JPS6251447B2 - - Google Patents

Info

Publication number
JPS6251447B2
JPS6251447B2 JP56063332A JP6333281A JPS6251447B2 JP S6251447 B2 JPS6251447 B2 JP S6251447B2 JP 56063332 A JP56063332 A JP 56063332A JP 6333281 A JP6333281 A JP 6333281A JP S6251447 B2 JPS6251447 B2 JP S6251447B2
Authority
JP
Japan
Prior art keywords
collagen
hema
contact lens
weight
contact lenses
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56063332A
Other languages
Japanese (ja)
Other versions
JPS57178217A (en
Inventor
Yutaka Mizutani
Toshitaka Sato
Shinji Nozaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON KONTAKUTORENZU KK
Original Assignee
NIPPON KONTAKUTORENZU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON KONTAKUTORENZU KK filed Critical NIPPON KONTAKUTORENZU KK
Priority to JP6333281A priority Critical patent/JPS57178217A/en
Publication of JPS57178217A publication Critical patent/JPS57178217A/en
Publication of JPS6251447B2 publication Critical patent/JPS6251447B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/04Contact lenses for the eyes

Landscapes

  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Eyeglasses (AREA)
  • Graft Or Block Polymers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はコンタクトレンズ及びその製造法に係
り、コラーゲン―ヒドロキシアルキルメタクリレ
ート系共重合体(但し、この共重合体中における
コラーゲンはヒドロキシアルキルメタクリレート
に対して約0.007〜1.3重量%)を主成分のコンタ
クトレンズ材料として用いることにより、酸素透
過性及び水濡れ等の特性に良好で、装用感及び生
体適合性に優れ、又引張強度に優れて破損しにく
く、しかも取り扱いが容易で、さらには加工性に
も優れた材料であるので低コストで簡単に作るこ
とのできるコンタクトレンズ及びその製造法を提
供することを目的とする。 従来、コンタクトレンズの材料としては、例え
ばポリメチルメタクリレート(以下PMMAと略
す)が主として用いられてきているが、この
PMMAは親水性に乏しいので水濡れが悪く、そ
の為装用感が劣悪なうえ、さらには酸素透過性も
小さいので長時間連続装着していると角膜膨潤等
の生理的支障を起こすといつた欠点がある。 そこで、PMMAに代わる素材として、例えば
2―ヒドロキシエチルメタクリレート(以下2―
HEMAと略す)あるいはN―ビニル―2―ピロ
リドン(以下NVPと略す)のような材料を主成
分として、含水性を有するゲル状の軟性コンタク
トレンズが開発実用化されるに至り、このような
2―HEMAやNVPを素材とするソフトコンタク
トレンズは、装用感においてはPMMAを素材と
するハードコンタクトレンズより優れており、し
かも酸素及び無機イオン等の透過性に優れている
とされている。しかし、このような素材のコンタ
クトレンズは、細胞増殖が抑制され、かつ抗凝血
性である為に、生体適合性に劣るといつた欠点の
あることが指摘されている。 そこで、このような観点より、コラーゲンを主
成分とするゲル状のコンタクトレンズが提案され
ており(特開昭53−78854号=特公昭55−5089
号)、コラーゲンを主成分とするコンタクトレン
ズは酸素透過性に優れ、しかも角膜との適合性に
も優れていると記されているが、この提案のゲル
状のコンタクトレンズは水を約80〜99%含むもの
であるが故に、このコンタクトレンズの屈析率は
水の屈析率とほぼ同じものとなつてしまい、これ
では極めて弱度の視力矯正をする場合には用いる
ことができても、中度ないしは強度の屈析異常に
対する視力矯正をする場合にはコンタクトレンズ
の厚みを極めて厚くしなければならず、その結果
装用者の眼より脱離しやすくなり、又、異物感の
強いものとなつて装用感は極めて劣悪なものとな
つてしまうといつた欠点がある。又、このコラー
ゲンを主成分とするコンタクトレンズはカビや細
菌等が繁殖しやすく、その為コンタクトレンズの
取り扱いが面倒なものとなり、そして煮沸等によ
つて殺菌しようとすると耐熱性等に乏しいので耐
久性がなく、従来のコラーゲンを主成分とするコ
ンタクトレンズは実用化されるに至つていない。
さらには、コラーゲンを主成分とするコンタクト
レンズは強度的にも極めて弱く、その為破損しや
すいので耐久性がほとんどないといつた欠点もあ
る。又、コラーゲンを主成分とする素材は、加工
性が極めて悪く、正常な視力を矯正できるコンタ
クトレンズの製造は極めて困難であり、コスト高
のものである等の欠点もある。 尚、前記提案(特開昭53−78854号)になるコ
ンタクトレンズの発明者と同一の発明者によつ
て、コラーゲンを主成分としたのみではなく、コ
ラーゲンに付随的に少量の水溶性有機高分子化合
物が用いられた、すなわち、1.0〜30重量%のコ
ラーゲンと、0.1〜30重量%の水溶性有機高分子
化合物と、残部が水とからなるコンタクトレンズ
が提案(特開昭56−11430号)されているもの
の、この新たな提案になるコンタクトレンズにあ
つても、その基本はコラーゲンを主体としたもの
であることから、前述の特開昭53−78854号で提
案されたコラーゲンを主成分とするコンタクトレ
ンズの場合と同様な欠点が予想される。 本発明は上記欠点を除去したものであり、以下
その実施例について説明する。 実施例 1 2―HEMA約3g、コラーゲンとして、例え
ば(株)ニツピのニツピコラーゲンSCE(酵素可溶
化コラーゲン)の0.5%溶液(0.1M酢酸中)約2
g、架橋剤として例えばグリシジルメタクリレー
ト(GMA)約0.1g及びエチレングリコールジメ
