JPS6251323B2 - - Google Patents

Info

Publication number
JPS6251323B2
JPS6251323B2 JP58069746A JP6974683A JPS6251323B2 JP S6251323 B2 JPS6251323 B2 JP S6251323B2 JP 58069746 A JP58069746 A JP 58069746A JP 6974683 A JP6974683 A JP 6974683A JP S6251323 B2 JPS6251323 B2 JP S6251323B2
Authority
JP
Japan
Prior art keywords
cement
weight
semi
rubber latex
cement milk
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58069746A
Other languages
Japanese (ja)
Other versions
JPS59195905A (en
Inventor
Hiroshi Nomachi
Makoto Takada
Shigeki Yoshida
Satoshi Okazawa
Kazuhiro Fukuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NISSO MASTER BUILDERS KK
Original Assignee
NISSO MASTER BUILDERS KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NISSO MASTER BUILDERS KK filed Critical NISSO MASTER BUILDERS KK
Priority to JP58069746A priority Critical patent/JPS59195905A/en
Priority to ZA842862A priority patent/ZA842862B/en
Priority to BE0/212793A priority patent/BE899463A/en
Priority to IT8420629A priority patent/IT1209531B/en
Priority to AU27139/84A priority patent/AU2713984A/en
Publication of JPS59195905A publication Critical patent/JPS59195905A/en
Publication of JPS6251323B2 publication Critical patent/JPS6251323B2/ja
Granted legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C7/00Coherent pavings made in situ
    • E01C7/08Coherent pavings made in situ made of road-metal and binders
    • E01C7/18Coherent pavings made in situ made of road-metal and binders of road-metal and bituminous binders
    • E01C7/26Coherent pavings made in situ made of road-metal and binders of road-metal and bituminous binders mixed with other materials, e.g. cement, rubber, leather, fibre
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C7/00Coherent pavings made in situ
    • E01C7/08Coherent pavings made in situ made of road-metal and binders
    • E01C7/18Coherent pavings made in situ made of road-metal and binders of road-metal and bituminous binders
    • E01C7/26Coherent pavings made in situ made of road-metal and binders of road-metal and bituminous binders mixed with other materials, e.g. cement, rubber, leather, fibre
    • E01C7/265Coherent pavings made in situ made of road-metal and binders of road-metal and bituminous binders mixed with other materials, e.g. cement, rubber, leather, fibre with rubber or synthetic resin, e.g. with rubber aggregate, with synthetic resin binder

