JPS6251656B2 - - Google Patents

Info

Publication number
JPS6251656B2
JPS6251656B2 JP57208578A JP20857882A JPS6251656B2 JP S6251656 B2 JPS6251656 B2 JP S6251656B2 JP 57208578 A JP57208578 A JP 57208578A JP 20857882 A JP20857882 A JP 20857882A JP S6251656 B2 JPS6251656 B2 JP S6251656B2
Authority
JP
Japan
Prior art keywords
catalyst
concentration
aqueous solution
cleaning
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57208578A
Other languages
Japanese (ja)
Other versions
JPS5998739A (en
Inventor
Masao Hino
Michasu Pponda
Tooru Seto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP57208578A priority Critical patent/JPS5998739A/en
Publication of JPS5998739A publication Critical patent/JPS5998739A/en
Publication of JPS6251656B2 publication Critical patent/JPS6251656B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、窒素酸化物除去用触媒が使用途中に
被毒物の蓄積により性能が低下したときに、該触
媒を洗浄し、再賦活させる改良された方法を提供
するものである。 排ガス中の窒素酸化物(以下NOxという)
は、大気中で紫外線の作用で炭化水素類と反応し
て、光化学スモツグを発生する一因といわれ、
NOx除去方法の開発が進められている。特に、
排ガス中のNOxをアンモニアを還元剤として触
媒上で無害化する、いわゆるアンモニア接触還元
法が、現在NOxの除去の主流をなしている。 一般に、重油焚きボイラや石炭焚きボイラの排
ガスのようなダストとSOxを含有するダーテイガ
スを処理するものでは耐SOx性、耐ダスト被毒
性、耐ダスト閉塞性、耐ダスト摩耗性などを考慮
して最適な触媒仕様を選定する必要があり、
LNG焚きボイラ用その他で多用されているAl2O3
に代りにTiO2を担体にすることで耐SOx性が十
分になることから、TiO2にV2O5、WO3
Fe2O3、MoO2などの活性成分を担持させた触媒
が使用されている。また、ダスト閉塞しない触媒
形状としては粒状、円柱状、だ円体状などに成形
された触媒を移動床で使用する方法、板状、パイ
プ状、格子状、ハニカム状などの触媒構造体を固
定床にして排ガスを並行流で通過させる方法が比
較検討され、現在では経済性があり、保守の簡単
な格子状触媒が主流となつている。そして石炭焚
きボイラン高ダスト側での脱硝反応にも硬度の高
い格子状触媒が開発され、実用上ほとんど問題の
ない状態となつている。 しかし、TiO2を担体とした並行流形格子状触
媒でも、触媒面にダストが付着した状態で水で濡
れたり、ボイラの蒸発管やエコノマイザー給水管
の破損事故で火炉中のダストを含んだ蒸気又は水
が触媒を濡らす場合には、上記ダスト中にK、
Na、Mg等が含まれているため触媒内部に急激に
K、Na、Mgなどの被毒物が増加して、予期して
いない性能低下をきたし、ボイラの運転ができな
いような事故が発生する場合もある。 また、このような緊急事故により脱硝装置が所
期の性能を発揮しなくなつた時は、触媒を充填し
たままの状態で短期間に性能を回復させることが
必要である。 このようなK、Na、Mgなどの水に可溶性の被
毒物で触媒の性能が低下した場合には通常の水に
よる洗浄で再生が可能であるが、石炭焚き排ガス
のようにCaを含む排ガスにおいては、触媒の表
面あるいは内部に硫酸カルシウムのように水に溶
解し難い被毒物が蓄積することがあり、このよう
な場合には水のみによる洗浄では触媒の性能を使
用可能な状態にまで再賦活することが困難であ
る。 本発明は、水による再賦活方法が不充分な点を
改良するためになされたものである。 すなわち本発明は、排ガス中の窒素酸化物をア
ンモニア接触還元法にて除去するに際し、性能が
低下した触媒を常温もしくは加温下に有機酸水溶
液又は有機酸水溶液と無機酸水溶液の混合溶液で
洗浄処理することにより再生することを特徴とす
る触媒の再生方法に関するものである。 本発明方法において、有機酸水溶液としては、
濃度0.01〜10重量%、好ましくは0.5〜3重量%
の酢酸、蟻酸、エチレンジアミン四酢酸等の有機
酸の稀水溶液が、また有機酸と無機酸の混合水溶
液としては、上記の有機酸水溶液と濃度0.01〜5
重量%の塩酸、硫酸、硝酸等の無機酸の稀水溶液
との混合溶液が使用される。 有機酸水溶液の濃度を0.01〜10重量%としたの
は、有機酸水溶液の濃度は高いほど硫酸カルシウ
ム等の被毒物を溶出させやすいが、10重量%以上
の濃度であつても濃度を高める割にはその効果は
ほとんど変らず、経済的に不利であり、逆に0.01
重量%未満であると被毒物の溶出効果を得ること
ができないからである。また被毒物の濃度によつ
ても有機酸水溶液の濃度を選択する必要があり、
被毒物濃度が低いと有機酸水溶液の濃度が低くて
もよいが、より効果的、経済的に処理するには
0.5〜3重量%が適当である。 この有機酸水溶液に無機酸水溶液を混合する場
合の無機酸水溶液の濃度を0.01〜5重量%とする
には、0.01重量%未満では無機酸水溶液の混合効
果が何ら得られず、逆に5重量%以上であつても
濃度を高める割には効果はほとんど変らず経済的
に不利となるからである。 また上記の有機酸水溶液または有機酸と無機酸
の混合水溶液は、常温または25〜90℃の加温下で
使用される。これは被毒物の溶出は温度を高くす
ることにより上昇するが、それに伴い活性成分の
溶出も増加するので、むやみに温度を上げるのは
好ましくなく、また経済的にも不利であることに
よる。 更に、洗浄時間は5〜90分、好ましくは30〜60
分である。5分未満の洗浄時間では洗浄効果を得
ることができず、洗浄時間は長い程効果が高い。
ただし、60分以上の洗浄時間をとつても洗浄効果
はほとんど変らないので、短時間に、効率よく洗
浄するためには、30〜60分が好ましい。 本発明方法は、特に水に溶解し難い硫酸カルシ
ウム等のカルシウム分の被毒物を短時間で効率良
く溶出除去することができるものであり、TiO2
にV2O5、WO3、Fe2O3、MoO2などの活性成分を
組合せた触媒、触媒の形状としては粒状、円柱
状、だ円体状などに成形された触媒、及び板状、
パイプ状、格子状、ハニカム状などの触媒構造体
のコート状、ソリツド状の触媒の再生に適用する
