valve 27, a rotary seal joint 28, and a vertical pipe 29 to the liquid nitrogen tank 2.
1. And the detector 25b is the valve 2
The valve 27 is configured to open and close in response to a signal from the detector 25b so that the liquid level of the liquid nitrogen 5 is maintained constant. 30 is a relief valve with a pressure gauge, and has the function of keeping the pressure in the space 21a in the liquid nitrogen tank 21 at a constant value. As described above, the liquid nitrogen injector 20 controls the liquid level of the liquid nitrogen 5 and the space 2.
Since the pressure 1a is controlled to be constant, the amount of liquid nitrogen 5 poured from the nozzle 4 into the thin metal can 8 is proportional to the opening time of the nozzle 4.
Therefore, by determining the length of the proximity switch counter electrode 25' in accordance with the peripheral speed of the turret 17, the amount of pouring can be determined to a predetermined value.

装入ステーシヨンXよりターレツト17のポケ
ツト部17aに装入された薄肉金属缶8(ヘツド
スペース部3を残して内容品2が充填された)
が、矢印A方向に移動し、その間当該ポケツト部
17aに対応する近接スイツチ・ヘツド24が対
極25に対向して移動する期間のみノズル4より
缶内に液体窒素5を注下し、すなわち所定量の液
体窒素を注下する。注下終了後、注下された液体
窒素5の一部は気化してヘツドスペース部3内の
空気と置換し、置換が完全に終了後の所定時間後
に蓋部15により密封される。従つて密封時に缶
内に残留している液体窒素5の量はほぼ一定であ
るので、所望のほぼ一定値の缶内圧を得ることが
できる。なお上記装置のターレツト17は液体窒
素注入時も停止することなく回転しているので、
高速注下(例えば毎分約1000缶)を実現すること
ができる。
Thin-walled metal can 8 loaded into pocket 17a of turret 17 from charging station X (filled with contents 2 leaving head space 3)
moves in the direction of arrow A, and only during the period when the proximity switch head 24 corresponding to the pocket portion 17a moves opposite to the counter electrode 25, liquid nitrogen 5 is poured into the can from the nozzle 4, that is, a predetermined amount is poured into the can. of liquid nitrogen. After the injection is completed, a part of the poured liquid nitrogen 5 is vaporized and replaced with the air in the head space section 3, and after a predetermined period of time after the substitution is completely completed, the lid section 15 is sealed. Therefore, since the amount of liquid nitrogen 5 remaining in the can during sealing is approximately constant, it is possible to obtain a desired approximately constant internal pressure of the can. Note that the turret 17 of the above device rotates without stopping even when liquid nitrogen is injected.
High-speed pouring (for example, about 1000 cans per minute) can be achieved.

なおこの発明に対して、第6図に示されるよう
な、胴部主体31と細口部32を有するドーム状
カツプ部33が2重巻締部34によつて接合され
た薄肉金属缶35を適用してもよい。細口部32
の密封方法は第2図の細口部9の場合と同じであ
る。
In addition, to this invention, a thin metal can 35 in which a body main body 31 and a dome-shaped cup portion 33 having a narrow mouth portion 32 are joined by a double seam portion 34 as shown in FIG. 6 is applied. You may. Narrow mouth part 32
The sealing method is the same as that for the narrow opening 9 in FIG.

(発明の効果) この発明は以上詳述したようにして成るので、
細口部を有する薄肉金属缶にヘツドスペース部を
残して内容品を充填した後、液体窒素を所定量細
口部より注入するのであるから、ヘツドスペース
部に外部の空気の侵入や巻込みを招くことなく、
ヘツドスペース部の空気を完全に窒素ガスと置換
することができ、かつ密封後は缶内圧を正圧に保
つて、胴壁部に外圧(例えば外部よりの衝撃)が
加わつても凹み等の変形が生ずることを防止でき
るものである。
(Effect of the invention) Since this invention is made as detailed above,
After a thin-walled metal can with a narrow neck is filled with the contents, leaving a head space, a predetermined amount of liquid nitrogen is injected through the narrow neck, so there is no risk of external air entering or being drawn into the head space. Without,
The air in the head space can be completely replaced with nitrogen gas, and the pressure inside the can can be maintained at positive pressure after sealing, so even if external pressure (for example, external impact) is applied to the body wall, there will be no deformation such as denting. It is possible to prevent this from occurring.