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Structural Engineering (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Road Paving Structures (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、半剛性舗装工法に係り、さらに詳し
くは、該工法において使用するセメントペースト
またはモルタル(以下セメントミルクという)組
成物に関する。 舗装には従来アスフアルト舗装と、コンクリー
ト舗装との大きな系統があつたが、近時両者の特
徴を兼備した半剛性舗装が提案され実施されてい
る。半剛性舗装は一般的には先ず舗装基盤上に開
粒度骨材とアスフアルトを3〜5重量%(対骨材
比)配合してなる開粒度アスフアルトコンクリー
ト層を空隙率が20〜30%となるよう打設した後、
該開粒度アスフアルトコンクリートからゴムラテ
ツクスを含有するセメントミルクを撒布し、振動
ローラーを用いて該セメントミルクをアスフアル
トコンクリートの空隙内に注入浸透させた後、表
面に残つたセメントミルクをゴムレーキ等を用い
てかき取り、セメントミルクが固化することによ
り半剛性舗装を得ていた。したがつて、該工法に
おいて使用されるセメントミルクには下記の特性
が要求される。 (1) 適当なコンシステンシーを有していること。 (2) 完成した半剛性舗装の表面に微細なクラツク
が発生しないこと。 上記コンシステンシーの要件はセメントミルク
の開粒度アスフアルトコンクリートへの注入浸透
作業が円滑に行われるための条件であつて、多々
の施工経験の蓄積からPロート流出時間(土木学
会規準「プレパツクドコンクリートの注入モルタ
ルのコンシステンシー試験方法・Pロートによる
方法」参照)が9〜20(好ましくは9〜12)に相
当するコンシステンシーを有するセメントミルク
が適当なものとされている。また、クラツク発生
防止の要件は舗装盤の性能保持上当然の要件であ
るが、単なるセメントミルクではコンシステンシ
ーの要件を満足させる限りクラツク発生は不可避
である。コンシステンシー要件を満足させかつ、
クラツク発生防止要件を満足させるためには、セ
メントミルク中にある量以上のゴムラテツクスを
配合することが必要である。クラツク発生防止の
要件を満足するためのゴムラテツクスの配合量は
多くの施工経験よりゴムラテツクス固形分換算で
セメント重量基準3.7〜3.8重量%以上である。し
かしながらゴムラテツクスは半剛性舗装に用いら
れる他の諸材料たとえばセメント、骨材、アスフ
アルト等と比較して著しく高価な材料であり、そ
の配合量の低減には前記した如く限界があるた
め、半剛性舗装の施工コストが高くなり、その普
及を妨げる原因となつている。 本発明は半剛性舗装工法に使用するセメントミ
ルクに配合されるゴムラテツクスの所要量を低減
する方法、すなわち、ゴムラテツクス配合量の小
さい半剛性舗装工法用セメントミルク組成物を提
供することをその目的とする。 本発明者等は前記目的を達成すべく鋭意研究し
た結果、セメントミルク中に特定のセメント混和
剤を混入することにより、ゴムラテツクスの配合
量を大幅に低減しても、舗装面にクラツクが発生
しないことを見出し本発明を完成した。 本発明は、基盤上に空隙率20〜30%の開粒度ア
スフアルトコンクリート層を打設後、セメントペ
ーストまたはモルタルを注入浸透させて舗装版を
形成する半剛性舗装工法において (イ) ゴムラテツクスを固形分換算でセメント重量
基準1.5〜2.5重量% (ロ) 芳香族炭化水素スルホン酸のホルムアルデヒ
ド縮合物、スルホン基含有アミノトリアジンの
ホルムアルデヒド縮合物およびリグニンスルホ
ン酸塩よりなる群から選ばれた1種または2種
以上をセメント重量基準0.2〜0.4重量% を含有し、かつ、セメントミルクのコンシステン
シーがPロート流出時間9〜20秒であるセメント
ミルクを使用することを特徴とする半剛性舗装工
法である。 本発明においてゴムラテツクスは、天然ゴムま
たは合成ゴムたとえばポリブタジエン、ブタジエ
ン・スチレンコポリマー、ポリスチレン、ブタジ
エン・アクリルコポリマー、ポリイソブチレン、
ポリクロロプレン、イソブチレン・イソプレンコ
ポリマー、エチレン・プロピレンコポリマー等を
水中にエマルジヨン状に乳化分散させたものであ
り、これらのゴムラテツクスは単独で使用しても
よく、また複数種を混合して使用してもよい。特
にスチレン・ブタジエンコポリマーが好ましく使
用される。 本発明において使用される添加剤のうち芳香族
炭化水素スルホン酸のホルムアルデヒド縮合物は
アルキル基で置換されまたは非置換のベンゼン、
ナフタレン、アントラセン等の芳香族炭化水素の
スルホン化物の同種または異種とホルムアルデヒ
ドとの縮合反により得られる生成物およびその塩
類であり、ナフタリンスルホン酸のホルムアルデ
ヒド高縮合物のナトリウム塩またはカルシウム塩
が好ましく使用される。スルホン基含有アミノト
リアジンのホルムアルデヒド縮合物は、特公昭43
−21659号公報に記載される如き、少なくとも2
個のアミノ基を有するアミノ―S―トリアジンに
スルホン酸基を導入した基体とホルムアルデヒド
とを縮合して得られる生成物であり、具体例とし
てメラミンスルホン酸のホルムアルデヒド縮合物
を挙げることができる。また、リグニンスルホン
酸塩は亜硫酸パルプ廃液を原料として工業的に製
造されるものでセメント分散剤として周知のもの
である。亜硫酸パルプ廃液を原料とするセメント
分散剤用のリグニンスルホン酸塩を製造する方法
ならびにリグニンスルホン酸塩の品質改善方法と
して種々の方法が提案されているが、これらの方
法を適用したリグニンスルホン酸塩のいずれをも
使用できる。 本発明の半剛性舗装工法においては前述したゴ
ムラテツクスをセメント重量基準1.5〜25重量%
および前記添加剤のうちの1種または2種以上を
セメント重量基準0.2〜0.4重量%配合してなるコ
ンシステンシーがPロート流下時間9〜20(好ま
しくは9〜12)秒のセメントミルクを注入浸透用
のセメントミルクとして用いる。ゴムラテツクス
の添加量がセメント重量基準1.5重量%未満で
は、舗装盤に実用上好ましくない程度のクラツク
が発生し、また、2.5重量%を越えると施工コス
トの低減効果が薄れるので好ましくない。舗装盤
のクラツク発生はセメント重量基準2重量%以上
で完全に防止できる。一方、添加剤の使用量がセ
メント重量基準0.2%未満ではゴムラテツクスの
配合量の低減効果が充分でなく、また0.4重量%
を越えてもゴムラテツクスの配合量の低減効果が
殆んど増大せず不経済となり好ましくない。好ま
しい添加剤の使用量はセメント重量基準0.3重量
%である。セメントミルクのコンシステンシーが
Pロート流下時間9秒末満では舗装盤の強度が低
く、また12秒を越えると開粒度アスフアルトコン
クリートへの注入浸透が不十分となり好ましくな
い。なお、セメントミルクを開粒度アスフアルト
層の全高にわたり充分に浸透させる(全浸透型と
いう)にはコンシステンシーが12秒以下のもので
なければならないが、開粒度アスフアルト層の半
分程度の深さまで浸透すればよい(半浸透型とい
う)場合にはコンシステンシーは20秒まで許容で
きる。 本発明において、ゴムラテツクスおよび前記添
加剤は、セメントミルク調整時に両者を別々に計
量して添加してもよく、またあらかじめ両者を所
定比率で混合しておき、1液タイプとして添加し
てもよい。また、ゴムラテツクスおよび前記特定
添加剤以外の添加材料たとえば遅延剤、早強剤、
膨張剤、石粉、フライアツシユ等を添加すること
ができる。 本発明において、基盤上に空隙率20〜30%の開
粒度アスフアルトコンクリート層を打設後、前記
セメントミルク組成物を振動ローラー等を用いて
該アスフアルトコンクリー層に注入浸透させ、つ
いで表面に残つたセメントミルクをゴムレーキ等
を用いてかき取ることによりクラツクのない半剛
性舗装盤が得られる。 本発明はセメントミルクに特定の添加剤を配合
することにより、従来法と比較してゴムラテツク
スの配合量を約1/2に低減することができるた
め、半剛性舗装工法の施工コストを大幅に低減す
ることができる。さらに、このセメントミルクは
夏期の如き高温時における浸透性が従来のものに
くらべ良好であり、ブリージング量も少ない等の
種々の利点も併せ有する。 本発明は、施工コストが安価で施工性にすぐれ
かつ物理的特性も良好な半剛性舗装工法を提供す
るものであり、該工法の普及を考慮するとその産
業的意義は極めて大きい。 以下、本発明を実施例によりさらに詳しく説明
する。ただし、本発明の範囲は下記実施例により
限定されるものではない。 実施例 (1) 開粒度アスフアルトコンクリート 斜入度80〜100の舗装用アスフアルトを第1
表に示す粒度分布を有する開粒度骨材に対して
3.5重量%配合した空隙率25%の開粒度アスフ
アルトコンクリート。
The present invention relates to a semi-rigid pavement construction method, and more particularly to a cement paste or mortar (hereinafter referred to as cement milk) composition used in the construction method. Conventionally, there have been two major systems of pavement: asphalt pavement and concrete pavement, but recently semi-rigid pavement that combines the characteristics of both has been proposed and put into practice. Semi-rigid pavement is generally made by first applying an open-grained asphalt concrete layer with a porosity of 20-30%, which is made by mixing open-grained aggregate and asphalt in an amount of 3-5% by weight (relative to aggregate), on the pavement base. After pouring the
After spreading cement milk containing rubber latex from the open-grained asphalt concrete and injecting the cement milk into the voids of the asphalt concrete using a vibrating roller, the cement milk remaining on the surface is scraped off using a rubber rake or the like. A semi-rigid pavement was obtained by solidifying the cement milk. Therefore, the cement milk used in this construction method is required to have the following properties. (1) It must have appropriate consistency. (2) There shall be no minute cracks on the surface of the completed semi-rigid pavement. The above consistency requirement is a condition for smooth injection and penetration of cement milk into open-grained asphalt concrete. Cement milk having a consistency of 9 to 20 (preferably 9 to 12) is suitable. Furthermore, the requirement to prevent the occurrence of cracks is a natural requirement for maintaining the performance of the paving slab, but with mere cement milk, cracks are unavoidable as long as the consistency requirements are satisfied. satisfy consistency requirements and