ことができる。 さらに洗浄方法も通常のスプレー洗浄あるいは
浸漬洗浄のいずれも適用でき、特に制限されるも
のではない。 被毒物質を除去した触媒は、通常の乾燥方法に
て乾燥し、引続き脱硝触媒として供される。 本発明方法は、石炭焚き排ガスに適用した触媒
の再生方法として特に有効であるが、これに限定
するものではなく、重油焚き排ガス、ゴミ焼却炉
排ガス等に適用した触媒の再生方法としても利用
でき、その方法は簡易で実用上の効果は非常に大
といえる。 次に本発明方法の実施例を挙げるが、本発明方
法はこれらの実施例に限定されるものではない。 実施例 1 触媒成分としてバナジウムを含む格子状触媒を
用いて、石炭焚き排ガス中のNOxをアンモニア
接触還元法で無害化処理するに当り、600Nm3/H
規模の装置で、温度300〜380℃、空間速度
3000hr-1、アンモニア/NOx比=0.85、SOx濃度
1100〜1400ppm、ダスト濃度15〜20g/m3Nの条
件で、12000時間の触媒耐久試験を実施した。 その触媒をサンプリングして第1表に示す条件
で活性試験を実施した結果、初期の脱硝率83%が
51%に活性が低下していた。 この触媒を4倍容量比の常温の水に60分間浸
漬、乾燥後、前記と同様の条件で活性試験を実施
した結果、脱硝率が55%に回復した。 同様に、劣化した触媒を濃度3重量%の酢酸溶
液を用い、4倍容量比で、常温の該酢酸溶液中に
60分間浸漬、乾燥後、同様の条件で活性試験を実
施した結果、79%まで脱硝率が回復した。
The present invention provides an improved method for cleaning and reactivating a nitrogen oxide removal catalyst when its performance deteriorates due to the accumulation of poisonous substances during use. Nitrogen oxides in exhaust gas (hereinafter referred to as NOx)
is said to be one of the causes of photochemical smog when it reacts with hydrocarbons in the atmosphere due to the action of ultraviolet rays.
Development of NOx removal methods is underway. especially,
The so-called ammonia catalytic reduction method, in which NOx in exhaust gas is rendered harmless on a catalyst using ammonia as a reducing agent, is currently the mainstream method for removing NOx. In general, for processing dirty gas containing dust and SOx, such as exhaust gas from heavy oil-fired boilers or coal-fired boilers, it is most suitable in consideration of SOx resistance, dust toxicity resistance, dust clogging resistance, dust abrasion resistance, etc. It is necessary to select appropriate catalyst specifications.
Al 2 O 3 is widely used in LNG-fired boilers and other applications.
By using TiO 2 as a carrier instead of TiO 2 , the SOx resistance becomes sufficient .
Catalysts on which active components such as Fe 2 O 3 and MoO 2 are supported are used. In addition, as catalyst shapes that do not become clogged with dust, we use catalysts shaped like granules, cylinders, or ellipsoids in a moving bed, or fixed catalyst structures such as plates, pipes, grids, or honeycombs. A method of using a bed to allow exhaust gas to pass through in parallel has been compared, and currently grid-shaped catalysts are the mainstream as they are economical and easy to maintain. A highly hard lattice catalyst has also been developed for denitrification reactions on the high-dust side of coal-fired boilers, and has virtually no problems in practical use. However, even with a parallel-flow lattice catalyst using TiO 2 as a carrier, if the catalyst surface gets wet with water with dust attached to it, or if the boiler evaporator tube or economizer water supply pipe breaks, the catalyst surface may become contaminated with dust from the furnace. If steam or water wets the catalyst, K,
