JPS625128B2 - - Google Patents
Info
- Publication number
- JPS625128B2 JPS625128B2 JP53020402A JP2040278A JPS625128B2 JP S625128 B2 JPS625128 B2 JP S625128B2 JP 53020402 A JP53020402 A JP 53020402A JP 2040278 A JP2040278 A JP 2040278A JP S625128 B2 JPS625128 B2 JP S625128B2
- Authority
- JP
- Japan
- Prior art keywords
- alloctin
- molecular weight
- activity
- experiment
- mercaptoethanol
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- DGVVWUTYPXICAM-UHFFFAOYSA-N β‐Mercaptoethanol Chemical compound OCCS DGVVWUTYPXICAM-UHFFFAOYSA-N 0.000 claims description 35
- 230000000694 effects Effects 0.000 claims description 26
- 210000004698 lymphocyte Anatomy 0.000 claims description 20
- 238000004062 sedimentation Methods 0.000 claims description 20
- 235000011399 aloe vera Nutrition 0.000 claims description 13
- 210000003743 erythrocyte Anatomy 0.000 claims description 11
- 102000004506 Blood Proteins Human genes 0.000 claims description 10
- 108010017384 Blood Proteins Proteins 0.000 claims description 10
- 102000004169 proteins and genes Human genes 0.000 claims description 10
- 108090000623 proteins and genes Proteins 0.000 claims description 10
- 230000000295 complement effect Effects 0.000 claims description 8
- 102000003886 Glycoproteins Human genes 0.000 claims description 7
- 108090000288 Glycoproteins Proteins 0.000 claims description 7
- 235000000346 sugar Nutrition 0.000 claims description 7
- 239000012528 membrane Substances 0.000 claims description 6
- 229920000936 Agarose Polymers 0.000 claims description 5
- 230000004913 activation Effects 0.000 claims description 5
- 230000004520 agglutination Effects 0.000 claims description 5
- 235000002961 Aloe barbadensis Nutrition 0.000 claims description 4
- 244000186892 Aloe vera Species 0.000 claims description 4
- 230000001737 promoting effect Effects 0.000 claims description 3
- 210000004881 tumor cell Anatomy 0.000 claims description 3
- 230000001707 blastogenic effect Effects 0.000 claims description 2
- 238000002474 experimental method Methods 0.000 description 32
- 210000004027 cell Anatomy 0.000 description 23
- 210000002966 serum Anatomy 0.000 description 22
- 238000004458 analytical method Methods 0.000 description 21
- 238000012360 testing method Methods 0.000 description 20
- 206010028980 Neoplasm Diseases 0.000 description 17
- 235000001014 amino acid Nutrition 0.000 description 16
- 150000001413 amino acids Chemical class 0.000 description 16
- 241000283973 Oryctolagus cuniculus Species 0.000 description 15
- 239000008363 phosphate buffer Substances 0.000 description 15
- 230000002378 acidificating effect Effects 0.000 description 14
- 238000000034 method Methods 0.000 description 14
- 239000000126 substance Substances 0.000 description 14
- 201000011510 cancer Diseases 0.000 description 13
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 13
- 230000035931 haemagglutination Effects 0.000 description 12
- 241000700159 Rattus Species 0.000 description 11
- 241001116389 Aloe Species 0.000 description 10
- 229920005654 Sephadex Polymers 0.000 description 9
- 230000001093 anti-cancer Effects 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 9
- 235000018102 proteins Nutrition 0.000 description 9
- 241001465754 Metazoa Species 0.000 description 8
- 238000010586 diagram Methods 0.000 description 8
- 239000000499 gel Substances 0.000 description 8
- 239000012507 Sephadex™ Substances 0.000 description 7
- 230000037361 pathway Effects 0.000 description 7
- 239000000243 solution Substances 0.000 description 7
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 6
- 108090000056 Complement factor B Proteins 0.000 description 6
- 102000003712 Complement factor B Human genes 0.000 description 6
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 6
- 238000001962 electrophoresis Methods 0.000 description 5
- 238000010828 elution Methods 0.000 description 5
- 238000005227 gel permeation chromatography Methods 0.000 description 5
- 230000000951 immunodiffusion Effects 0.000 description 5
- 230000037230 mobility Effects 0.000 description 5
- 230000001766 physiological effect Effects 0.000 description 5
- 238000002054 transplantation Methods 0.000 description 5
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 4
- 241000196324 Embryophyta Species 0.000 description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 230000002776 aggregation Effects 0.000 description 4
- 238000004220 aggregation Methods 0.000 description 4
- 229940069521 aloe extract Drugs 0.000 description 4
- 229940098773 bovine serum albumin Drugs 0.000 description 4
- 238000000760 immunoelectrophoresis Methods 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 229920002401 polyacrylamide Polymers 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 239000011780 sodium chloride Substances 0.000 description 4
- 206010003445 Ascites Diseases 0.000 description 3
- 108010000912 Egg Proteins Proteins 0.000 description 3
- 102000002322 Egg Proteins Human genes 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- IQFYYKKMVGJFEH-XLPZGREQSA-N Thymidine Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 IQFYYKKMVGJFEH-XLPZGREQSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 102000004142 Trypsin Human genes 0.000 description 3
- 108090000631 Trypsin Proteins 0.000 description 3
- 230000035584 blastogenesis Effects 0.000 description 3
- 210000004369 blood Anatomy 0.000 description 3
- 239000008280 blood Substances 0.000 description 3
- 239000007853 buffer solution Substances 0.000 description 3
- 238000005119 centrifugation Methods 0.000 description 3
- 239000012141 concentrate Substances 0.000 description 3
- 235000013345 egg yolk Nutrition 0.000 description 3
- 210000002969 egg yolk Anatomy 0.000 description 3
- 239000000839 emulsion Substances 0.000 description 3
