JPS6251738B2 - - Google Patents

Info

Publication number
JPS6251738B2
JPS6251738B2 JP58080157A JP8015783A JPS6251738B2 JP S6251738 B2 JPS6251738 B2 JP S6251738B2 JP 58080157 A JP58080157 A JP 58080157A JP 8015783 A JP8015783 A JP 8015783A JP S6251738 B2 JPS6251738 B2 JP S6251738B2
Authority
JP
Japan
Prior art keywords
film
polymer layer
liquid crystal
ppb
ionic impurities
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58080157A
Other languages
Japanese (ja)
Other versions
JPS59204543A (en
Inventor
Unosuke Uchida
Junji Tanaka
Hisakazu Nakamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP58080157A priority Critical patent/JPS59204543A/en
Publication of JPS59204543A publication Critical patent/JPS59204543A/en
Publication of JPS6251738B2 publication Critical patent/JPS6251738B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は高分子フイルム上にイオン性不純物の
含有量としてNaが500ppb、Clが200ppb以下にし
た高分子層を設け、更に該高分子層の上に酸化イ
ンジウムを主成分とする被膜を形成した積層導電
フイルムに関するものである。 透明導電体としては、以前より酸化スズ、酸化
インジウム膜をガラス基板上に形成したものが知
られており今日では各種デイスプレイの電極や透
明な面発熱体等に広く利用されている。 一方透明導電体フイルムは、従来のガラス基板
を高分子フイルムに置き換えたものであり、薄く
て、軽量、割れない、フレキシブルである、加工
性が良い、大面積が可能等ガラス基板にない種々
の特長を持つている。特に液晶用の電極材料とし
ては有望である。 透明導電体のフイルム化はポリエステルフイル
ムによつて始まつたが通常2軸延伸法により作製
するため、複屈折を生じ、TN(ツイスト・ネマ
テイツク)液晶表示素子の透明電極としては用い
る事が出来ない。 そのため、一軸延伸ポリエステルフイルムが液
晶素子用透明電極として検討されているが、これ
を用いる場合は光学異方性の軸を液晶素子に用い
られる偏光板の軸と厳密に一致させなくてはなら
ず、作業性が非常に悪い。又一軸延伸であるため
熱時の収縮率と異方性があり、光学的にも外観的
にも透明電極としての性能を損う。 その他、セルロース系のフイルムなどが検討さ
れているが、耐熱性がなく液晶表示素子の加工工
程でかなり変形するため使用する事が困難であ
る。 従つて、液晶表示素子用電極としては、特に限
定するものではないが透明性が良く、非晶質で耐
熱性のあるフイルムを用いなくてはならない。そ
こで鋭意研究を行なつた結果、複屈折が位相差に
して40度以内であり、かつ光弾性常数が2.0mm/
Kg以下であり、更に200℃に於ける熱収縮率が5
%以下である高分子フイルムが最も適している事
を見出した。 しかしながら従来のガラス基板と異なりフイル
ムからのイオン性不純物の拡散により液晶の劣化
が生じる事が判明した。特にアルカリ金属イオン
や塩素イオンは著しい影響を与える。そこでベー
スフイルムと同様に、複屈折が位相差にして40度
以内で、光弾性常数が2.0mm/Kg以下であり、且
つ200℃に於ける熱収縮率が5%以下であり、更
にイオン性不純物の含有量としては、出来る限り
少ない事が望ましいが、生産性を考慮するとNa
が500ppb、Clが200ppb以下である高分子層をベ
ースフイルム上に設ける事によつて、イオン性不
純物の拡散を防ぎ、液晶の寿命を飛躍的に向上す
る事が出来る積層導電フイルムを見出したので以
下に詳細に説明する。 まず第1に液晶用として積層導電フイルムを用
いる際のベースフイルム並びに第1層目の高分子
層は、特に限定するものではないが、厚さにかか
わらず40度以上の位相差があつてはならない。通
常TN型液晶表示素子は明視野で用いるが、フイ
ルムの複屈折が大きな場合、地の部分が着色し、
文字部分のコントラストが小さくなるという欠点
が生じる。従つてベースフイルム並びに第1層目
の高分子層の複屈折は全くない事が好ましいが、
生産工程に於けるバラツキなども考慮した場合
は、複屈折の程度は厚さにかかわらず位相差にし
て40度が限界である事を見出した。尚この測定は
位相差メータにて第1層目高分子層を設けたベー
スフイルムの主軸方向の光波の速度差から生ずる
位相差を測定する事により得られる。 第2の条件として光弾性常数であるが、これは
フイルムに力を加え変形した場合に於ける複屈折
の生じ易さを表わしている常数である。 一般にフイルム電極を用いた液晶セルに於いて
は、フイルム電極をセツトする場合とか、フイル
ム電極を接着する場合など、フイルム電極に張力
や圧縮応力が加わることがあるが、この際に大き
な複屈折を生じたのでは第1の条件で記した如く
表示のコントラストが小さくなる。 更に重要な点は、フイルム電極を用いる場合は
液晶の曲面表示が行なわれる場合があり、この時
フイルムにかなりの張力及び圧縮力が掛かるた
め、応力下に於いて大きな複屈折を生じる材料で
は同様の理由により表示のコントラストを小さく
するため好ましくない。 従つてフイルム電極に用いるベースフイルム並
びに第1層目高分子層は、応力下に於いて出来る
限り複屈折を生じない材質が好ましい。ここで
種々の透明プラスチツクにつき検討した結果、光
弾性常数は2.0mm/Kgが限界であり、これ以下の
値が好ましい。一般に光弾性定数の小さな材料と
してはヤング率が大きく、即ち歪が生じ難く、組
成的には大きな分極率を有する分子を含まない事
が好ましい。尚光弾性常数の測定は光弾性装置を
用い、第1層目高分子層を設けたベースフイルム
にかけた応力と生じた光弾性縞の関係から求めら
れる。 第3の条件としてベースフイルム並びに第1層
目高分子層の熱的性質であるが、まず透明積層導
電フイルムの作製時金属酸化物の安定化のため
100℃から200℃の範囲で熱処理を行なうが、フイ
ルム並びに第1層目高分子層の収縮率が大きい場
合には、金属酸化膜に応力集中が起り、シワやク
ラツクが生じる。また電極パタンに加工する工程
に於いては、洗浄、乾燥等の工程を数回経るが、
第1層目高分子層がついたベースフイルムの熱収
縮率が大きな場合は、パタン精度が損なわれ、そ
の後の加工に支障をきたす。その他液晶表示体を
組込んだ機器が比較的高温になる場合があり、こ
の様な環境では電極フイルムが収縮・変形し、そ
の機能を損なう恐れがある。この様な理由から液
晶用電極に用いるフイルム並びに第1層目高分子
層は、耐熱性が必要であり、最低限度200℃に於
ける収縮率が5%以下である事が好ましい。 第四に液晶等に用いる場合には、フイルムから
のイオン性不純物の液晶への拡散が液晶の劣化や
使用する電池の寿命に大きな影響を与える。又、
酸化インジウム層への拡散によつても電気特性の
不安定さにつながる。特にアルカリ金属イオンや
塩素イオンは液晶に著しい影響を与える事を見出
した。 従つてガラス基板にかわつてフイルム化する場
合には、どうしてもイオン性不純物の液晶や酸化
インジウム層への拡散を防止する必要がある。こ