タクリレート(EDMA)約0.01gを充分に混合
し、この混合物を減圧下に放置して充分に脱泡
し、溶存酸素を取り除いた後、重合開始剤として
例えばアゾビス系の重合開始剤、V65約0.002g
を約0.1gの2―HEMAに溶解したものを加え、
あらかじめ窒素置換したデシケータ中で充分に撹
拌する。 その後、この混合溶液をコンタクトレンズ成型
容器に注入し、コラーゲンとヒドロキシアルキル
メタクリレート共重合体を構成する為の常法の重
合処理を行ない、この重合処理後重合物を成型容
器から取り出し、2―HEMAに対してコラーゲ
ンが約0.007〜1.3重量%の割合で共重合してなる
2―HEMA―コラーゲン共重合体製のコンタク
トレンズを得る。 このコンタクトレンズは柔軟であり、その含水
率は42%であつた。 実施例 2 2―HEMA約4.7重量部、ニツピコラーゲン
SCEの1%溶液(0.1M酢酸中)約0.3重量部、
GMA約0.1重量部、EDMA約0.02重量部を充分に
混合し、脱泡した後、アゾビス系の重合開始剤V
―65あるいは6%の(NH42S2O4及び12%の
Na2S2O5等の重合開始剤を所定量加え、そしてこ
れを所定のガラス管に入れて所定の重合処理を行
ない、2―HEMAに対してコラーゲンが約0.007
〜1.3重量%の割合で共重合させてなる2―
HEMA―コラーゲン共重合体製の棒状ブロツク
を得る。 その後、この棒状ブロツクに対して常法のコン
タクトレンズ成形工程を施し、2―HEMAに対
してコラーゲンが約0.007〜1.3重量%の割合で共
重合してなる2―HEMA―コラーゲン共重合体
製のコンタクトレンズを得る。 実施例 3 2―HEMA約3g、コラーゲンとして、例え
ば(株)ニツピのニツピコラーゲンSCEの2%溶液
(0.1酢酸中)約2g、GMA約0.1gを充分に混合
し、この混合物を減圧下に放置して充分脱泡して
溶存酸素を取り除いた後、アゾビス系の重合開始
剤V―65約0.002gを約0.1gの2―HEMAに溶解
したものを加え、あらかじめ窒素置換したデシケ
ータ中で充分に撹拌する。 そして、この攪拌混合溶液を石英製のコンタク
トレンズ成型容器に注入し、常法の重合処理を行
ない、この重合処理後重合物を成型容器から取り
出す。 そうすると、2―HEMAに対してコラーゲン
が約0.007〜1.3重量%の割合で共重合してなる2
―HEMA―コラーゲン共重合体製のコンタクト
レンズが得られる。 上記のようにして得られたコンタクトレンズと
従来のコンタクトレンズ、例えば特公昭55−5089
号提案のコラーゲンを主成分とするゲル状コンタ
クトレンズ(比較例1)及び2―HEMAを主成
分とするコンタクトレンズ(比較例2)並びに特
開昭56−11430号公報の提案(実施例7)の如
く、コラーゲン―2―HEMA(コラーゲンは2
―HEMAに対して約80重量%)で構成したコン
タクトレンズ(比較例3)の諸特性を測定する
と、表に示す通りであつた。
The present invention relates to a contact lens and a method for manufacturing the same, and the present invention relates to a contact lens whose main component is a collagen-hydroxyalkyl methacrylate copolymer (however, the collagen in this copolymer is about 0.007 to 1.3% by weight based on the hydroxyalkyl methacrylate). By using it as a lens material, it has good properties such as oxygen permeability and water wettability, has excellent wearing comfort and biocompatibility, has excellent tensile strength and is difficult to break, is easy to handle, and has excellent processability. It is an object of the present invention to provide a contact lens that can be easily manufactured at low cost since it is an excellent material, and a method for manufacturing the same. Traditionally, polymethyl methacrylate (hereinafter abbreviated as PMMA), for example, has been mainly used as a material for contact lenses.
PMMA has poor hydrophilicity, so it is difficult to wet with water, which makes it uncomfortable to wear, and furthermore, it has low oxygen permeability, so wearing it for long periods of time can cause physiological problems such as corneal swelling. There is. Therefore, as a material to replace PMMA, for example, 2-hydroxyethyl methacrylate (hereinafter referred to as 2-
Gel-like soft contact lenses with water-containing properties have been developed and put into practical use, with materials such as HEMA (abbreviated as HEMA) or N-vinyl-2-pyrrolidone (abbreviated as NVP hereinafter) as the main ingredients. -Soft contact lenses made from HEMA and NVP are said to be superior to hard contact lenses made from PMMA in terms of comfort, and are also more permeable to oxygen and inorganic ions. However, it has been pointed out that contact lenses made of such materials have drawbacks such as poor biocompatibility because cell proliferation is inhibited and they are anticoagulant. Therefore, from this perspective, a gel contact lens containing collagen as the main component has been proposed (Japanese Patent Application Laid-Open No. 53-78854 = Japanese Patent Publication No. 55-5089).