- DNJIEGIFACGWOD-UHFFFAOYSA-N ethyl mercaptane Natural products CCS DNJIEGIFACGWOD-UHFFFAOYSA-N 0.000 description 3
- 238000011534 incubation Methods 0.000 description 3
- 238000002264 polyacrylamide gel electrophoresis Methods 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- 239000006228 supernatant Substances 0.000 description 3
- 239000012588 trypsin Substances 0.000 description 3
- FTOAOBMCPZCFFF-UHFFFAOYSA-N 5,5-diethylbarbituric acid Chemical compound CCC1(CC)C(=O)NC(=O)NC1=O FTOAOBMCPZCFFF-UHFFFAOYSA-N 0.000 description 2
- 241000283690 Bos taurus Species 0.000 description 2
- 108010062580 Concanavalin A Proteins 0.000 description 2
- 229920001917 Ficoll Polymers 0.000 description 2
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 2
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 2
- HNDVDQJCIGZPNO-YFKPBYRVSA-N L-histidine Chemical compound OC(=O)[C@@H](N)CC1=CN=CN1 HNDVDQJCIGZPNO-YFKPBYRVSA-N 0.000 description 2
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 2
- 241000699670 Mus sp. Species 0.000 description 2
- 208000006268 Sarcoma 180 Diseases 0.000 description 2
- 235000003704 aspartic acid Nutrition 0.000 description 2
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 2
- 239000000872 buffer Substances 0.000 description 2
- 239000011545 carbonate/bicarbonate buffer Substances 0.000 description 2
- 230000004154 complement system Effects 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 230000001605 fetal effect Effects 0.000 description 2
- 238000004108 freeze drying Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 235000013922 glutamic acid Nutrition 0.000 description 2
- 239000004220 glutamic acid Substances 0.000 description 2
- 230000003067 hemagglutinative effect Effects 0.000 description 2
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 2
- 230000005764 inhibitory process Effects 0.000 description 2
- 238000007912 intraperitoneal administration Methods 0.000 description 2
- 229930182817 methionine Natural products 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 230000002760 pro-activator Effects 0.000 description 2
- 108090000765 processed proteins & peptides Proteins 0.000 description 2
- 102000004196 processed proteins & peptides Human genes 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 150000008163 sugars Chemical class 0.000 description 2
- YNJBWRMUSHSURL-UHFFFAOYSA-N trichloroacetic acid Chemical compound OC(=O)C(Cl)(Cl)Cl YNJBWRMUSHSURL-UHFFFAOYSA-N 0.000 description 2
- 239000011800 void material Substances 0.000 description 2
- 238000005303 weighing Methods 0.000 description 2
- VADKRMSMGWJZCF-UHFFFAOYSA-N 2-bromophenol Chemical compound OC1=CC=CC=C1Br VADKRMSMGWJZCF-UHFFFAOYSA-N 0.000 description 1
- QCVGEOXPDFCNHA-UHFFFAOYSA-N 5,5-dimethyl-2,4-dioxo-1,3-oxazolidine-3-carboxamide Chemical compound CC1(C)OC(=O)N(C(N)=O)C1=O QCVGEOXPDFCNHA-UHFFFAOYSA-N 0.000 description 1
- 241000251468 Actinopterygii Species 0.000 description 1
- 240000007474 Aloe arborescens Species 0.000 description 1
- 235000004509 Aloe arborescens Nutrition 0.000 description 1
- 241000230106 Aloe perryi Species 0.000 description 1
- 241000282472 Canis lupus familiaris Species 0.000 description 1
- 241000283707 Capra Species 0.000 description 1
- 206010007269 Carcinogenicity Diseases 0.000 description 1
- 102000014914 Carrier Proteins Human genes 0.000 description 1
- 108010078791 Carrier Proteins Proteins 0.000 description 1
- 108010038061 Chymotrypsinogen Proteins 0.000 description 1
- LEVWYRKDKASIDU-QWWZWVQMSA-N D-cystine Chemical compound OC(=O)[C@H](N)CSSC[C@@H](N)C(O)=O LEVWYRKDKASIDU-QWWZWVQMSA-N 0.000 description 1
- SNRUBQQJIBEYMU-UHFFFAOYSA-N Dodecane Natural products CCCCCCCCCCCC SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 241000283086 Equidae Species 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 206010061218 Inflammation Diseases 0.000 description 1
- XUJNEKJLAYXESH-REOHCLBHSA-N L-Cysteine Chemical compound SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 description 1
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 1
- 108090001090 Lectins Proteins 0.000 description 1
- 102000004856 Lectins Human genes 0.000 description 1
- 241000270322 Lepidosauria Species 0.000 description 1
- 241000234280 Liliaceae Species 0.000 description 1
- OVRNDRQMDRJTHS-UHFFFAOYSA-N N-acelyl-D-glucosamine Natural products CC(=O)NC1C(O)OC(CO)C(O)C1O OVRNDRQMDRJTHS-UHFFFAOYSA-N 0.000 description 1
- OVRNDRQMDRJTHS-FMDGEEDCSA-N N-acetyl-beta-D-glucosamine Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O OVRNDRQMDRJTHS-FMDGEEDCSA-N 0.000 description 1
- MBLBDJOUHNCFQT-LXGUWJNJSA-N N-acetylglucosamine Natural products CC(=O)N[C@@H](C=O)[C@@H](O)[C@H](O)[C@H](O)CO MBLBDJOUHNCFQT-LXGUWJNJSA-N 0.000 description 1
- 108010058846 Ovalbumin Proteins 0.000 description 1
- MASVCBBIUQRUKL-UHFFFAOYSA-N POPOP Chemical compound C=1N=C(C=2C=CC(=CC=2)C=2OC(=CN=2)C=2C=CC=CC=2)OC=1C1=CC=CC=C1 MASVCBBIUQRUKL-UHFFFAOYSA-N 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- 241000270295 Serpentes Species 0.000 description 1
- 241000922366 Socotra Species 0.000 description 1
- 241000282887 Suidae Species 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- GLNADSQYFUSGOU-GPTZEZBUSA-J Trypan blue Chemical compound [Na+].[Na+].[Na+].[Na+].C1=C(S([O-])(=O)=O)C=C2C=C(S([O-])(=O)=O)C(/N=N/C3=CC=C(C=C3C)C=3C=C(C(=CC=3)\N=N\C=3C(=CC4=CC(=CC(N)=C4C=3O)S([O-])(=O)=O)S([O-])(=O)=O)C)=C(O)C2=C1N GLNADSQYFUSGOU-GPTZEZBUSA-J 0.000 description 1
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 238000001042 affinity chromatography Methods 0.000 description 1
- 239000011543 agarose gel Substances 0.000 description 1
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 1
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 1
- 235000011130 ammonium sulphate Nutrition 0.000 description 1