のためベースフイルムの樹脂の精製段階で不純物
イオンを除去すれば良いが、生産性の低下につな
がる。しかしながら第1層高分子層は0.1〜10μ
m程度であり、ベースフイルム100μmに対して
1/10〜1/1000の樹脂量で済むため、第1層高分子
層に於いて不純物イオンを除去する様に精製する
方が生産性向上につながる。 そこで種々の高分子膜につき鋭意検討した結
果、Naが500ppb、Clが200ppb以下の条件を満足
する高分子層を設ける事によつて信頼性試験であ
る80℃、90%RHの環境下に於いて実用可能な
1000時間の使用に耐える事を見出したものであ
る。 第1層目の高分子層の厚さは特に限定しない
が、0.1〜10μmの範囲が好ましい。厚さ0.1μm
未満では連続的な膜を形成しないため、目的とす
るイオン性不純物防止を達成する事は困難であ
る。又10μmを越えた厚さでは、基板である高分
子フイルムのフレキシビリテイーが失なわれた
り、表面にクラツクが入つたりして好ましくな
い。 以上記した様に従来のガラス基板に変つてフイ
ルムベースによる透明導電性フイルムを用いる事
により、軽くて、薄く、フレキシブルである新し
いタイプの液晶素子の作製が可能になると共に、
生産面に於いては取扱いが容易で打抜き加工も可
能であり、生産性を飛躍的に向上する事が出来
る。更に性能面ではフイルムからのイオン性不純
物の液晶への拡散を防止したため、寿命の大巾な
向上が計られる。 以上主として液晶用の電極材料について述べた
が、高分子フイルム上にイオン性不純物の少ない
高分子層を設け、更に金属層を被覆した積層導電
フイルムは、他の用途においてもフイルムからの
イオン性不純物の拡散を防ぎ、イオン性不純物に
よる悪影響、例えば種々の電気特性の低下を防止
することが出来、液晶用の電極材料同様きわめて
有用なものである。 以下実施例より更に本発明を詳細に説明する。 実施例 ベースフイルムとしては、100μm厚のポリエ
ーテルサルフオンフイルムを用い、第1層目高分
子層としてイオン性不純物を充分除去したエポキ
シアクリレート樹脂をスピナー4μm厚にコート
し、更にインジウム酸化物層を300Å厚にスパツ
タ法により設け積層導電フイルムを作成した。こ
の際の第1層目高分子層のイオン性不純物の量は
Naが500ppbであり、Clが200ppbであつた。又、
第1層目高分子層を設けたベースフイルムの複屈
折は21度であり、光弾性常数は1.76mm/Kgであ
り、200℃に於ける収縮率は1.0%であつた。この
積層導電フイルムを用いて液晶表示体用のセルを
作製し、80℃90%RHの環境下で信頼性試験を行
なつた結果を第1表に示す。 又、比較例として第1表中のNo.1、No.2は同一
ベースフイルムにイオン性不純物の除去レベルを
かえたエポキシアクリレート樹脂を同様に4μm
厚にコートしたもの2種類に、更にインジウム酸
化物を300Å厚に作成した積層導電フイルムを用
いて作製した液晶表示体用セルの結果である。 尚この際のイオン性不純物の量として、No.1は
Naが1ppm、かつClが200ppbであり、No.2はNa
が500ppbであり、Clが400ppbであつた。更に第
1表中のNo.3は、同一のベースフイルムに直接イ
ンジウム酸化物を300Å厚に形成した導電フイル
ムを用いて作製した液晶表示体セルの結果であ
る。尚この際のベースフイルム中のイオン性不純
物の量はNaが106ppmでClが142ppmであつた。 第1表で明らかな様に、本実施例による積層導
電フイルムを用いた液晶表示体用セルは、80℃、
90%RHの環境下の信頼性試験で実用可能な1000
時間の寿命を記録しており、飛躍的に性能を向上
させる事が判かる。
In the present invention, a polymer layer with an ionic impurity content of 500 ppb or less and 200 ppb or less of Cl is provided on a polymer film, and a film containing indium oxide as a main component is further formed on the polymer layer. This invention relates to a laminated conductive film. Transparent conductors made of tin oxide or indium oxide films formed on glass substrates have long been known, and today they are widely used in electrodes for various displays, transparent surface heating elements, and the like. On the other hand, transparent conductive film replaces the conventional glass substrate with a polymer film, and has various advantages that glass substrates do not have, such as being thin, lightweight, unbreakable, flexible, easy to process, and can be made over a large area. It has features. It is particularly promising as an electrode material for liquid crystals. The production of transparent conductor films began with polyester films, but since they are usually produced using a biaxial stretching method, they produce birefringence and cannot be used as transparent electrodes in TN (twisted nematic) liquid crystal display devices. . For this reason, uniaxially stretched polyester film is being considered as a transparent electrode for liquid crystal devices, but when using this, the axis of optical anisotropy must be precisely aligned with the axis of the polarizing plate used in the liquid crystal device. , workability is very poor. Furthermore, since it is uniaxially stretched, it has shrinkage rate and anisotropy when heated, which impairs its performance as a transparent electrode both optically and in appearance. In addition, cellulose-based films are being considered, but they are difficult to use because they are not heat resistant and deform considerably during the manufacturing process of liquid crystal display elements. Therefore, as electrodes for liquid crystal display elements, although not particularly limited, it is necessary to use a film that has good transparency, is amorphous, and is heat resistant. As a result of intensive research, we found that the birefringence is within 40 degrees in terms of phase difference, and the photoelastic constant is 2.0 mm/