It is stated that contact lenses whose main component is collagen have excellent oxygen permeability and excellent compatibility with the cornea. 99%, the refractive index of this contact lens is almost the same as that of water, and although it can be used to correct extremely weak vision, it is When correcting visual acuity for severe or severe refractive errors, contact lenses must be made extremely thick, and as a result, they tend to fall out of the wearer's eyes, and they also have a strong foreign body sensation. The drawback is that the feeling of wearing it is extremely poor. In addition, contact lenses whose main ingredient is collagen are prone to the growth of mold and bacteria, which makes them difficult to handle, and if you try to sterilize them by boiling, etc., they lack heat resistance, so they cannot last long. Conventional contact lenses containing collagen as a main component have not yet been put into practical use.
Furthermore, contact lenses whose main component is collagen are extremely weak in terms of strength and are easily damaged, resulting in almost no durability. In addition, materials whose main component is collagen have extremely poor workability, making it extremely difficult to manufacture contact lenses capable of correcting normal vision, and also having disadvantages such as high cost. By the same inventor as the inventor of the contact lens proposed above (Japanese Patent Application Laid-Open No. 53-78854), the contact lens not only contains collagen as the main ingredient, but also contains a small amount of water-soluble organic polymer incidentally to collagen. A contact lens was proposed in which a molecular compound was used, that is, 1.0 to 30% by weight of collagen, 0.1 to 30% by weight of a water-soluble organic polymer compound, and the balance was water (Japanese Patent Application Laid-Open No. 11430/1983). ) However, even with this newly proposed contact lens, since its basis is mainly collagen, it is not possible to use collagen as the main ingredient proposed in the above-mentioned Japanese Patent Application Laid-Open No. 53-78854. The same drawbacks as those for contact lenses are expected. The present invention eliminates the above-mentioned drawbacks, and examples thereof will be described below. Example 1 Approximately 3 g of 2-HEMA, as collagen, for example, a 0.5% solution (in 0.1 M acetic acid) of Nitsupi Collagen SCE (Enzyme Solubilized Collagen) from Nitsupi Co., Ltd.
g. As a crosslinking agent, for example, about 0.1 g of glycidyl methacrylate (GMA) and about 0.01 g of ethylene glycol dimethacrylate (EDMA) are thoroughly mixed, and the mixture is left under reduced pressure to sufficiently defoam and remove dissolved oxygen. After that, add about 0.002g of V65 as a polymerization initiator, such as azobis-based polymerization initiator.