- 229960002319 barbital Drugs 0.000 description 1
- 238000012742 biochemical analysis Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000005907 cancer growth Effects 0.000 description 1
- 231100000260 carcinogenicity Toxicity 0.000 description 1
- 230000007670 carcinogenicity Effects 0.000 description 1
- 239000006285 cell suspension Substances 0.000 description 1
- 230000024203 complement activation Effects 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- NKLPQNGYXWVELD-UHFFFAOYSA-M coomassie brilliant blue Chemical compound [Na+].C1=CC(OCC)=CC=C1NC1=CC=C(C(=C2C=CC(C=C2)=[N+](CC)CC=2C=C(C=CC=2)S([O-])(=O)=O)C=2C=CC(=CC=2)N(CC)CC=2C=C(C=CC=2)S([O-])(=O)=O)C=C1 NKLPQNGYXWVELD-UHFFFAOYSA-M 0.000 description 1
- 239000000287 crude extract Substances 0.000 description 1
- 235000018417 cysteine Nutrition 0.000 description 1
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 1
- 229960003067 cystine Drugs 0.000 description 1
- 231100000433 cytotoxic Toxicity 0.000 description 1
- 230000001472 cytotoxic effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- MOTZDAYCYVMXPC-UHFFFAOYSA-N dodecyl hydrogen sulfate Chemical compound CCCCCCCCCCCCOS(O)(=O)=O MOTZDAYCYVMXPC-UHFFFAOYSA-N 0.000 description 1
- 229940043264 dodecyl sulfate Drugs 0.000 description 1
- 239000012154 double-distilled water Substances 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 235000014103 egg white Nutrition 0.000 description 1
- 210000000969 egg white Anatomy 0.000 description 1
- DEFVIWRASFVYLL-UHFFFAOYSA-N ethylene glycol bis(2-aminoethyl)tetraacetic acid Chemical compound OC(=O)CN(CC(O)=O)CCOCCOCCN(CC(O)=O)CC(O)=O DEFVIWRASFVYLL-UHFFFAOYSA-N 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 238000005194 fractionation Methods 0.000 description 1
- 238000001502 gel electrophoresis Methods 0.000 description 1
- 230000001900 immune effect Effects 0.000 description 1
- 238000001114 immunoprecipitation Methods 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 230000004054 inflammatory process Effects 0.000 description 1
- 150000002540 isothiocyanates Chemical class 0.000 description 1
- 239000002523 lectin Substances 0.000 description 1
- 210000000265 leukocyte Anatomy 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 201000007270 liver cancer Diseases 0.000 description 1
- 208000014018 liver neoplasm Diseases 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 230000002297 mitogenic effect Effects 0.000 description 1
- 230000000877 morphologic effect Effects 0.000 description 1
- 229950006780 n-acetylglucosamine Drugs 0.000 description 1
- FEMOMIGRRWSMCU-UHFFFAOYSA-N ninhydrin Chemical compound C1=CC=C2C(=O)C(O)(O)C(=O)C2=C1 FEMOMIGRRWSMCU-UHFFFAOYSA-N 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 229940092253 ovalbumin Drugs 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 239000013641 positive control Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000037452 priming Effects 0.000 description 1
- 230000006920 protein precipitation Effects 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 230000003716 rejuvenation Effects 0.000 description 1
- 239000013049 sediment Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 208000017520 skin disease Diseases 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-N sulfuric acid Substances OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 238000004448 titration Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000035899 viability Effects 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Medicines Containing Plant Substances (AREA)
- Polysaccharides And Polysaccharide Derivatives (AREA)
- Peptides Or Proteins (AREA)
Description
本発明はアロエより分離できる新規物質アロク
チンAに関する。
本発明者は、アロエより次の特性を有するアロ
クチンAを分離し、この新規物質が種々の生理活
性を有しており、癌、炎症、火傷、皮膚病等の医
薬としての使用が期待できることを見出し本発明
を完成するに至つた。
(1) 分子量:1.8×104
(2) 構造:蛋白と糖の比が約8対2(重量)であ
るグリコプロテイン
(3) ソデイム ドデシル サルフエート存在下に
おけるポリアクリルアミド・ゲル電気泳動で単
一バンドを与え、これを2−メルカプトエタノ
ールによりS−S結合を切断した場合は二バン
ドを与える。
(4) リンパ球幼若化作用(mitogenic activity)
及びリンパ球膜流動性促進作用を有する。
(5) 赤血球及び腫瘍細胞凝集活性を有する。
(6) 血清蛋白の或る種蛋白と反応しアガロース平
板上で沈降線を形成する作用を有する。
(7) 補体第3成分活性化作用を有する。
古くからアロエは、薬用植物として知られてお
り、日本薬局方にもアロエ末、アロエエキスが集
録されている。これらの主成分は低分子物質であ
り、本発明のアロクチンAはこれら公知の低分子
物質とは異なる高分子物質、グリコプロテインで
ある。一方、植物成分コンカナバリンA
(ConcanavalinA)等公知のレクチン(Lectin)
のいずれとも、本発明のアロクチンAは、分子
量、ソデイウム ドデシル サルフエート(以
下、SDSという)−ポリアクリルアミドゲル電気
泳動上の特性及び前記本発明のアロクチンAの有
する生理活性の点で異なる。さらに、アロエの中
に制癌活性を有する成分があることは知られてい
るが、純粋な形で分離された例はなく、グリコプ
ロテインが分離されたこともない。
本発明のアロクチンAはユリ科のアロエ
(Aloe)属植物例えばキダチアロエ(Aloe
arborescens MILL)、ソコトラアロエ(Aloe
perryi BAKER)、キユラソウアロエ(Aloe
barbadensis MILLER)、ケープアロエ(Aloe
forox MILLER)等(本明細書中でアロエとい
う)より分離でき、またその葉、幹、根等地上
部、地下部いずれからも分離できる。その分離方
法の一実施例を次に述べる。
キダチアロエ(Aloe arborescens MiLL)の
葉1Kgをよく破砕後ガーゼを用いてジユースを分
離した。10000回転30分間の遠心分離操作で夾
雑、粗大物質を沈殿除去し上清を分離した。0−
40%硫安分画に付し、沈殿物を分取し、0.05M炭
酸−重炭酸緩衝液(PH9.5)を加え、透析、脱塩
し、ついで凍結乾燥法により濃縮した。
なおこのようにして得られた透析処理物(以下
AS−40という)は赤血球凝集活性を有してい
た。AS−40を炭酸−重炭酸緩衝液に溶解(PH
9.5)し、ついで1M酢酸を加えることによりPHは
4.4に調整した。遠心分離(10000回転、20分)操
作で上清液(酸性Supという)と沈殿物(酸性
Pptという)を、分離した。酸性Pptよりも酸性
Sup中により高い赤血球凝集活性が見出された。
リンパ球幼若化活性はPptにのみ認められた。
酸性Pptを凍結乾燥後、0.05M燐酸緩衝液(PH
8.0)に溶解し、フアルマシア社製架橋デキスト
ランゲル、セフアデツクスG−200をカラム(1.5
×25cm)に詰め、同じ緩衝液で平衡にした後これ
に通液、溶出した。
同一緩衝液を用い4℃、流速2ml/hの条件で
溶出を行ない、1.3ml単位で分取した。蛋白の溶
出曲線(A280mμ)を図1aに示した。赤血球
凝集活性を斜線で表示した。V0はボイドボリユ
ームを示す。
赤血球凝集活性とリンパ球幼若化活性は、流出
開始後27.3ml〜44.2mlの分取区分であるP−2画
分のみ見出され、その前後の画分であるP−1と
P−3には該生理活性は見出されなかつた。P−
2画分が本発明のアロクチンAを含む画分であ
る。
P−1画分については再度セフアデツクスG−
200によるゲルクロマトグラフイーを行い更に精
製しP−1を得た。図1aにおいて10.4ml〜18.2
mlの分取区分、P−1画分を濃縮し、0.05M燐酸
緩衝液(PH8.0)であらかじめ平衡化したセフア
デツクスG−200を1.5×25cmカラムに詰め、その
上に前記濃縮物をのせ、0.05M燐酸緩衝液(PH
8.0)で溶出した。上記同一の緩衝液で溶出し、
4℃、2ml/hの流速で1.3mlづつ分取した。結
果を図1bに示した。V0はボイドボリユームを
示す。この画分からは何ら赤血球凝集活性は見出
されなかつた。
P−2画分についても再度セフアデツクスG−
200によるゲルクロマトグラフイーを行い更に精
製した。図1aにおいて分取した27.3〜44.2mlの
P−2画分をスペクトレイパーメンブレンテユー
ブ(Spectrum Medical Industries、Inc−Calf.