Because the catalyst contains Na, Mg, etc., the amount of poisonous substances such as K, Na, Mg, etc. increases rapidly inside the catalyst, causing unexpected performance deterioration and causing an accident in which the boiler cannot operate. There is also. Furthermore, when the denitrification device no longer exhibits the expected performance due to such an emergency accident, it is necessary to restore the performance in a short period of time while the catalyst remains filled. If the performance of the catalyst deteriorates due to water-soluble poisonous substances such as K, Na, Mg, etc., it can be regenerated by washing with normal water, but in exhaust gas containing Ca such as coal-fired exhaust gas, In some cases, poisonous substances that are difficult to dissolve in water, such as calcium sulfate, accumulate on or inside the catalyst, and in such cases, cleaning with water alone may not reactivate the catalyst to a usable state. difficult to do. The present invention was made to improve the insufficiency of the reactivation method using water. That is, in the present invention, when removing nitrogen oxides from exhaust gas by an ammonia catalytic reduction method, a catalyst whose performance has deteriorated is washed with an organic acid aqueous solution or a mixed solution of an organic acid aqueous solution and an inorganic acid aqueous solution at room temperature or with heating. The present invention relates to a method for regenerating a catalyst, characterized in that the catalyst is regenerated through treatment. In the method of the present invention, the organic acid aqueous solution is
Concentration 0.01-10% by weight, preferably 0.5-3% by weight
dilute aqueous solutions of organic acids such as acetic acid, formic acid, and ethylenediaminetetraacetic acid, and mixed aqueous solutions of organic acids and inorganic acids with concentrations of 0.01 to 5.
A mixed solution of a dilute aqueous solution of an inorganic acid such as hydrochloric acid, sulfuric acid, nitric acid, etc. in % by weight is used. The reason for setting the concentration of the organic acid aqueous solution to 0.01 to 10% by weight is that the higher the concentration of the organic acid aqueous solution, the easier it is to elute poisonous substances such as calcium sulfate, but even if the concentration is 10% by weight or more, it is difficult to increase the concentration. The effect is almost unchanged for 0.01, which is economically disadvantageous.
This is because if the amount is less than % by weight, the effect of eluting poisonous substances cannot be obtained. It is also necessary to select the concentration of the organic acid aqueous solution depending on the concentration of the poisonous substance.
If the concentration of poisonous substances is low, the concentration of the organic acid aqueous solution may be low, but for more effective and economical treatment,
0.5-3% by weight is suitable. When mixing an inorganic acid aqueous solution with this organic acid aqueous solution, the concentration of the inorganic acid aqueous solution should be 0.01 to 5% by weight. This is because even if the concentration is higher than %, the effect will hardly change even though the concentration is increased, and this will be economically disadvantageous. Further, the above organic acid aqueous solution or mixed aqueous solution of an organic acid and an inorganic acid is used at room temperature or under heating at 25 to 90°C. This is because, although the elution of poisonous substances increases by increasing the temperature, the elution of active ingredients also increases accordingly, so it is not preferable to increase the temperature unnecessarily, and it is also economically disadvantageous. Furthermore, the washing time is 5 to 90 minutes, preferably 30 to 60 minutes.