Add the solution dissolved in about 0.1g of 2-HEMA,
Stir thoroughly in a desiccator that has been purged with nitrogen. Thereafter, this mixed solution is injected into a contact lens molding container, and a conventional polymerization process is performed to form a collagen and hydroxyalkyl methacrylate copolymer. After this polymerization process, the polymer is taken out from the molding container and A contact lens made of 2-HEMA-collagen copolymer is obtained by copolymerizing collagen at a ratio of about 0.007 to 1.3% by weight. This contact lens was flexible and had a water content of 42%. Example 2 2-HEMA approximately 4.7 parts by weight, Nitsupi Collagen
Approximately 0.3 parts by weight of a 1% solution of SCE (in 0.1M acetic acid),
After thoroughly mixing about 0.1 part by weight of GMA and about 0.02 part by weight of EDMA and defoaming, azobis-based polymerization initiator V
-65 or 6% (NH 4 ) 2 S 2 O 4 and 12%
A predetermined amount of a polymerization initiator such as Na 2 S 2 O 5 is added, and this is placed in a predetermined glass tube and subjected to a predetermined polymerization treatment, so that collagen is approximately 0.007% of 2-HEMA.
2- formed by copolymerization at a ratio of ~1.3% by weight
A rod-shaped block made of HEMA-collagen copolymer is obtained. Thereafter, this rod-shaped block is subjected to a conventional contact lens molding process, and is made of 2-HEMA-collagen copolymer, in which collagen is copolymerized with 2-HEMA at a ratio of about 0.007 to 1.3% by weight. Get contact lenses. Example 3 Approximately 3 g of 2-HEMA, approximately 2 g of a 2% solution (in 0.1 acetic acid) of Nitsupi Collagen SCE (made by Nitsupi Co., Ltd.) as collagen, and approximately 0.1 g of GMA were thoroughly mixed, and this mixture was heated under reduced pressure. After leaving to stand for sufficient degassing to remove dissolved oxygen, add a solution of about 0.002 g of azobis-based polymerization initiator V-65 in about 0.1 g of 2-HEMA, and stir thoroughly in a desiccator that has been purged with nitrogen in advance. Stir. Then, this stirred mixed solution is poured into a contact lens molding container made of quartz, polymerization treatment is carried out in a conventional manner, and after the polymerization treatment, the polymerized product is taken out from the molding container. Then, 2-HEMA is copolymerized with collagen at a ratio of about 0.007 to 1.3% by weight.
- HEMA - A contact lens made of collagen copolymer is obtained. Contact lenses obtained as above and conventional contact lenses, such as Japanese Patent Publication No. 55-5089
Gel-like contact lenses based on collagen proposed in No. 1 (Comparative Example 1), contact lenses based on 2-HEMA (Comparative Example 2), and the proposal in JP-A-56-11430 (Example 7) As in, collagen-2-HEMA (collagen is 2
The various properties of the contact lens (Comparative Example 3) made of (approximately 80% by weight based on HEMA) were measured and were as shown in the table.