米国)で濃縮し(1.2mg)、あらかじめ0.05M燐酸
緩衝液(PH8.0)で平衡化したセフアデツクスG
−200を1.5×25cmカラムに詰め、その上に前記濃
縮物をのせ、0.05M燐酸緩衝液で溶出した。4
℃、2ml/hの流速で1.3mlづつ分取した。結果
を図1cに示した。赤血球凝集活性は斜線で表示
した。
ここで精製された物質、P−2が本発明のアロ
クチンAである。
一方、酸性Supは凍結乾燥後、0.05M燐酸緩衝
液(PH8.0)4mlに溶解し、あらかじめ、0.05M
燐酸緩衝液(PH8.0)で平衡化したセフアデツク
スG−100(フアルマシア社製 架橋デキストラ
ンゲル)を2.0×30cmカラムに詰め、その上に上
記溶液を流し、0.05M燐酸緩衝液で溶出した。
溶出は同一緩衝液を用い4℃流速5ml/hの条
件下に行い、2.5mlづつ分取した。結果を図2に
示した。
赤血球凝集活性を斜線で表示した。この凝集活
性はS−1画分の方にのみ見出され、S−2には
この生理活性は見出されなかつた。S−1画分は
再び同様にゲルクロマトグラフイーに付し精製し
活性物質S−1(アロクチンB)を得た。
上記の実験より、本発明のアロクチンAはセフ
アデツクスG−200によるゲルクロマトグラフイ
ーを、必要により前記生理活性を指標として、繰
返すことにより単離することができる。
なお、簡便には糖又は蛋白によるアフイニテイ
ーカラムクロマトグラフイーにより、アロクチン
Aを得ることもできる。
以上の実験結果を表1に整理して示した。
The present invention relates to a new substance, alloctin A, which can be isolated from aloe vera. The present inventor isolated alloctin A from aloe vera, which has the following properties, and found that this new substance has various physiological activities and can be expected to be used as a medicine for treating cancer, inflammation, burns, skin diseases, etc. Heading: The present invention has been completed. (1) Molecular weight: 1.8×10 4 (2) Structure: Glycoprotein with a protein to sugar ratio of approximately 8:2 (weight) (3) Single band in polyacrylamide gel electrophoresis in the presence of sodeime dodecyl sulfate When the S--S bond is cleaved with 2-mercaptoethanol, two bands are obtained. (4) Lymphocyte mitogenic activity
and has the effect of promoting lymphocyte membrane fluidity. (5) Has red blood cell and tumor cell agglutination activity. (6) It has the effect of reacting with certain serum proteins to form sedimentation lines on an agarose plate. (7) Has a complement third component activation effect. Aloe has been known as a medicinal plant since ancient times, and the Japanese Pharmacopoeia includes aloe powder and aloe extract. The main components of these substances are low-molecular substances, and the alloctin A of the present invention is a glycoprotein, which is a high-molecular substance different from these known low-molecular substances. On the other hand, the plant component concanavalin A
(ConcanavalinA) and other known lectins
The alloctin A of the present invention differs from any of the above in terms of molecular weight, sodium dodecyl sulfate (hereinafter referred to as SDS)-polyacrylamide gel electrophoretic properties, and the physiological activity of the alloctin A of the present invention. Furthermore, although it is known that aloe contains components that have anticancer activity, no examples have been isolated of them in pure form, and glycoproteins have never been isolated. The alloctin A of the present invention is applied to plants belonging to the genus Aloe of the Liliaceae family, such as Aloe aloe.
arborescens MILL), Socotra Aloe (Aloe
perryi BAKER), Aloe
barbadensis MILLER), Cape Aloe (Aloe
forox MILLER) (herein referred to as Aloe), and can be isolated from both above-ground and underground parts such as leaves, stems, and roots. An example of the separation method will be described below. After thoroughly crushing 1 kg of Aloe arborescens MiLL leaves, the young leaves were separated using gauze. Contaminants and coarse substances were precipitated and removed by centrifugation at 10,000 rpm for 30 minutes, and the supernatant was separated. 0-
The precipitate was separated by 40% ammonium sulfate fractionation, added with 0.05M carbonate-bicarbonate buffer (PH9.5), dialyzed and desalted, and then concentrated by freeze-drying. The dialyzed product obtained in this way (hereinafter referred to as
AS-40) had hemagglutination activity. Dissolve AS-40 in carbonate-bicarbonate buffer (PH
9.5) and then by adding 1M acetic acid, the pH is
Adjusted to 4.4. Centrifugation (10,000 rpm, 20 minutes) separates the supernatant (called acidic Sup) and precipitate (acidic
Ppt) was separated. More acidic than acidic Ppt
Higher hemagglutination activity was found in Sup.
Lymphocyte blastogenic activity was observed only in Ppt. After freeze-drying the acidic Ppt, add it to 0.05M phosphate buffer (PH
8.0), and coat Pharmacia's cross-linked dextran gel, Sephadex G-200, on a column (1.5
x 25 cm), equilibrated with the same buffer solution, and then passed through this solution for elution. Elution was performed using the same buffer solution at 4°C and a flow rate of 2 ml/h, and fractions were collected in 1.3 ml units. The protein elution curve (A280mμ) is shown in Figure 1a. Hemagglutination activity is indicated by diagonal lines. V 0 indicates void volume. Hemagglutination activity and lymphocyte blastogenesis activity were found only in the P-2 fraction, which is a fraction of 27.3 ml to 44.2 ml after the start of outflow, and in the P-1 and P-3 fractions before and after that. No such physiological activity was found. P-
Two fractions are fractions containing alloctin A of the present invention. For the P-1 fraction, repeat Sephadex G-
200 gel chromatography was performed to further purify the product to obtain P-1. 10.4ml~18.2 in Figure 1a
Concentrate the P-1 fraction and fill a 1.5 x 25 cm column with Sephadex G-200 equilibrated with 0.05 M phosphate buffer (PH 8.0), and place the concentrate on top of it. , 0.05M phosphate buffer (PH
8.0). Elute with the same buffer as above,
Aliquots of 1.3 ml were collected at 4°C at a flow rate of 2 ml/h. The results are shown in Figure 1b. V 0 indicates void volume. No hemagglutinating activity was found in this fraction. The P-2 fraction was also subjected to Sephadex G-
200 gel chromatography was performed for further purification. The 27.3 to 44.2 ml P-2 fraction collected in Figure 1a was transferred to a Spectrum membrane tube (Spectrum Medical Industries, Inc-Calf).