In order to satisfy the crack prevention requirements, it is necessary to incorporate more than a certain amount of rubber latex into the cement milk. Based on our extensive experience in construction, the amount of rubber latex to be blended to satisfy the requirements for preventing crack generation is 3.7 to 3.8% by weight based on the cement weight in terms of solid content of rubber latex. However, rubber latex is extremely expensive compared to other materials used in semi-rigid pavement, such as cement, aggregate, asphalt, etc., and there is a limit to reducing its compounding amount as mentioned above. The construction costs are increasing, which is hindering its widespread use. An object of the present invention is to provide a method for reducing the amount of rubber latex required to be blended into cement milk used in semi-rigid pavement construction methods, that is, to provide a cement milk composition for semi-rigid pavement construction methods that contains a small amount of rubber latex. . As a result of intensive research to achieve the above object, the present inventors found that by mixing a specific cement admixture into cement milk, cracks do not occur on the pavement surface even if the amount of rubber latex mixed is significantly reduced. They discovered this and completed the present invention. The present invention is a semi-rigid pavement method in which a pavement slab is formed by injecting and penetrating cement paste or mortar after pouring an open asphalt concrete layer with a porosity of 20 to 30% on a base. 1.5 to 2.5% by weight based on cement weight (b) One or two selected from the group consisting of formaldehyde condensates of aromatic hydrocarbon sulfonic acids, formaldehyde condensates of sulfonic group-containing aminotriazine, and lignin sulfonates. This is a semi-rigid pavement construction method characterized by using cement milk which contains 0.2 to 0.4% by weight of the above based on the cement weight and whose consistency is such that the pouring time through the P funnel is 9 to 20 seconds. In the present invention, the rubber latex includes natural rubber or synthetic rubber such as polybutadiene, butadiene-styrene copolymer, polystyrene, butadiene-acrylic copolymer, polyisobutylene,
Polychloroprene, isobutylene/isoprene copolymer, ethylene/propylene copolymer, etc. are emulsified and dispersed in water, and these rubber latexes can be used alone or in combination. good. In particular, styrene-butadiene copolymer is preferably used. Among the additives used in the present invention, formaldehyde condensates of aromatic hydrocarbon sulfonic acids are benzene substituted or unsubstituted with alkyl groups,
These are products obtained by condensation reaction of the same or different sulfonated aromatic hydrocarbons such as naphthalene and anthracene with formaldehyde, and their salts, and sodium salts or calcium salts of formaldehyde high condensates of naphthalene sulfonic acid are preferably used. be done. The formaldehyde condensate of aminotriazine containing a sulfonic group was
- at least 2 as described in Publication No. 21659
It is a product obtained by condensing formaldehyde with a substrate in which a sulfonic acid group has been introduced into an amino-S-triazine having 2 amino groups, and a specific example is a formaldehyde condensate of melamine sulfonic acid. Furthermore, lignin sulfonate is manufactured industrially using sulfite pulp waste liquid as a raw material, and is well known as a cement dispersant. Various methods have been proposed for producing lignin sulfonate for cement dispersants using sulfite pulp waste liquid as a raw material and for improving the quality of lignin sulfonate. You can use any of the following. In the semi-rigid pavement method of the present invention, the above-mentioned rubber latex is used in an amount of 1.5 to 25% by weight based on the weight of cement.
Inject and infiltrate cement milk with a consistency of 0.2 to 0.4% by weight based on the weight of the cement containing one or more of the above additives and a flow time of 9 to 20 (preferably 9 to 12) seconds Used as cement milk. If the amount of rubber latex added is less than 1.5% by weight based on the weight of cement, cracks will occur in the paving slab to a degree that is undesirable for practical purposes, and if it exceeds 2.5% by weight, the effect of reducing construction costs will be diminished, which is undesirable. The occurrence of cracks in the paving slab can be completely prevented by using 2% or more of cement based on the weight of cement. On the other hand, if the amount of additive used is less than 0.2% based on the cement weight, the effect of reducing the amount of rubber latex blended will not be sufficient;
Even if it exceeds this value, the effect of reducing the amount of rubber latex compounded is hardly increased and it becomes uneconomical, which is not preferable. The preferred amount of additive used is 0.3% by weight based on the weight of cement. If the consistency of the cement milk is less than 9 seconds after the P funnel flows, the strength of the paving plate will be low, and if it exceeds 12 seconds, the pouring into the open-grained asphalt concrete will be insufficient, which is undesirable. In addition, in order for cement milk to sufficiently penetrate the entire height of the open asphalt layer (total penetration type), the consistency must be less than 12 seconds, but the cement milk must penetrate to a depth of about half the open asphalt layer. In the case of semi-penetration (so-called semi-permeable type), consistency can be tolerated for up to 20 seconds. In the present invention, the rubber latex and the additives may be measured and added separately when preparing the cement milk, or they may be mixed in advance at a predetermined ratio and added as a one-liquid type. In addition, rubber latex and additive materials other than the above-mentioned specific additives, such as retarders, early strength agents,
Bulking agents, stone powder, fly ash, etc. can be added. In the present invention, after pouring an open asphalt concrete layer with a porosity of 20 to 30% on a base, the cement milk composition is injected into the asphalt concrete layer using a vibrating roller or the like, and then the cement milk composition remains on the surface. A crack-free semi-rigid paving slab can be obtained by scraping off the cement milk using a rubber rake or the like. By blending specific additives into cement milk, the present invention can reduce the amount of rubber latex blended to approximately 1/2 compared to conventional methods, significantly reducing construction costs for semi-rigid pavement construction. can do. Furthermore, this cement milk has various advantages such as better permeability at high temperatures such as summer than conventional cement milk, and less amount of breathing. The present invention provides a semi-rigid pavement construction method that is low in construction cost, has excellent workability, and has good physical properties, and its industrial significance is extremely large considering the widespread use of this construction method. Hereinafter, the present invention will be explained in more detail with reference to Examples. However, the scope of the present invention is not limited by the following examples. Example (1) Open-grained asphalt concrete Paving asphalt with a degree of inclination of 80 to 100 was used as the first
For open size aggregates with the particle size distribution shown in the table
Open-grain asphalt concrete with a porosity of 25% containing 3.5% by weight.