【表】 この結果によれば、本発明に係るコンタクトレ
ンズは、コラーゲンを少し含むことによつて
HEMA単独ゲルよりも含水率は大きくなつてい
るが、コラーゲンゲルの如く高含水率ではなく、
その為屈析率はHEMA単独ゲルの場合とさほど
変りなく、コンタクトレンズとして充分な屈析率
を有しており、従つて中度ないしは強度の屈析異
常に対してコンタクトレンズの厚みをそれ程厚く
しなくてすみ、装用感は優れたものである。又、
コラーゲンゲルは脆弱な為、コンタクトレンズの
着脱に際してコンタクトレンズを破損する恐れが
大きいのに対し、本発明のコンタクトレンズは引
張強度がコラーゲンゲル及びHEMA単独ゲルよ
りも強く、破損等の恐れは全くない。又、97%も
含水しているコラーゲンゲルのコンタクトレンズ
はかなり重いものである為、コンタクトレンズを
装着している際にコンタクトレンズの中心位置が
ずれやすいといつた欠点があるのに対し、本発明
のコンタクトレンズではかかる欠点もなく良好で
ある。又、コラーゲンゲルコンタクトレンズは、
コラーゲン自体が細菌やカビの繁殖性に富んだも
のであるので、細菌やカビの発生が多いのに対
し、本発明のコンタクトレンズは、コラーゲンを
わずかしか含んでいないので、細菌やカビの発生
はHEMA単独ゲルコンタクトレンズの場合とほ
とんど変りなく、しかも細菌やカビが発生しても
HEMA単独コンタクトレンズの場合と同様な処
置、例えば煮沸消毒等によつて簡単に除去でき、
かつその際にコンタクトレンズを損傷することは
ない。これに対してコラーゲンゲルコンタクトレ
ンズは耐熱性等にも弱いので、細菌やカビの発生
に対する処置が困難である。又、本発明に係るコ
ンタクトレンズは、HEMA単独コンタクトレン
ズと同様にベースカーブ、パワー及びサイズ共に
安定しているのに対し、コラーゲンゲルコンタク
トレンズはこれらの特性が安定しておらず、コン
タクトレンズとしての視力矯正には適していな
い。さらに、本発明に係るコンタクトレンズは、
コラーゲンを少し含んでいるが故に、涙液との親
和性は、コラーゲンゲルコンタクトレンズ及び
HEMA単独コンタクトレンズよりも優れてお
り、又、角膜組織との親和性はHEMA単独コン
タクトレンズよりもはるかに優れたものとなつて
いる。又、酸素透過性については、コラーゲンを
少ししか含んでいないのに、HEMA単独の場合
よりもかるかに大きく、コンタクトレンズとして
の酸素透過性は充分にあるものとなり、長期連続
装用が可能である。又、本発明に係るコンタクト
レンズは、ある程度の硬さを有しているので、コ
ンタクトレンズを装着していても角膜上で充分に
動けその装用感は優れており、又、従来のコンタ
クトレンズ製造方法、例えばいわゆるレースカツ
ト法、モールデイング法あるいはスピンキヤスト
法等種々の方法によつて簡単に作ることができ、
低コストで作ることができる。 尚、特開昭56−11430号公報で提案されたよう
なコラーゲンとポリ2―ヒドロキシエチルメタク
リレートとの共重合体がコンタクトレンズ材料と
して用いることができたものであつても、この共
重合体におけるコラーゲンの量が相対的に多い場
合には、その特性はコラーゲンを主体とした特開
昭53−78854号の場合と基本的に同じであり、本
発明の場合のような優れた効果は得られない。 そして、例えば2―HEMAモノマーとコラー
ゲンとの共重合体を作る場合において、2―
HEMAモノマーには乾燥状態のコラーゲンは全
く溶解しないので、例えばコラーゲンの酢酸酸性
溶液を用いなければならず、しかもコラーゲン溶
液は非常に粘度が高く、例えば2―HEMAとの
共重合体で使用可能なコラーゲン溶液は約2%の
ものが上限であつた。又、2―HEMAは含水状
態であつても重合可能であるが、水の割合が約50
重量%以上になると、HEMAポリマーのマトリ
ツクスが正常な形をとれなくなり、ゲル状にはな
るが、透明性は全くないものとなつてしまつた。
従つて、含水状態で重合を行なうには、水が約50
重量%以下、レンズとしての透明性の点より望ま
しくは約40重量%以下であることが必要である。
これらのことより、コンタクトレンズとして用い
ることのできるHEMA―コラーゲン共重合体を
作るには、コラーゲン濃度は、水を含んだ共重合
体全体に対して約0.8重量%以下で、2―HEMA
に対して約1.3重量%以下でなければならなかつ
た。又、HEMA―コラーゲン共重合体におい
て、コラーゲンを含んでいることによつてコンタ
クトレンズとしての諸特性が良好であるには所定
量必要であり、例えば水を含んだ共重合体全体に
対してはコラーゲン濃度が約0.004重量%以上
で、2―HEMAに対してはコラーゲン濃度が約
0.007重量%以上であることが望ましかつた。
又、コンタクトレンズとして、含水率が50重量%
以上になると、不透明なものとなり光学性が悪く
レンズとして使用に耐えられないものとなる。 尚、上記実施例においては、コラーゲンと共重
合可能な物質として2―HEMAの場合で説明し
たが、2―HEMAと同様な構造のもの、例えば
[Table] According to the results, the contact lenses according to the present invention can be improved by containing a small amount of collagen.
Although the water content is higher than HEMA gel alone, it is not as high as collagen gel.
Therefore, the refractive index is not much different from that of HEMA gel alone, and it has a sufficient refractive index for a contact lens.Therefore, for moderate to strong refractive abnormalities, the thickness of the contact lens can be increased accordingly. There is no need to wear it, and the feeling of wearing it is excellent. or,
Collagen gel is fragile, so there is a high risk of damaging the contact lens when putting it on and taking it off, whereas the contact lens of the present invention has a higher tensile strength than collagen gel or HEMA gel alone, so there is no risk of breakage. . In addition, collagen gel contact lenses, which contain 97% water, are quite heavy and have the disadvantage that the center of the contact lenses tends to shift when wearing them. The contact lens of the invention has no such drawbacks and is good. In addition, collagen gel contact lenses are
Collagen itself is highly fertile for bacteria and mold, so bacteria and mold often grow there.However, the contact lenses of the present invention contain only a small amount of collagen, so bacteria and mold do not grow. There is almost no difference from HEMA gel contact lenses, and even if bacteria or mold develops,
It can be easily removed by the same treatment as for HEMA-only contact lenses, such as boiling sterilization.