Sephadex G concentrated (1.2 mg) in USA) and equilibrated in advance with 0.05 M phosphate buffer (PH8.0).
-200 was packed into a 1.5 x 25 cm column, the concentrate was placed thereon, and the column was eluted with 0.05M phosphate buffer. 4
℃, and aliquots of 1.3 ml were collected at a flow rate of 2 ml/h. The results are shown in Figure 1c. Hemagglutination activity is indicated by diagonal lines. The substance P-2 purified here is alloctin A of the present invention. On the other hand, acidic Sup was lyophilized and then dissolved in 4 ml of 0.05M phosphate buffer (PH8.0).
Sephadex G-100 (crosslinked dextran gel manufactured by Pharmacia) equilibrated with phosphate buffer (PH8.0) was packed into a 2.0 x 30 cm column, the above solution was poured onto it, and eluted with 0.05M phosphate buffer. Elution was performed using the same buffer solution at 4°C and a flow rate of 5 ml/h, and 2.5 ml aliquots were collected. The results are shown in Figure 2. Hemagglutination activity is indicated by diagonal lines. This aggregation activity was found only in the S-1 fraction, and this physiological activity was not found in the S-2 fraction. The S-1 fraction was purified by gel chromatography again in the same manner to obtain the active substance S-1 (alloctin B). From the above experiments, alloctin A of the present invention can be isolated by repeating gel chromatography using Sephadex G-200, using the physiological activity as an indicator, if necessary. In addition, alloctin A can also be conveniently obtained by affinity column chromatography using sugar or protein. The above experimental results are summarized and shown in Table 1.
【表】
本発明のアロクチンAはSDS−ポリアクリルア
ミド・ゲル電気泳動上特異性を示すことは次の実
験から理解できる。
なお、SDS−ポリアクリルアミド・ゲル電気泳
動分析は10%ゲルによるソデイウム ドデシル
サルフエートを用いてウエバーとオスボーン法
(Weber、K.、and Osborn.M(1969)J.Biol.
Chem.244、4406−4412)に従つて行つた。ゲル
はクマシーブリリアンドブルー(Coomassie
brillant blue)で蛋白染色を行い、10%酢酸と10
%イソプロパノールの混合物で脱色した。
SDS−ポリアクリルアミド・ゲル電気泳動分析実
験:
P−1、P−2及びS−1についてSDS−ポリ
アクリルアミド・ゲル電気泳動分析を行つた。
0.1%SDSを含む0.1M燐酸緩衝液(PH7.2)中10%
ゲルを用いた。試料は2−メルカプトエタノール
処理したものと、処理しないものを用い、1%
SDS、10%グリセロール及び0.001%ブロムフエ
ノールを含む0.01M燐酸緩衝液(PH7.2)中で5
分間100℃に加熱した。
得られたパターンを図3に示した。aはP−1
を2−メルカプトエタノール処理したものと処理
しないものについて示したものであり、これは処
理、未処理同一結果を与えた。bはP−2を2−
メルカプトエタノール処理しないもの、cはP−
2を2−メルカプトエタノール処理したもの、d
はS−1を2−メルカプトエタノール処理しない
ものを、eはS−1を2−メルカプトエタノール
処理したものを示す。
図3より明白な如く、2−メルカプトエタノー
ル処理しないとP−1、P−2及びS−1は単一
バンドを与えた。一方、2−メルカプトエタノー
ル処理した場合はP−1は同一単一バンドを与え
るのに対し、P−2は二つの分離したバンドを与
えた。この二つのバンドに対応する物質はいずれ
もペプチドであり分子量に差があり、小さい方は
α、大きい方をβとする。S−1については2−
メルカプトエタノール処理物は、処理しない物と
同様単一バンドを与えるが、処理しないものに比
べ小さいバンド(γ)を与えた。
本発明のアロクチンAを特定する手段の一つと
しては本発明のアロクチンAの有する他の特性を
有するものについてSDS−ポリアクリルアミド・
ゲル分析を行い、単一バンドを与え、ただし2−
メルカプトエタノール処理物について二バンドを
与えるかどうかチエツクする。前記同様のSDS−
ポリアクリルアミド・ゲル電気泳動分析実験をあ
る物質について行い、得られた結果と、この実験
と同条件下でのアロクチンAのSDS−電気泳動分
析実験結果と比較し、同一かどうかをチエツク
し、全く同一であればその物質はアロクチンAと
決めることができる。もちろん、ある物質につい
て前記SDS−ポリアクリルアミド・ゲル電気泳動
分析実験と全く同一条件で実験を行い、図3にお
けるP−2の結果と比べ同一であればその物質が
アロクチンAであると決めることができる。
本発明のアロクチンAの分子量をSDS−ポリア
クリルアミド・ゲル電気泳動分析法による分子量
測定実験結果から求めた。
分子量測定実験:
2−メルカプトエタノール処理しない試料(P
−1、P−2及びS−1)のSDS−ポリアクリル
アミド・ゲル電動泳動分析から図4aに示す如く
分子量既知の標準蛋白についてその分子量の対数
値と移動度の関係をプロツトし標準曲線を求め決
める。
なお、SDS−ポリアクリルアミド・ゲル電気泳
動分析実験は前記図3において記載の方法と同様
に行つた。下記標準蛋白標品(括弧内に分子量を
示す)を用い移動度と分子量の対数値の関係をプ
ロツトし図4aに示した。
チトロームC(12500)、キモトリプシノーゲン
A(25000)、オブアルブミン(45000)、ボバイン
シーラムアルブミン(67000)。
次に、Segrestらの方法(Jere P.Segrest and
Richard L.JacKson Methods in Enzymology
28、54−63、1972)に従い、各種濃度を有するゲ
ルによるSDSを用いたポリアクリルアミド・ゲル
電動泳動分析での分子量測定実験を行つた。結果
を図4bに示した。図4bにおいては次の如くで
ある。
●−●:P−2
○−○: α
▲−▲:P−1(β)
■−■:S−1
□−□: γ
以上の結果から分子量を下記を如く決めた。
D−1:1.05×104
P−2:1.8×104(アロクチンA)
S−1:2.4×104(アロクチンB)
2−メルカプトエタノール処理したP−2とS
−1のSDS−ポリアクリルアミド・ゲル電動泳動
分析実験で得られる結果は、P−2については2
つのバンドに対応するα、β、及びS−1につい
て1つのバンドに対応するγの分子量を同様に決
めた。
α:7.5×103
β:1.05×104
γ:1.2×104
サブユニツトの構造:
P−1は2−メルカプトエタノール処理、未処
理関係なくSDS−ポリアクリルアミド・ゲル電気
泳動分析で同一単一バンドを与えた。従つて、P
−1はS−S結合により構成されるサブユニツト
を有しない。
P−2は2−メルカプトエタノール未処理のも
ののSDS−ポリアクリルアミド・ゲル電動泳動分
析では、1.8×104の分子量を有する単一バンドを
与えるのに対し、2−メルカプトエタノール処理
物ではそれぞれ分子量7.5×103と1.05×104に対応
する位置に小さい方(α)と大きい方(β)のペ
プチドに対応する二つのバンドを与えた。これは
1.8×104の分子量を有するP−2(アロクチン
A)分子が一個のα−サブユニツトと一個のβ−
サブユニツトから構成していること、さらにこの
計二個のサブユニツトはS−S結合でアロクチン
Aを構成していることを示す。
さらに、抗血清#513と#533を用いたオクタロ
ニーテストの結果(図5a及び5b参照)、P−
1とP−2には同じ抗原性があることがわかる。
故に、P−1は植物中ではP−2とは別個に単独
に存在するβ−サブユニツト鎖であると考えられ
る。
2−メルカプトエタノール処理しないSDS−ポ
リアクリルアミド・ゲル電動泳動分析で、S−1
はほぼ2.4×104の分子量の単一バンドを示すのに
対し、2−メルカプトエタノール処理したS−1
についての電気泳動分析ではほぼ1.2×104の分子
量に対応する位置に単一バンドを与えた。このこ
とからほぼ2.4×104の分子量を有するS−1分子
は二個のγ−サブユニツトからS−S結合で構成
され、その各々はほぼ1.2×104の分子量のもので
あることがわかる。
アロクチンA、アロクチンBともにグリコプロ
テインであることはニンヒドリン反応が陽性であ
り、中性糖の呈色反応例えば、モリツシユ・ピア
ール反応が陽性であることから確認され、またア
ミノ酸分析においてアロクチンA,BともにN−
アセチルグルコサミンが証明された。
定量分析結果から、P−1、P−2及びS−1
はそれぞれ24.9%、18.3%及び50%以上で糖を構