Kg or less, and the heat shrinkage rate at 200℃ is 5.
% or less was found to be most suitable. However, unlike conventional glass substrates, it has been found that the diffusion of ionic impurities from the film causes deterioration of the liquid crystal. In particular, alkali metal ions and chloride ions have a significant effect. Therefore, like the base film, the birefringence is within 40 degrees in terms of phase difference, the photoelastic constant is 2.0 mm/Kg or less, the thermal shrinkage rate at 200°C is 5% or less, and it has ionic properties. It is desirable that the content of impurities be as low as possible, but considering productivity, Na
We have discovered a laminated conductive film that can prevent the diffusion of ionic impurities and dramatically improve the lifespan of liquid crystals by providing a polymer layer with 500 ppb or less and 200 ppb or less of Cl on the base film. This will be explained in detail below. First of all, when using a laminated conductive film for liquid crystal, the base film and the first polymer layer are not particularly limited, but regardless of the thickness, they must have a retardation of 40 degrees or more. No. Normally, TN type liquid crystal display elements are used in bright field, but if the birefringence of the film is large, the background part will be colored.
This results in a disadvantage that the contrast of the character portion is reduced. Therefore, it is preferable that the base film and the first polymer layer have no birefringence at all.
When considering variations in the production process, we found that the limit for birefringence is 40 degrees in terms of phase difference, regardless of thickness. This measurement is obtained by measuring the phase difference caused by the speed difference of light waves in the principal axis direction of the base film provided with the first polymer layer using a phase difference meter. The second condition is the photoelastic constant, which represents the ease with which birefringence occurs when a force is applied to the film and the film is deformed. In general, in liquid crystal cells using film electrodes, tension or compressive stress may be applied to the film electrode when setting the film electrode or gluing the film electrode, but at this time large birefringence may occur. If this occurs, the contrast of the display will be reduced as described in the first condition. An even more important point is that when film electrodes are used, the curved surface of the liquid crystal may be displayed, and at this time considerable tension and compression forces are applied to the film. This is not preferable because it reduces the contrast of the display. Therefore, the base film and the first polymer layer used in the film electrode are preferably made of materials that do not cause birefringence under stress as much as possible. As a result of examining various transparent plastics, the photoelastic constant was found to be at a limit of 2.0 mm/Kg, and values below this value are preferred. Generally, a material with a small photoelastic constant has a large Young's modulus, that is, it is difficult to cause distortion, and the composition preferably does not contain molecules with a large polarizability. The photoelastic constant is measured using a photoelastic device and is determined from the relationship between the stress applied to the base film provided with the first polymer layer and the photoelastic fringes generated. The third condition is the thermal properties of the base film and the first polymer layer.