【表】 (2) ゴムラテツクス スチレン・ブタジエンコポリマーゴムラテツ
クス:固形分42.5重量% (3) 添加剤 (イ) ナフタレンスルホン酸のホルムアルデヒド
縮合物ナトリウム塩(NSFと略記する。) :市販セメント分散剤 (ロ) スルホン基含有メラミンのホルムアルデヒ
ド縮合物ナトリウム塩(SMFと略記する。) :市販セメント分散剤 (ハ) リグニンスルホン酸カルシウム(LIGと略
記する。) :市販セメント分散剤 (4) セメントミルクの配合およびコンシステンシ
ー 各種配合のセメントミルクを調整し、Pロー
ル流出時間によりコンシステンシーを測定し
た。配合割合およびPロート流出時間を第2表
に示す。
[Table] (2) Rubber latex Styrene-butadiene copolymer rubber latex: Solid content 42.5% by weight (3) Additives (a) Formaldehyde condensate sodium salt of naphthalene sulfonic acid (abbreviated as NSF): Commercially available cement dispersant ( (b) Sodium formaldehyde condensate of sulfonic group-containing melamine (abbreviated as SMF): Commercially available cement dispersant (c) Calcium lignin sulfonate (abbreviated as LIG): Commercially available cement dispersant (4) Mixing of cement milk and consistency Cement milk of various formulations was prepared, and the consistency was measured by P roll flow time. Table 2 shows the blending ratio and P funnel outflow time.