成していることが確かめられた。従つて本発明の
アロクチンAは蛋白と糖の比が約8対2(重量)
であるグリコプロテインであることがわかる。
次に示すアミノ酸分析実験結果より、アロクチ
ンAは構成アミノ酸としてアスパラギン酸、グル
タミン酸等酸性アミノ酸を多量に含有しているこ
とがわかる。
アミノ酸分析:
P−1(β)、P−2(αβ)及びS−1(γ
2)のアミノ酸組成を表2に示した。トリプトフ
アンは定量しなかつた。アスパラギン酸、グルタ
ミン酸等の酸性アミノ酸含量が大であり、メチオ
ニン及びヒスチジンの割合が低いのが特徴的であ
る。[Table] It can be understood from the following experiment that alloctin A of the present invention exhibits specificity in SDS-polyacrylamide gel electrophoresis. In addition, SDS-polyacrylamide gel electrophoresis analysis is performed using sodium dodecyl using a 10% gel.
Weber and Osborn method using sulfate (Weber, K., and Osborn.M (1969) J.Biol.
Chem. 244 , 4406-4412). The gel is Coomassie brilliant blue (Coomassie
Perform protein staining with 10% acetic acid and 10%
% isopropanol mixture. SDS-polyacrylamide gel electrophoresis analysis experiment: SDS-polyacrylamide gel electrophoresis analysis was performed on P-1, P-2, and S-1.
10% in 0.1M phosphate buffer (PH7.2) containing 0.1% SDS
Gel was used. The samples used were those treated with 2-mercaptoethanol and those not treated, and 1%
5 in 0.01M phosphate buffer (PH7.2) containing SDS, 10% glycerol and 0.001% bromophenol.
Heated to 100°C for minutes. The obtained pattern is shown in FIG. a is P-1
is shown for those treated with 2-mercaptoethanol and those not treated, which gave the same results with and without treatment. b is P-2 2-
Not treated with mercaptoethanol, c is P-
2 treated with 2-mercaptoethanol, d
"e" indicates S-1 not treated with 2-mercaptoethanol, and "e" indicates S-1 treated with 2-mercaptoethanol. As is clear from FIG. 3, P-1, P-2 and S-1 gave a single band without treatment with 2-mercaptoethanol. On the other hand, when treated with 2-mercaptoethanol, P-1 gave the same single band, whereas P-2 gave two separate bands. The substances corresponding to these two bands are both peptides and have different molecular weights, with the smaller one being α and the larger one being β. 2- for S-1
The mercaptoethanol treated product gave a single band like the untreated one, but a smaller band (γ) than the untreated one. One of the means for specifying the alloctin A of the present invention is to use SDS-polyacrylamide and
Gel analysis was performed and gave a single band, but 2-
Check whether mercaptoethanol treatment gives two bands. SDS as above
A polyacrylamide gel electrophoresis analysis experiment is performed on a certain substance, and the obtained results are compared with the results of an SDS-electrophoresis analysis experiment of alloctin A under the same conditions as this experiment to check whether they are the same or not. If they are the same, the substance can be determined to be alloctin A. Of course, if you conduct an experiment on a certain substance under exactly the same conditions as the SDS-polyacrylamide gel electrophoresis analysis experiment and compare it with the result of P-2 in Figure 3, you can determine that the substance is alloctin A. can. The molecular weight of alloctin A of the present invention was determined from the results of a molecular weight measurement experiment using SDS-polyacrylamide gel electrophoresis analysis. Molecular weight measurement experiment: Sample not treated with 2-mercaptoethanol (P
From the SDS-polyacrylamide gel electrophoresis analysis of -1, P-2 and S-1), a standard curve was obtained by plotting the relationship between the logarithm of the molecular weight and the mobility for a standard protein of known molecular weight, as shown in Figure 4a. decide. The SDS-polyacrylamide gel electrophoresis analysis experiment was conducted in the same manner as described in FIG. 3 above. The relationship between the mobility and the logarithm of the molecular weight was plotted using the following standard protein preparation (molecular weight is shown in parentheses) and is shown in FIG. 4a. Cytrome C (12500), Chymotrypsinogen A (25000), Ovalbumin (45000), Bovine Serum Albumin (67000). Next, we use the method of Segrest et al. (Jere P.Segrest and
Richard L. JacKson Methods in Enzymology
28 , 54-63, 1972), molecular weight measurement experiments were carried out using polyacrylamide gel electrophoresis analysis using SDS using gels with various concentrations. The results are shown in Figure 4b. In FIG. 4b, it is as follows. ●-●: P-2 ○-○: α ▲-▲: P-1 (β) ■-■: S-1 □-□: γ Based on the above results, the molecular weight was determined as follows. D-1: 1.05×10 4 P-2: 1.8×10 4 (Alloctin A) S-1: 2.4×10 4 (Alloctin B) P-2 and S treated with 2-mercaptoethanol
The results obtained in the SDS-polyacrylamide gel electrophoresis analysis experiment for P-1 are the same as those for P-2.