In addition, contact lenses are not damaged in this process. On the other hand, collagen gel contact lenses have poor heat resistance, so it is difficult to treat the growth of bacteria and mold. In addition, the contact lens according to the present invention is stable in terms of base curve, power, and size like a contact lens with only HEMA, whereas the collagen gel contact lens is not stable in these characteristics and cannot be used as a contact lens. It is not suitable for vision correction. Furthermore, the contact lens according to the present invention includes:
Collagen gel contact lenses and
It is superior to a contact lens containing only HEMA, and its affinity with the corneal tissue is far superior to that of a contact lens containing only HEMA. In addition, even though it contains only a small amount of collagen, its oxygen permeability is much higher than that of HEMA alone, so it has sufficient oxygen permeability as a contact lens and can be worn continuously for a long period of time. . In addition, since the contact lens according to the present invention has a certain degree of hardness, it can move sufficiently on the cornea even when the contact lens is worn, and the feeling of wearing is excellent. It can be easily made by various methods such as the so-called lace cut method, molding method or spin cast method,
It can be made at low cost. Incidentally, even if a copolymer of collagen and poly2-hydroxyethyl methacrylate as proposed in JP-A-56-11430 can be used as a contact lens material, the When the amount of collagen is relatively large, its properties are basically the same as in the case of JP-A-53-78854, which mainly consists of collagen, and the excellent effects as in the case of the present invention cannot be obtained. do not have. For example, when making a copolymer of 2-HEMA monomer and collagen, 2-
Dry collagen does not dissolve in HEMA monomers at all, so an acidic solution of collagen in acetic acid, for example, must be used.Moreover, collagen solutions have a very high viscosity and cannot be used in copolymers with, for example, 2-HEMA. The upper limit of the collagen solution was about 2%. In addition, 2-HEMA can be polymerized even in a water-containing state, but when the proportion of water is about 50
When the amount exceeded % by weight, the HEMA polymer matrix could no longer maintain its normal shape and became gel-like, but with no transparency at all.
Therefore, in order to carry out polymerization in a hydrated state, water must be about 50%
It is necessary that the amount is not more than 40% by weight, preferably not more than about 40% by weight from the viewpoint of transparency as a lens.
From these facts, in order to make a HEMA-collagen copolymer that can be used as a contact lens, the collagen concentration should be approximately 0.8% by weight or less based on the total water-containing copolymer, and the 2-HEMA
It had to be less than about 1.3% by weight. In addition, HEMA-collagen copolymer requires a certain amount in order to have good properties as a contact lens because it contains collagen.For example, for the entire copolymer containing water, The collagen concentration is about 0.004% by weight or more, and the collagen concentration is about 0.004% by weight or more for 2-HEMA.
It was desirable that the content be 0.007% by weight or more.
Also, as a contact lens, the water content is 50% by weight.
If it exceeds this level, it becomes opaque and has poor optical properties, making it unusable as a lens. In the above example, 2-HEMA was explained as a substance copolymerizable with collagen, but substances with a similar structure to 2-HEMA, such as