【表】 セメント:小野田普通ポルトランドセメント
使用、W〓C〓50%
* セメント重量基準の重量%
(5) 施工試験 第2表に示すセメントミルクのうち、コンシ
ステンシーがPロート流出時間9〜12秒の範囲
に入るNo.1,2,4,8,11,12のセメントミ
ルクを使用し全浸透型の施工試験を行い、クラ
ツクの発生状況を観察した。 (イ) 施工試験 基盤上に9m×10mの広さにわたり5cm厚さ
に開粒度アスフアルトコンクリートを打設し、
3m×5mを1区画として全体を6区画に分割
した。第2表のNo.1,2,4,8,11,12に該
当するセメントミルクを各区画内に流し込み、
振動ローラーによりアスフアルトコンクリート
層の空隙内に充分に注入浸透させた後、表面に
残つたセメントミルクをアスフアルトコンクリ
ート層と同じ高さにゴムレーキを用いてかき取
つた。施工時の気温は25℃、天候は晴であつ
た。 (ロ) 試験結果 施工7日後の舗装盤の表面状態を観察した結
果を第3表に示す。
[Table] Cement: Onoda ordinary Portland cement used, W〓C〓50%
* Weight % based on cement weight
(5) Construction test Among the cement milks shown in Table 2, cement milks No. 1, 2, 4, 8, 11, and 12 whose consistency falls within the range of P funnel flow time of 9 to 12 seconds were used. We conducted a penetration type construction test and observed the occurrence of cracks. (b) Construction test Open-grained asphalt concrete was poured to a thickness of 5cm over an area of 9m x 10m on the foundation.
The whole area was divided into 6 sections, each section measuring 3m x 5m. Pour cement milk corresponding to No. 1, 2, 4, 8, 11, 12 in Table 2 into each compartment,
After sufficiently injecting and permeating into the voids of the asphalt concrete layer using a vibrating roller, the cement milk remaining on the surface was scraped off to the same level as the asphalt concrete layer using a rubber rake. The temperature at the time of construction was 25°C and the weather was sunny. (b) Test results Table 3 shows the results of observing the surface condition of the paving slab 7 days after construction.