Heat treatment is performed in the range of 100°C to 200°C, but if the shrinkage rate of the film and the first polymer layer is large, stress concentration occurs in the metal oxide film, causing wrinkles and cracks. In addition, in the process of processing into electrode patterns, there are several steps such as washing and drying.
If the base film with the first polymer layer has a large thermal shrinkage rate, pattern accuracy will be impaired and subsequent processing will be hindered. Other devices incorporating liquid crystal displays may reach relatively high temperatures, and in such environments, the electrode film may shrink or deform, potentially impairing its functionality. For these reasons, the film and the first polymer layer used in the liquid crystal electrode must have heat resistance, and preferably have a shrinkage rate of at least 5% at 200°C. Fourthly, when used in liquid crystals, the diffusion of ionic impurities from the film into the liquid crystals greatly affects the deterioration of the liquid crystals and the life of the batteries used. or,
Diffusion into the indium oxide layer also leads to instability of electrical properties. In particular, we found that alkali metal ions and chloride ions have a significant effect on liquid crystals. Therefore, if a film is used instead of a glass substrate, it is necessary to prevent ionic impurities from diffusing into the liquid crystal or indium oxide layer. For this reason, impurity ions can be removed at the step of purifying the resin of the base film, but this leads to a decrease in productivity. However, the first polymer layer is 0.1~10μ
m, and for a base film of 100μm
Since only 1/10 to 1/1000 of the amount of resin is required, purification to remove impurity ions in the first polymer layer leads to improved productivity. As a result of intensive study on various polymer membranes, we found that by providing a polymer layer that satisfies the conditions of 500 ppb of Na and 200 ppb of Cl, we were able to conduct a reliability test in an environment of 80°C and 90% RH. and practical
It was discovered that it can withstand 1000 hours of use. The thickness of the first polymer layer is not particularly limited, but is preferably in the range of 0.1 to 10 μm. Thickness 0.1μm
If it is less than that, a continuous film will not be formed and it will be difficult to achieve the desired prevention of ionic impurities. If the thickness exceeds 10 .mu.m, the flexibility of the polymer film as a substrate may be lost or cracks may appear on the surface, which is undesirable. As mentioned above, by using a film-based transparent conductive film instead of the conventional glass substrate, it becomes possible to create a new type of liquid crystal element that is light, thin, and flexible.