【式】(但し、Rは[Formula] (However, R is

【式】あるいは[Formula] or

【式】等)等のヒドロキシアル キルメタクリレート類についても同様であつた。 これに対して、例えば2―HEMAの代りにメ
チルメタクリレートを用いて、コラーゲンとの共
重合体を作ろうと試みたが、メチルメタクリレー
トは水とほとんど混合せず、又乾燥コラーゲンを
メチルメタクリレートに溶解させることができ
ず、従つてメチルメタクリレートとコラーゲンと
の共重合体を作ることはできなかつた。 又、ソフトコンタクトレンズ材料として良く知
られているNVPを用いて上記実施例と同様にし
てNVPとコラーゲンとの共重合体を作り、この
共重合体によつてコンタクトレンズを作つたので
あるが、NVPの場合には2―HEMAの場合と全
く異なり、NVP単独でコラーゲンと重合させた
ものは、非常に脆いものであり、このような特性
の素材ではコンタクトレンズとして全く用いるこ
とのできないものであつた。 尚、NVPのみでなく、2―HEMAとNVPとの
混合物を用い、2―HEMAを主体としたコラー
ゲンとの共重合体の場合には、NVP単独とコラ
ーゲンとの共重合体の場合のような欠点は改善さ
れていた。 上述の如く、本発明に係るコンタクトレンズ
は、ヒドロキシアルキルメタクリレートに対して
コラーゲンが約0.007〜1.3重量%の割合のコラー
ゲン―ヒドロキシアルキルメタクリレート系共重
合体を用いて構成され、該共重合体の含水率が約
40重量%以下であるようにしてなるので、光学
性、引張強度及び酸素透過係数に優れており、視
力矯正、特に強度の屈析異常の者に対しても比較
的その厚みは薄くてすみ、従つて眼に装着してい
ても異物感等は少なく、その装用感は優れてお
り、又装着の取り扱いも容易であり、又細菌やカ
ビが発生しにくく、たとえこれらのものが発生し
ても従来のソフトコンタクトレンズの場合と同様
な処置で除去でき、又引張強度にも優れているの
で破損しにくく、さらには涙液及び角膜組織との
親和性等に優れているので装用感は従来のコラー
ゲン単独ゲルコンタクトレンズ等に比して一段と
優れており、又酸素透過係数も大きいので長時間
の連続装用が可能であり、しかもコンタクトレン
ズの加工性も優れたものであり、種々の方法、例
えば従来のレースカツト法、モールデイング法あ
るいはスピンキヤスト法等を用いて簡単に低コス
トで製造でき、又本発明に係るコンタクトレンズ
製造法は、ヒドロキシアルキルメタクリレートに
対してコラーゲンが約0.007〜1.3重量%となるよ
う、かつ、含水率が約40重量%以下のものとなる
ようヒドロキシアルキルメタクリレート、コラー
ゲン及び水を配合してなる混合物に重合処理を施
してコンタクトレンズを作るので、コラーゲンと
ヒドロキシアルキルメタクリレートの共重合体が
簡単に作れ、耐久性に富み装用感に優れたコンタ
クトレンズを低コストで作ることができる等の特
長を有する。
The same was true for hydroxyalkyl methacrylates such as [Formula], etc. On the other hand, attempts were made to create a copolymer with collagen by using methyl methacrylate instead of 2-HEMA, but methyl methacrylate hardly mixes with water and dried collagen dissolves in methyl methacrylate. Therefore, it was not possible to create a copolymer of methyl methacrylate and collagen. Also, using NVP, which is well known as a soft contact lens material, a copolymer of NVP and collagen was prepared in the same manner as in the above example, and a contact lens was made from this copolymer. In the case of NVP, it is completely different from the case of 2-HEMA; when NVP alone is polymerized with collagen, it is extremely brittle, and a material with such characteristics cannot be used as a contact lens at all. Ta. In addition, in the case of using not only NVP but also a mixture of 2-HEMA and NVP, and a copolymer with collagen mainly composed of 2-HEMA, it is possible to The shortcomings had been improved. As described above, the contact lens according to the present invention is constructed using a collagen-hydroxyalkyl methacrylate copolymer in which the ratio of collagen to hydroxyalkyl methacrylate is approximately 0.007 to 1.3% by weight, and the water content of the copolymer is The rate is approx.
Since it has a content of 40% by weight or less, it has excellent optical properties, tensile strength, and oxygen permeability coefficient, and is relatively thin for vision correction, especially for people with severe refractive abnormalities. Therefore, even when worn on the eye, there is little sensation of a foreign body, the feeling of wearing is excellent, it is easy to handle when worn, and it is difficult for bacteria and mold to grow, even if these things do occur. They can be removed using the same procedure as conventional soft contact lenses, and they have excellent tensile strength, making them less likely to break. Furthermore, they have excellent compatibility with lachrymal fluid and corneal tissue, so they feel as comfortable to wear as conventional soft contact lenses. It is far superior to collagen-only gel contact lenses, etc., and has a high oxygen permeability coefficient, so it can be worn continuously for a long time, and the contact lenses are also easy to process. The contact lens manufacturing method according to the present invention can be easily manufactured at low cost using the conventional lace cut method, molding method, spin cast method, etc., and the collagen content is about 0.007 to 1.3% by weight based on the hydroxyalkyl methacrylate. Contact lenses are made by polymerizing a mixture of hydroxyalkyl methacrylate, collagen, and water so that the water content is approximately 40% by weight or less. It has the advantage of being easy to make as a polymer, making it possible to make contact lenses that are highly durable and comfortable to wear at low cost.