The molecular weights of α, β corresponding to two bands, and γ corresponding to one band for S-1 were similarly determined. α: 7.5×10 3 β: 1.05×10 4 γ: 1.2× 10 Structure of 4 subunits: P-1 shows the same single band in SDS-polyacrylamide gel electrophoresis analysis regardless of whether it is treated with 2-mercaptoethanol or not. gave. Therefore, P
-1 has no subunits formed by SS bonds. In SDS-polyacrylamide gel electrophoresis analysis of P-2 untreated with 2-mercaptoethanol, it gives a single band with a molecular weight of 1.8 x 10 4 , while the 2-mercaptoethanol treated product gives a single band with a molecular weight of 7.5. Two bands corresponding to the smaller (α) and larger (β) peptides were given at positions corresponding to ×10 3 and 1.05 × 10 4 . this is
A P-2 (alloctin A) molecule with a molecular weight of 1.8×10 4 has one α-subunit and one β-subunit.
This shows that it is composed of subunits, and that these two subunits constitute alloctin A through SS bonds. Furthermore, the results of the Ouchterlony test using antisera #513 and #533 (see Figures 5a and 5b), P-
It can be seen that 1 and P-2 have the same antigenicity.
Therefore, P-1 is considered to be a β-subunit chain that exists independently from P-2 in plants. In SDS-polyacrylamide gel electrophoresis analysis without 2-mercaptoethanol treatment, S-1
shows a single band with a molecular weight of approximately 2.4×10 4 , whereas 2-mercaptoethanol-treated S-1
Electrophoretic analysis of the sample gave a single band at a position corresponding to a molecular weight of approximately 1.2×10 4 . This shows that the S-1 molecule, which has a molecular weight of approximately 2.4×10 4 , is composed of S--S bonds from two γ-subunits, each of which has a molecular weight of approximately 1.2×10 4 . It was confirmed that alloctin A and alloctin B are glycoproteins because the ninhydrin reaction was positive, and the neutral sugar color reaction, for example, the Moritschille-Pearl reaction, was positive, and in amino acid analysis, both alloctin A and alloctin B were confirmed to be glycoproteins. N-
Acetylglucosamine was proven. From the quantitative analysis results, P-1, P-2 and S-1
It was confirmed that sugars constituted 24.9%, 18.3%, and 50% or more, respectively. Therefore, the alloctin A of the present invention has a protein to sugar ratio of approximately 8:2 (weight).
It can be seen that it is a glycoprotein. The following amino acid analysis experiment results show that alloctin A contains large amounts of acidic amino acids such as aspartic acid and glutamic acid as constituent amino acids. Amino acid analysis: P-1 (β), P-2 (αβ) and S-1 (γ
Table 2 shows the amino acid composition of 2 ). Tryptophan was not quantified. It is characterized by a high content of acidic amino acids such as aspartic acid and glutamic acid, and a low proportion of methionine and histidine.
【表】
SDS−ポリアクリルアミド電気泳動から計算さ
れるβの分子量は10500である。一方、アミノ酸
分析によつて得られた分析値は表2のようであ
る。今βの最小構成アミノ酸であるメチオニンと
ヒスチジンの個数を1とすると他のアミノ酸の個
数は表2の括弧内の整数値となり、この整数値と
各アミノ酸の分子量とから計算されるβの分子量
は9392となり略々10500と一致しこのアミノ酸の
整数値及び、分子量10500は正しいといえる。同
様にしてP−2のSDS−ポリアクリルアミド電気
泳動によつて計算される分子量18000、メチオン
を1として得られた各アミノ酸の個数とその分子
量から計算されるP−2の分子量は17038となり
よく一致する。
このようにして得られたアミノ酸組成におい
て、α、β共に2個づゝの半シスチンを一分子内
に有している。これがS−S結合によつて結合
し、P−2(αβ)を作るものと理解出来る。
なお、上記分析実験において、試料は真空密封
の管内で蒸留HCIを用い110℃、20時間加水分解
した。加水分解物のアミノ酸含量はスパツクマン
等の方法(Spackman、D.H.、Stein、W.H.、
and moore、S.(1958)Anal.Chem.30、1190−
1206)で日立アミノサンアナライザー(KLA−
3B)で分析計算した。システインとシスチンは
リユー等の方法(Liu、T.Y.、and Inglis A.S.、
“Methods in Enzymologry”ed、by Hirs、C.
H.W.、and TimaSkeff、S.N.、Acad、Press、
New York、New York、25、P.55、1972年)に
よるS−スルホシステインとして分析した。
中性糖の総量はオルシノール−硫酸法
(Winzler、R.J.、“Method of Biochemical
Analysis”ed.by Glick、D.、Interscience、