In terms of production, it is easy to handle and can be punched, making it possible to dramatically improve productivity. Furthermore, in terms of performance, since the diffusion of ionic impurities from the film into the liquid crystal is prevented, the lifespan is significantly improved. Although we have mainly talked about electrode materials for liquid crystals above, laminated conductive films in which a polymer layer with low ionic impurities is provided on a polymer film and further coated with a metal layer can also be used in other applications due to the presence of ionic impurities from the film. It is possible to prevent the diffusion of ionic impurities and to prevent the adverse effects caused by ionic impurities, such as deterioration of various electrical properties, and is extremely useful like electrode materials for liquid crystals. The present invention will be explained in more detail below with reference to Examples. Example A polyether sulfonate film with a thickness of 100 μm was used as the base film, and as the first polymer layer, an epoxy acrylate resin from which ionic impurities had been sufficiently removed was coated with a spinner to a thickness of 4 μm, and an indium oxide layer was further applied. A laminated conductive film was prepared by sputtering to a thickness of 300 Å. The amount of ionic impurities in the first polymer layer at this time is
Na was 500 ppb and Cl was 200 ppb. or,
The base film provided with the first polymer layer had a birefringence of 21 degrees, a photoelastic constant of 1.76 mm/Kg, and a shrinkage rate of 1.0% at 200°C. A cell for a liquid crystal display was fabricated using this laminated conductive film, and a reliability test was conducted in an environment of 80°C and 90%RH.Table 1 shows the results. In addition, as a comparative example, No. 1 and No. 2 in Table 1 are 4 μm thick epoxy acrylate resins with different ionic impurity removal levels on the same base film.
These are the results of a cell for a liquid crystal display fabricated using two types of thickly coated conductive films and a laminated conductive film made of indium oxide to a thickness of 300 Å. In addition, as for the amount of ionic impurities at this time, No. 1 is
Na is 1ppm and Cl is 200ppb, No. 2 is Na
was 500ppb, and Cl was 400ppb. Furthermore, No. 3 in Table 1 is the result of a liquid crystal display cell manufactured using a conductive film in which indium oxide was directly formed on the same base film to a thickness of 300 Å. The amount of ionic impurities in the base film at this time was 106 ppm for Na and 142 ppm for Cl. As is clear from Table 1, the liquid crystal display cell using the laminated conductive film according to this example was heated at 80°C.
1000 which is practical in reliability test under 90%RH environment
The time life is recorded, and it can be seen that the performance improves dramatically.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 高分子フイルムの片面もしくは両面に、イオ
ン性不純物含有量としてNaが500ppb、Clが
200ppb以下の高分子層を設け、更に該高分子層
の少なくとも片面上に酸化インジウムを主成分と
する被膜を形成した積層導電フイルム。
1 One or both sides of the polymer film contains 500 ppb of Na and Cl as ionic impurity contents.
A laminated conductive film comprising a polymer layer having a concentration of 200 ppb or less, and a coating containing indium oxide as a main component on at least one side of the polymer layer.
JP58080157A 1983-05-10 1983-05-10 Laminated conductive film Granted JPS59204543A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58080157A JPS59204543A (en) 1983-05-10 1983-05-10 Laminated conductive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58080157A JPS59204543A (en) 1983-05-10 1983-05-10 Laminated conductive film