【表】 第2表No.10から明らかな如く、添加剤を使用せ
ずゴムラテツクスの配合量を低減するとW/C=
50%ではコンシステンシーの条件Pロート流出時
間9〜12秒を満足することができない。 第3表No.12から明らかな如く、添加剤のみの配
合ではクラツク発生を防止できない。 第3表から明らかな如く、本発明におけるゴム
ラテツクス配合量は、添加剤を用いない場合(No.
11)のゴムラテツクス配合量の約1/2である。
[Table] As is clear from Table 2 No. 10, if the amount of rubber latex mixed without using additives is reduced, W/C =
At 50%, the consistency condition P funnel outflow time of 9 to 12 seconds cannot be satisfied. As is clear from Table 3, No. 12, the occurrence of cracks cannot be prevented by adding only additives. As is clear from Table 3, the amount of rubber latex compounded in the present invention is the same as when no additive is used (No.
This is approximately 1/2 of the amount of rubber latex compounded in 11).

Claims (1)

【特許請求の範囲】 1 基盤上に空隙率20〜30%の開粒度アスフアル
トコンクリート層を打設後、セメントペーストま
たはモルタルを注入浸透させて舗装版を形成する
半剛性舗装工法において、 (イ) ゴムラテツクスを固形分換算でセメント重量
基準1.5〜2.5重量% (ロ) 芳香族炭化水素スルホン酸のホルムアルデヒ
ド縮合物、スルホン基含有アミノトリアジンの
ホルムアルデヒド縮合物およびリグニンスルホ
ン酸塩よりなる群から選ばれた1種または2種
以上をセメント重量基準0.2〜0.4重量% を含有し、かつ、コンシステンシーがPロート流
出時間9〜20秒であるセメントペーストまたはモ
ルタルを使用することを特徴とする半剛性舗装工
法。
[Scope of Claims] 1. In a semi-rigid pavement construction method in which a layer of open-grain asphalt concrete with a porosity of 20 to 30% is cast on a base, and then cement paste or mortar is injected and penetrated to form a pavement slab: (a) 1.5 to 2.5% by weight of rubber latex based on cement weight in terms of solid content (b) 1 selected from the group consisting of formaldehyde condensates of aromatic hydrocarbon sulfonic acids, formaldehyde condensates of sulfonic group-containing aminotriazines, and lignin sulfonates. 1. A semi-rigid pavement construction method characterized by using a cement paste or mortar containing 0.2 to 0.4% by weight of one or more species based on the weight of cement and having a consistency of P funnel runoff time of 9 to 20 seconds.
JP58069746A 1983-04-20 1983-04-20 Semi-rigid paving construction Granted JPS59195905A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP58069746A JPS59195905A (en) 1983-04-20 1983-04-20 Semi-rigid paving construction
ZA842862A ZA842862B (en) 1983-04-20 1984-04-16 Semi-rigid pavement manufacturing process
BE0/212793A BE899463A (en) 1983-04-20 1984-04-19 SEMI-RIGID PAVEMENT AND ITS CONFECTION.
IT8420629A IT1209531B (en) 1983-04-20 1984-04-19 PROCESS FOR THE PRODUCTION OF A SEMI-RIGID FLOORING.
AU27139/84A AU2713984A (en) 1983-04-20 1984-04-19 Semi-rigid pavement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58069746A JPS59195905A (en) 1983-04-20 1983-04-20 Semi-rigid paving construction