It's a minute. A cleaning effect cannot be obtained with a cleaning time of less than 5 minutes, and the longer the cleaning time, the higher the effect.
However, even if the cleaning time is 60 minutes or more, the cleaning effect will hardly change, so 30 to 60 minutes is preferable for efficient cleaning in a short time. The method of the present invention can efficiently elute and remove calcium-containing poisonous substances such as calcium sulfate, which are difficult to dissolve in water, in a short time .
Catalysts that combine active ingredients such as V 2 O 5 , WO 3 , Fe 2 O 3 , MoO 2 , etc.; catalysts shaped into granules, cylinders, ellipsoids, etc.; plate-shaped catalysts;
It can be applied to the regeneration of coated and solid catalysts of pipe-shaped, lattice-shaped, honeycomb-shaped catalyst structures, etc. Furthermore, the cleaning method is not particularly limited, and can be either normal spray cleaning or immersion cleaning. The catalyst from which poisonous substances have been removed is dried by a normal drying method and subsequently used as a denitrification catalyst. The method of the present invention is particularly effective as a method for regenerating catalysts applied to coal-fired exhaust gas, but is not limited thereto, and can also be used as a method for regenerating catalysts applied to heavy oil-fired exhaust gas, garbage incinerator exhaust gas, etc. The method is simple and has great practical effects. Next, examples of the method of the present invention will be given, but the method of the present invention is not limited to these examples. Example 1 In detoxifying NOx in coal-fired exhaust gas by ammonia catalytic reduction method using a lattice catalyst containing vanadium as a catalyst component, 600Nm 3 /H
scale equipment, temperature 300-380℃, space velocity
3000hr -1 , ammonia/NOx ratio = 0.85, SOx concentration
A catalyst durability test was conducted for 12,000 hours under conditions of 1,100 to 1,400 ppm and a dust concentration of 15 to 20 g/m 3 N. As a result of sampling the catalyst and conducting an activity test under the conditions shown in Table 1, the initial NOx removal rate was 83%.
Activity decreased to 51%. This catalyst was immersed in 4 times the volume of water at room temperature for 60 minutes, dried, and then subjected to an activity test under the same conditions as above. As a result, the denitrification rate recovered to 55%. Similarly, using an acetic acid solution with a concentration of 3% by weight, the deteriorated catalyst was added to the acetic acid solution at room temperature in a 4-fold volume ratio.
After soaking and drying for 60 minutes, an activity test was conducted under the same conditions, and the denitrification rate recovered to 79%.