したがつてきわめて簡単な工程で正内圧を容易
に得られる缶詰の製造方法が得られ、しかも上述
のようにヘツドスペース部の空気が完全に窒素ガ
スと置換できるため、保存中内容品のフレーバー
色調等の品質の劣化が生じることもない。またノ
ズルより液体窒素が薄肉金属缶内に注入される時
間は、ターレツトの周速度と対極の長さによつて
定まり、このようにして液体窒素の注下量をコン
トロールし且つ注下後密封するまでの時間をコン
トロールすることによつて、缶内圧を所定値以下
に収めることが可能で、生産速度も極めて高い。
Therefore, a method for producing canned goods that can easily obtain positive internal pressure is obtained through an extremely simple process, and as mentioned above, the air in the head space can be completely replaced with nitrogen gas, which improves the flavor and color tone of the contents during storage. No deterioration in quality occurs. In addition, the time during which liquid nitrogen is injected into the thin-walled metal can from the nozzle is determined by the circumferential speed of the turret and the length of the opposite electrode.In this way, the amount of liquid nitrogen poured is controlled and the can is sealed after being poured. By controlling the time required for this, it is possible to keep the internal pressure within the can below a predetermined value, and the production rate is extremely high.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の薄肉金属缶に液体窒素を注下し
た直後の状態を示す一部切断正面図、第2図はこ
の発明の適用される薄肉金属缶に液体窒素を注下
した直後の状態を示す一部切断正面図、第3図は
第2図の薄肉金属缶を密封した後の正面図、第4
図は液体窒素注入装置の例の一部切断正面図、第
5図は第4図の−線からみた平面図、第6図
はこの発明の適用される他の薄肉金属缶の例の一
部切断正面図である。 2…内容品、3…ヘツドスペース部、5…液体
窒素、8,35…薄肉金属缶、9,32…細口
部、15…蓋部。
Figure 1 is a partially cutaway front view showing the state immediately after liquid nitrogen is poured into a conventional thin-walled metal can, and Figure 2 is the state immediately after liquid nitrogen is poured into a thin-walled metal can to which the present invention is applied. Fig. 3 is a front view after sealing the thin-walled metal can shown in Fig. 2;
The figure is a partially cutaway front view of an example of a liquid nitrogen injection device, FIG. 5 is a plan view taken from the - line in FIG. 4, and FIG. 6 is a part of another example of a thin-walled metal can to which the present invention is applied. FIG. 2...Contents, 3...Head space part, 5...Liquid nitrogen, 8, 35...Thin metal can, 9, 32...Narrow mouth part, 15...Lid part.

Claims (1)

【特許請求の範囲】[Claims] 1 細口部を有する薄肉金属缶にヘツドスペース
部を残して内容品を充填した後、上記薄肉金属缶
をターレツトのポケツト部に挿入して、該ターレ
ツトの回転中に近接スイツチ・ヘツドが対極に対
向して移動する期間だけ、液体窒素を所定量上記
細口部より注入して、上記ヘツドスペース部の空
気を注入された上記液体窒素の1部の気化により
生成した窒素ガスによつて置換し、その後上記金
属缶内に上記液体窒素が残留している間に蓋部に
より上記細口部を密封することを特徴とする正内
圧を有する缶詰の製造方法。
1. After filling a thin-walled metal can with a narrow mouth with the contents leaving a head space, insert the thin-walled metal can into the pocket of a turret so that the proximity switch head faces the opposite pole while the turret is rotating. A predetermined amount of liquid nitrogen is injected from the narrow opening for a period of time during which the liquid nitrogen is moved, and the air in the head space is replaced with nitrogen gas generated by vaporizing a part of the injected liquid nitrogen. A method for manufacturing a can having a positive internal pressure, characterized in that the narrow mouth portion is sealed with a lid portion while the liquid nitrogen remains in the metal can.
JP8560481A 1981-06-05 1981-06-05 Manufacture of canned provision having positive inner pressure Granted JPS57204825A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8560481A JPS57204825A (en) 1981-06-05 1981-06-05 Manufacture of canned provision having positive inner pressure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8560481A JPS57204825A (en) 1981-06-05 1981-06-05 Manufacture of canned provision having positive inner pressure

Publications (2)

Publication Number Publication Date
JPS57204825A JPS57204825A (en) 1982-12-15
JPS6251804B2 true JPS6251804B2 (en) 1987-11-02

Family

ID=13863424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8560481A Granted JPS57204825A (en) 1981-06-05 1981-06-05 Manufacture of canned provision having positive inner pressure

Country Status (1)

Country Link
JP (1) JPS57204825A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08222915A (en) * 1995-02-15 1996-08-30 Nippon Dengiyou Kosaku Kk Resonator and filter comprising same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6077826A (en) * 1983-09-26 1985-05-02 全国食糧事業協同組合連合会 Solid stored canning and manufacture thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57125118A (en) * 1981-01-13 1982-08-04 Mitsubishi Heavy Ind Ltd Method of discharging air in head space of vessel into which liquid is filled

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57125118A (en) * 1981-01-13 1982-08-04 Mitsubishi Heavy Ind Ltd Method of discharging air in head space of vessel into which liquid is filled

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08222915A (en) * 1995-02-15 1996-08-30 Nippon Dengiyou Kosaku Kk Resonator and filter comprising same

Also Published As

Publication number Publication date
JPS57204825A (en) 1982-12-15

Similar Documents

Publication Publication Date Title
US5290574A (en) Carbonated beverage container
EP0421597B1 (en) A liquid dispensing system and packaging apparatus which includes such a system
JPH02127221A (en) Beverage package and beverage package construction
US5231816A (en) Method of packaging a beverage
EP0624140B1 (en) Carbonated beverage container
US4583346A (en) Method and apparatus for pressurizing containers
CA2158837A1 (en) Method of filling and insert for a container
JPS6251804B2 (en)
US1766173A (en) Construction for and method of evacuating cans
CA2158838A1 (en) Container with head enhancing insert
JPS6330208B2 (en)
JP4136516B2 (en) Bottled can gassing method
JPH0413989B2 (en)
JPS62287888A (en) Method of filling liquid
JP3083107B2 (en) Method for producing bottled beverage and apparatus used therefor
JPH0339885B2 (en)
JPS61165240A (en) Intermittent seaming machine for can body
EP0224316B1 (en) Hot fill thermoplastic container
KR900006601B1 (en) Method of filling liquid
JPH10218130A (en) Manufacture of carbonated drink can
JPS599409B2 (en) Method for manufacturing canned goods filled with atomized liquid nitrogen
JPH04173521A (en) Enclosure of nitrogen gas into can or other vessel
JP2022128747A (en) Method for replacement of gas in carbonated beverage container and method for manufacturing carbonated beverage-filled container
USRE7942E (en) Im pro ve m e nt in metallic vessels
JPS6356092B2 (en)