Publications (2)

Publication Number Publication Date
JPS59204543A JPS59204543A (en) 1984-11-19
JPS6251738B2 true JPS6251738B2 (en) 1987-10-31

Family

ID=13710462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58080157A Granted JPS59204543A (en) 1983-05-10 1983-05-10 Laminated conductive film

Country Status (1)

Country Link
JP (1) JPS59204543A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01168331A (en) * 1987-12-24 1989-07-03 Mitsui Toatsu Chem Inc Process for saturating organic metallic compound

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4960367A (en) * 1972-10-14 1974-06-12

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4960367A (en) * 1972-10-14 1974-06-12

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01168331A (en) * 1987-12-24 1989-07-03 Mitsui Toatsu Chem Inc Process for saturating organic metallic compound

Also Published As

Publication number Publication date
JPS59204543A (en) 1984-11-19

Similar Documents

Publication Publication Date Title
JP4355317B2 (en) Polarizing film, polarizing plate, and liquid crystal display device
EP1743915A1 (en) Oriented film, process for producing the same and laminate thereof
US4620772A (en) Liquid crystal display plastic cell structure
US5905554A (en) Non-birefringent optical adhesives and films
JP7461758B2 (en) Method for restoring optical properties of polarizing plates deteriorated in high temperature environments
JPS6337699B2 (en)
JPS6251738B2 (en)
JPS59204544A (en) Laminated conductive film
JP3602555B2 (en) Liquid crystal display
JP3878693B2 (en) Polarizing plate and liquid crystal display device using the same
JPH0552609B2 (en)
JPH0552003B2 (en)
JPS619619A (en) Uniaxially oriented polyethylene terephthalate film for liquid crystal display element
JPH0552002B2 (en)
JPS6132749A (en) Laminated conductive film
JPS61116332A (en) Polarizing film-bonded transparent conductive film
JPS6132750A (en) Laminated conductive film
JPS59158015A (en) Transparent conductive film
JP2004309717A (en) Polarizing plate and liquid crystal display device
JP2000111732A (en) Production of three-dimensional double refractive film
JPH0511115A (en) Phase difference compensation plate
KR100375285B1 (en) Thermostable polarizer
JPH0724954A (en) Electrically-conductive polarizing film
JPH04195103A (en) Phase difference film
JPH0535841B2 (en)