【表】 実施例 2 前記実施例1と同様に劣化した触媒を、濃度3
重量%、4倍容量比、60℃の酢酸溶液に60分間浸
漬、乾燥後、実施例1と同様の条件で活性試験を
実施した結果、82%まで脱硝率が回復した。 実施例 3 前記実施例1と同様に劣化した触媒を濃度3重
量%、4倍容量比、常温の蟻酸溶液に60分間浸
漬、乾燥後、実施例1と同様の条件で活性試験を
実施した結果、77%まで脱硝率が回復した。 実施例 4 前記実施例1と同様に劣化した触媒を濃度3重
量%、4倍容量比、常温のエチレンジアミン四酢
酸溶液に60分間浸漬、乾燥後、実施例1と同様の
条件で活性試験を実施した結果、81まで脱硝率が
回復した。 実施例 5 前記実施例1と同様に劣化した触媒を濃度3重
量%、4倍容量比、常温の酢酸溶液に30分間浸
漬、乾燥後、第1表に示す条件で活性試験を実施
した結果、70%まで脱硝率が回復した。 また、劣化した触媒を濃度1重量%、4倍容量
比、常温の塩酸溶液に30分間浸漬、乾燥後同様に
活性試験を実施した結果、62%まで脱硝率が回復
した。 更に、劣化した触媒を濃度3重量%の酢酸溶液
と1重量%の塩酸溶液の混合溶液を使用し、4倍
容量比、常温で30分間浸漬した後、乾燥して第1
表に示す条件で活性試験を実施した結果、82%ま
で脱硝率が回復した。 この実験から、有機酸又は無機酸溶液単独では
再生処理に若干時間がかかるが、有機酸と無機酸
の混合溶液を使用すると相乗効果により再生処理
時間が短縮できることが判る。 以上の実施例1〜5で得られた結果をまとめて
第1,2図に示す。第1図は実施例1〜4で再生
処理した触媒の脱硝率を示す図表、第2図は再生
時間と触媒の脱硝率の関係を示す図表である。 第1,2図からも明らかなように、水による洗
浄処理では活性が回復しにくいが、有機酸溶液に
よる洗浄処理では、活性回復率が高く、また有機
酸と無機酸との混合溶液による洗浄処理では、有
機酸又は無機酸単独溶液による洗浄処理に比べ、
洗浄時間が短縮され、本発明方法の有効性が確認
される。 なお、第1,2図において、○・は初期のもの、
●は12000時間経過後のもの、△・は実施例1の水
による洗浄処理のもの、□・は実施例1の酢酸溶液
による洗浄処理のもの、▽・は実施例2の酢酸溶液
による洗浄処理のもの、×は実施例3の蟻酸溶液
による洗浄処理のもの、◇・は実施例4のエチレン
ジアミン四酢酸溶液による洗浄処理のもの、〇は
実施例5の酢酸溶液による洗浄処理のもの、△は
実施例5の塩酸溶液による洗浄処理のもの、□は
実施例5の酢酸と塩酸の混合溶液による洗浄処理
のものである。
[Table] Example 2 The same deteriorated catalyst as in Example 1 was used at a concentration of 3.
After being immersed in an acetic acid solution at 60° C. for 60 minutes and dried, an activity test was carried out under the same conditions as in Example 1. As a result, the denitrification rate recovered to 82%. Example 3 A catalyst degraded in the same manner as in Example 1 was immersed in a formic acid solution at room temperature at a concentration of 3% by weight and a volume ratio of 4 times for 60 minutes, and after drying, an activity test was conducted under the same conditions as in Example 1. , the denitrification rate recovered to 77%. Example 4 A catalyst degraded in the same manner as in Example 1 was immersed in an ethylenediaminetetraacetic acid solution at room temperature at a concentration of 3% by weight and a volume ratio of 4 times for 60 minutes, and after drying, an activity test was conducted under the same conditions as in Example 1. As a result, the denitrification rate recovered to 81. Example 5 A catalyst degraded in the same manner as in Example 1 was immersed in an acetic acid solution at room temperature at a concentration of 3% by weight and a volume ratio of 4 times for 30 minutes, and after drying, an activity test was conducted under the conditions shown in Table 1. As a result, The denitrification rate recovered to 70%. In addition, when the degraded catalyst was immersed in a hydrochloric acid solution with a concentration of 1% by weight and a 4x volume ratio at room temperature for 30 minutes, and after drying, an activity test was conducted in the same manner, the denitrification rate was recovered to 62%. Furthermore, the deteriorated catalyst was immersed for 30 minutes at room temperature in a mixed solution of 3% by weight acetic acid solution and 1% by weight hydrochloric acid solution at a volume ratio of 4 times, and then dried.
As a result of conducting an activity test under the conditions shown in the table, the denitrification rate recovered to 82%. This experiment shows that regeneration treatment takes some time when an organic acid or inorganic acid solution is used alone, but when a mixed solution of an organic acid and an inorganic acid is used, the regeneration treatment time can be shortened due to a synergistic effect. The results obtained in Examples 1 to 5 above are summarized in FIGS. 1 and 2. FIG. 1 is a chart showing the denitration rate of the catalysts regenerated in Examples 1 to 4, and FIG. 2 is a chart showing the relationship between the regeneration time and the denitrification rate of the catalyst. As is clear from Figures 1 and 2, cleaning treatment with water does not easily recover the activity, but cleaning treatment with an organic acid solution has a high activity recovery rate, and cleaning treatment with a mixed solution of organic and inorganic acids shows that the activity recovery rate is high. In treatment, compared to cleaning treatment with organic acid or inorganic acid alone solution,
The cleaning time is reduced, confirming the effectiveness of the method of the present invention. In addition, in Figures 1 and 2, ○・ is the initial one,
● is after 12000 hours, △・ is after cleaning treatment with water in Example 1, □・ is after cleaning treatment with acetic acid solution in Example 1, ▽・ is after cleaning treatment with acetic acid solution in Example 2 × indicates the cleaning treatment with the formic acid solution of Example 3, ◇・ indicates the cleaning treatment with the ethylenediaminetetraacetic acid solution of Example 4, ○ indicates the cleaning treatment with the acetic acid solution of Example 5, △ indicates the cleaning treatment with the acetic acid solution of Example 5. □ indicates the cleaning treatment using a hydrochloric acid solution in Example 5; □ indicates the cleaning treatment using a mixed solution of acetic acid and hydrochloric acid in Example 5.