Publications (2)

Publication Number Publication Date
JPS59195905A JPS59195905A (en) 1984-11-07
JPS6251323B2 true JPS6251323B2 (en) 1987-10-29

Family

ID=13411669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58069746A Granted JPS59195905A (en) 1983-04-20 1983-04-20 Semi-rigid paving construction

Country Status (5)

Country Link
JP (1) JPS59195905A (en)
AU (1) AU2713984A (en)
BE (1) BE899463A (en)
IT (1) IT1209531B (en)
ZA (1) ZA842862B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0721161B2 (en) * 1986-05-13 1995-03-08 電気化学工業株式会社 Semi-rigid pavement method
JP4672171B2 (en) * 2000-03-06 2011-04-20 株式会社Nippo Pavement surface treatment method
JP4793788B2 (en) * 2006-03-30 2011-10-12 東京鋪装工業株式会社 Semi-flexible pavement construction method
IT1391804B1 (en) * 2008-11-26 2012-01-27 Milano Politecnico HIGH-PORTANCE FLOORING AND ITS MANUFACTURING PROCEDURE
JP5308967B2 (en) * 2009-09-01 2013-10-09 国立大学法人三重大学 Pavement structure and pavement construction method
CN106186922B (en) * 2016-07-01 2019-07-26 江苏天诺道路材料科技有限公司 Semi rigid bituminous surface material and preparation method thereof

Also Published As

Publication number Publication date
JPS59195905A (en) 1984-11-07
ZA842862B (en) 1985-09-25
IT1209531B (en) 1989-08-30
AU2713984A (en) 1984-10-25
IT8420629A0 (en) 1984-04-19
BE899463A (en) 1984-08-16

Similar Documents

Publication Publication Date Title
KR100958535B1 (en) Rapid hardening polymer modified concrete composition, repairing method for bridge deck overlay concrete pavement using the same
CA2718529C (en) Modifier for concrete and cement formulations and methods of preparing the same
JP2002520468A (en) Bitumen emulsion, method for obtaining bitumen emulsion and composition comprising bitumen emulsion
CA1129896A (en) Plasticizer combination for building materials
RU2008107570A (en) METHOD FOR PREPARING A BITUMINOUS BASIS, A BITUMINOUS BASIS AND ITS APPLICATION
US20130183533A1 (en) Curing or sealing compositions for concrete and cement formulations and processes for using the same
KR100403979B1 (en) Manufacturing method of The rapid set latex modified concrete composite
JPS6251323B2 (en)
KR20120039938A (en) Cement paste composition and costruction pavement method for porous pavement using the same
HUT68584A (en) Concrete composition, premix for concrete, and method of forming shaped articles with high flexural strength
Plante et al. The influence of water-reducers on the production and stability of the air void system in concrete
US4398957A (en) Mortar latex mix
EP1767581A1 (en) improved preparation of an asphalt mix, and use thereof
EP1095913B1 (en) Technological additive for agglomerating projectable building materials and utilization of the additive in projected mortars and concretes
US6315825B1 (en) Composition and process for improving the resistance to water penetration of cementitious products and cementitious products made therewith
US4054691A (en) Process for promoting the adhesion of cementitious material to closed cell generally smooth skinned foam materials
Sumathy et al. Modification of cement mortars by polymer latex
JP2005048403A (en) Pavement body having water retaining function
JP2649264B2 (en) Rapid construction method for semi-rigid pavement
NO751755L (en)
US2593492A (en) Hydraulic cement composition and indurating composition therefor
CA1143385A (en) Mortar and latex mix
SU1265171A1 (en) Method of preparing light-weight asphalt-concrete mix
Van Dam Chemical Admixtures for Concrete Paving Mixtures [techbrief]
RU1834897C (en) Composition for construction of base courses of motor ways and aerodromes