Claims (1)

【特許請求の範囲】 1 ヒドロキシアルキルメタクリレートに対して
コラーゲンが約0.007〜1.3重量%の割合のコラー
ゲン―ヒドロキシアルキルメタクリレート系共重
合体を用いて構成され、該共重合体の含水率が約
40重量%以下であるようにしたことを特徴とする
コンタクトレンズ。 2 ヒドロキシアルキルメタクリレートに対して
コラーゲンが約0.007〜1.3重量%となるよう、か
つ、含水率が約40重量%以下のものとなるようヒ
ドロキシアルキルメタクリレート、コラーゲン及
び水を配合してなる混合物に重合処理を施すこと
を特徴とするコンタクトレンズの製造法。
[Scope of Claims] 1. Constructed using a collagen-hydroxyalkyl methacrylate copolymer in which collagen is about 0.007 to 1.3% by weight based on hydroxyalkyl methacrylate, and the water content of the copolymer is about 0.007 to 1.3% by weight.
A contact lens characterized in that the content is 40% by weight or less. 2. Polymerization treatment of a mixture of hydroxyalkyl methacrylate, collagen, and water such that collagen is about 0.007 to 1.3% by weight based on hydroxyalkyl methacrylate, and water content is about 40% by weight or less. A method for manufacturing contact lenses characterized by subjecting them to.
JP6333281A 1981-04-28 1981-04-28 Contact lens and its manufacture Granted JPS57178217A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6333281A JPS57178217A (en) 1981-04-28 1981-04-28 Contact lens and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6333281A JPS57178217A (en) 1981-04-28 1981-04-28 Contact lens and its manufacture

Publications (2)

Publication Number Publication Date
JPS57178217A JPS57178217A (en) 1982-11-02
JPS6251447B2 true JPS6251447B2 (en) 1987-10-30

Family

ID=13226178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6333281A Granted JPS57178217A (en) 1981-04-28 1981-04-28 Contact lens and its manufacture

Country Status (1)

Country Link
JP (1) JPS57178217A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3745294A1 (en) 2019-05-27 2020-12-02 Matsuura Machinery Corporation Method for producing three-dimensional shaped product by joining top undercut region and bottom interior space-forming region

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5106743A (en) * 1981-01-26 1992-04-21 Trustees Of Boston University Hydrogels capable of supporting cell growth
US5489261A (en) * 1981-01-26 1996-02-06 Trustees Of Boston University Hydrogels capable of supporting cell growth
ATE242288T1 (en) * 1994-07-22 2003-06-15 Vladimir Feingold BIOLOGICALLY COMPATIBLE, OPTICALLY TRANSPARENT POLYMER MATERIAL BASED ON COLLAGEN AND METHOD FOR THE PRODUCTION THEREOF
CA2223442A1 (en) * 1995-06-07 1996-12-19 Alexei V. Osipov Biocompatible optically transparent polymeric material based upon collagen and method of making

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5611430A (en) * 1979-07-09 1981-02-04 Koken:Kk Contact lens

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5611430A (en) * 1979-07-09 1981-02-04 Koken:Kk Contact lens

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3745294A1 (en) 2019-05-27 2020-12-02 Matsuura Machinery Corporation Method for producing three-dimensional shaped product by joining top undercut region and bottom interior space-forming region
KR20200136302A (en) 2019-05-27 2020-12-07 가부시키가이샤 마쓰우라 기카이 세이사쿠쇼 A method of measuring three-dimensional object according to connection between an undercut region for upper side and an inner space forming region of downside

Also Published As

Publication number Publication date
JPS57178217A (en) 1982-11-02

Similar Documents

Publication Publication Date Title
US8662663B2 (en) Hybrid soft contact lens, and production method and hydration treatment method thereof
US4866148A (en) Hydrophilic copolymers, the use thereof as biomedical materials and contact-optical articles produced therefrom
US3992563A (en) High toughness synthetic high polymers for soft contact lenses and a process for manufacturing the same
CA1251069A (en) Hydrogel contact lenses for extended wear
KR20080113467A (en) Silicone-hydrogel compound for soft contact lens and soft contact lens produced using the compound
US4022754A (en) Novel copolymer having utility as contact lens
US4440919A (en) Low N-vinyl lactam content based biomedical devices
US4327202A (en) Styrene copolymer for contact lenses
JPS6334447B2 (en)
US4032599A (en) Hydrophilic copolymers
JP4772939B2 (en) Polymerizable monomer composition and contact lens
US4163608A (en) Hydratable gas permeable methyl methacrylate copolymer
KR100286971B1 (en) Ocular lens material and process for producing the same
JPS6251447B2 (en)
CA1157981A (en) Hydrogel implant article and method
US4745158A (en) Highly water-absorptive optical material
EP0366931B1 (en) High water content soft contact lens
JPH0624584B2 (en) Optical prosthesis and its manufacturing method
JPH08334732A (en) Soft contact lens
JP3357135B2 (en) Ophthalmic lens materials
JP2719488B2 (en) Intraocular lens
KR19980082493A (en) Materials of Hydrophilic Hard Contact Lenses
JPH06134029A (en) Hydrogel
JPH0682177B2 (en) Hydrous contact lens
JPH0115847B2 (en)