【図面の簡単な説明】[Brief explanation of the drawing]

第1,2図は実施例で得られた結果を示す図表
である。
Figures 1 and 2 are charts showing the results obtained in Examples.

Claims (1)

【特許請求の範囲】[Claims] 1 排ガス中の窒素酸化物をアンモニア接触還元
法にて除去するに際し、性能が低下した触媒を常
温もしくは加温下に有機酸水溶液又は有機酸水溶
液と無機酸水溶液の混合溶液で洗浄処理すること
により再生することを特徴とする触媒の再生方
法。
1. When removing nitrogen oxides from exhaust gas by the ammonia catalytic reduction method, by cleaning the catalyst whose performance has decreased with an organic acid aqueous solution or a mixed solution of an organic acid aqueous solution and an inorganic acid aqueous solution at room temperature or under heating. A method for regenerating a catalyst, the method comprising regenerating a catalyst.
JP57208578A 1982-11-30 1982-11-30 Regeneration of catalyst Granted JPS5998739A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57208578A JPS5998739A (en) 1982-11-30 1982-11-30 Regeneration of catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57208578A JPS5998739A (en) 1982-11-30 1982-11-30 Regeneration of catalyst

Publications (2)

Publication Number Publication Date
JPS5998739A JPS5998739A (en) 1984-06-07
JPS6251656B2 true JPS6251656B2 (en) 1987-10-30

Family

ID=16558501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57208578A Granted JPS5998739A (en) 1982-11-30 1982-11-30 Regeneration of catalyst

Country Status (1)

Country Link
JP (1) JPS5998739A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4870217B2 (en) * 2009-07-10 2012-02-08 九電産業株式会社 Denitration catalytic activity improvement method in flue gas denitration equipment
CN113083016B (en) * 2021-04-13 2023-04-25 合肥中亚环保科技有限公司 Regeneration process of failure complexation denitration agent

Also Published As

Publication number Publication date
JPS5998739A (en) 1984-06-07

Similar Documents

Publication Publication Date Title
JP3377715B2 (en) Regeneration method of denitration catalyst
JP3023102B1 (en) Method and apparatus for removing mercury from exhaust gas
JP2008119695A (en) Method of cleaning and/or regenerating wholly or partially deactivated catalyst of stack-gas nitrogen scrubbing
JP3059136B2 (en) Regeneration method of denitration catalyst
JPS6048147A (en) Activating method of catalyst
JP4264643B2 (en) Regeneration method of deteriorated catalyst
JP6249689B2 (en) Exhaust gas treatment regeneration catalyst and exhaust gas treatment catalyst regeneration method
JP3059137B2 (en) Reprocessing method for denitration catalyst
JPS6251656B2 (en)
JP3150519B2 (en) Regeneration method of denitration catalyst
JPH10156192A (en) Activity regenerating method of catalyst for eliminating nitrogenoxides and device therefor
JP4264642B2 (en) Method for regenerating thermally deteriorated catalyst
JPS60209252A (en) Regeneration method of denitration catalyst
JPS6321536B2 (en)
JP5709438B2 (en) Exhaust gas treatment equipment
JPH0446621B2 (en)
JP2001113131A (en) Method for regenerating denitration catalyst
JPS58189042A (en) Activation of catalyst
JP2004195420A (en) Activation and regeneration method of catalyst
JPS58189044A (en) Regeneration of catalyst
JPS5817843A (en) Activating method for catalyst
JPS58189041A (en) Regeneration of catalyst
JP3545029B2 (en) Exhaust gas purification method
JPH11165043A (en) Treatment of waste gas of waste incinerator
JP3796214B2 (en) Method for regenerating degraded catalyst