New York、New York、Vol、、P.279、1956
年)により求めた。
以上の実験はすべてのアミノ酸について分析し
たものでないので必ずしも正確ではないが、他の
結果と矛盾なく説明でき、この値は与えられた整
数値の10%程度の整数値をプラスマイナスする誤
差範囲内にあるものと考えられる。
オークタロニーテスト:
P−1、P−2及びS−1の同定のために二つ
の抗血清、抗血清#513と抗血清#533を用いてオ
ークタロニーテストを行つた。
図5aは抗血清#513を使用したオークタロニ
ー免疫拡散ゲルのパターン図であり、中心の穴:
抗血清#513、穴1:P−1(1mg/ml)、穴2:
P−2(1mg/ml)、穴3:S−1(1mg/ml)、
穴4:S−2(1mg/ml)である。
P−1とP−2の沈降線は、共に互いに融合し
ている。S−1もS−2も沈降線は検出されなか
つた。すなわち抗血清#513はP−1、P−2と
は反応するがS−1とは反応しない。
図5bは抗血清#533を使用したオークタロニ
ー免疫拡散ゲルのパターン図であり、中心の穴:
抗血清#533、穴1:P−1(1mg/ml)、穴2:
P−2(1mg/ml)、穴3:S−1(1mg/ml)、
穴4:S−2(1mg/ml)
P−1とP−2の沈降線は完全に融合している
が、S−1の沈降線はP−2のそれにスパーアウ
トしている。
S−2については沈降線は検出されなかつた。
すなわち抗血清#533はP−1、P−2及びS−
1と反応した。
これらの結果からP−1とP−2は共通の抗原
性を有し、これはS−1のものとは異なることが
わかる。
なお、一つの抗血清はAS−40に対するラビツ
トで作り、もう一つの抗血清は、アガロースゲル
平板でのAS−40と正常ラビツト血清との間で形
成された沈降線に対するラビツトで作つた。ラビ
ツトは2か月間1週間毎にほぼ1mgのAS−40の
エマルジヨンと生理食塩水でそれらを洗浄した後
の沈降線をカツトアウトするエマルジヨンとを投
与した。両方のエマルジヨンは完全フロインド
アドジユーバンド(極東製薬(株)製)を含んでい
る。得られた抗血清はそれぞれ抗−AS−40(抗
血清#533)及び抗−PL(抗血清#513)とし
た。なお、免疫電気泳動法はヒルシフエルドの方
法(Hirschfeld、J.(1960)Sci.Tools、7、
1825)により、又免疫拡散法はオークタロニー法
(Ouchterlony、O.(1953)Acta Path.MiCrobiol
Scand32、231−240)により実施した。
本発明のアロクチンAが赤血球凝集活性を有し
ていることは次の試験により確かめた。
赤血球凝集活性試験:
人、羊、ウサギ等の赤血球標品をP−2とS−
1は凝集せしめ、人のシステムにおける赤血球凝
集活性テストでA−B−O血液型特異性を示さな
かつた。主な実験は人赤血球を用いて行われた。
P−2、P−1は赤血球を0.1%トリプシンで処
理するとほぼ5倍にその凝集性を増大せしめた。
上記トリプシン処理人赤血球に対する最少赤血球
凝集量を表1に示してある。
S−1は強い赤血球凝集活性を示し、P−2は
S−1のほぼ四分の一の赤血球凝集活性を示し
た。P−1と、P−2のサブユニツトβは赤血球
凝集活性を示さなかつた。
赤血球凝集タイトレーシヨンはマイクロタイタ
ーイクイプメント(Cooke Laf.Prod.、
Virginia、米国)で2%生理食塩水の2%赤血球
サスペンジヨンを用いて実施された。0.14MNaCl
を含む0.01M燐酸緩衝液に溶かした試料(1.0
mg/ml)を段階的に倍数稀釈した。60分のインキ
ユベーシヨン後、凝集の程度は肉眼で見てわかる
程度に上昇した。タイター価をタイマー/mg蛋白
として測定した。
本発明のアロクチンAが腫瘍細胞凝集活性を有
することは下記の実験より確かめた。
一定濃度のP−2をトリプシン処理をしたヒト
一定数(1×105)赤血球に加えたときの凝集を
(+)とした場合、肉眼的及び顕微鏡下で判定し
た各細胞の凝集価、
P−2 S−1
ヒト赤血球 〓 〓
Mol+4B 〓 〓
P3HR−1 〓 〓
HNG−100 〓 〓
NC−37 〓 〓
エーリツヒ腹水肝癌 〓 〓
AH−130 〃 〓 〓
本発明のアロクチンAがリンパ球幼若化作用を
有することは次の実験で確かめた。
リンパ球幼若化作用:
純粋な人リンパ球の調製はほぼ川口等の方法
(Kawaguchi、T.、Matsumoto、I.、and
Osawa、T.(1973)J.Biol.Chem.249、2786−
2792)によつた。
人静脈血液をヘパリンで処理済みのシリンジに
入れ、ヘパライズドされた血液はグラスシリンダ
ーに移され、赤血球を底の方へ沈めた。白血球に
豊んだ血漿をとり出し、ガラス製遠沈管中次の溶
液の同量の上にのせた。
9.1gのフイコル(フアルマシア社製)
25mlのウログラフイン液(60%、シエーリング社
製)
125mlの2回蒸留した水
400gで20分間遠心分離を行つた。
血清層とそのウログラフイン−フイコル層との
間にある白インターフエース層はアスピレーシヨ
ンで除去した。この層中のリンパ球の平均の割合
は98%以上であり、バイアビリテイはトリパンブ
ルーエキスクルージヨンテストにより90%と100
%の間であることがわかつた。リンパ球はその後
0.25%のボーバイン シーラムアルブミンの
0.15M NaCl−5M燐酸緩衝液(PH=7)で洗浄し
リンパ球幼若化試験のために用いた。
リンパ球幼若化活性の測定法は次のように行つ
た。
形態学上の試験ではギムザ染色した標本からト
ランスフオームした細胞の百分率を、試験標本当
りほぼ1000個の細胞を数えて、計算することによ
り行つた。
〔3H〕チミジンのとりこみ実験では、各試験
管に1×106のリンパ球を入れ〔3H〕チミジン
(2.0μC、ラジオケミカルセンター、英国)を加
え、更に試料(P−1、P−2、S−1等)を加
え60時間インキユベートした。そして細胞を集
め、4℃の等張燐酸緩衝液(PH7.2)で3回洗滌
した。その後、1.5mlの冷却した5%TCA(トリ
クロル酢酸)次いで2mlの冷却したメタノールを
細胞ペレツトに加えた後、キヤリヤーの蛋白とし
て3%ボーバインシーラムアルブミン(BSA)
の一滴を加えた。沈殿物を“Manifold”Multiple
サンプルコレクター(Millipore)中のメンブ
ラン(CF/C2.5cm;ワツトマン社製)の上で洗
浄した。メンブランは乾燥後シンチレーシヨンバ
イアルに入れた。0.3mlのソルビライザー
(Soluene TM 100、Packard)を加えて37℃のイ
ンキユベーシヨンまたは55℃の2時間のインキユ
ベーシヨン後、5mlのシンチレーシヨン液(5g
PPOと0.1gPOPOP/ トルエン)を各バイア
ルに加えた。バイアルは4℃一夜保ち、次いでベ
ツクマンLS−200B液体シンチレーシヨンカウン
ターで計算した。
人リンパ球のP−2及び酸性Pptを加えた培養
においては、形態学的にトランスフオームした形
体をもつ大きなリンパ球が、他の画分、P−1、
S−1及び無添加で培養した細胞の培養系と比較
して、多かつた。
おおよそ1000の細胞を数えた場合、約70%のリ
ンパ球が72時間の培養後トランスフオームしてい
るのが観察された。このトランスフオームの率は
ほとんど陽性対照として使用されたPHA−Wと
同じであつた。
供試幼若化物質の機能を〔3H〕チミジンのと
りこみ実験で示すためにリンパ球を酸性Ppt、P
−1、P−2、S−1、S−2等の標品の各量で
処理した。
表1からわかるように、リンパ球幼若化活性は
酸性PptとP−2の両方に検出されたが、P−
1、S−1及びS−2には見出されなかつた。
本発明のアロクチンAがリンパ球膜流動性促進
作用を有することは次の実験より確かめた。
P−2とFITC(Fluorecene.iso thiocyanate)
を結合し、次の細胞中で37℃5分 10分30分の
Incubatを行う。
patch−cap Formationを螢光顕微鏡下で観察
及び写真撮影を行つた。[Table] The molecular weight of β calculated from SDS-polyacrylamide electrophoresis is 10,500. On the other hand, the analytical values obtained by amino acid analysis are as shown in Table 2. Now, if the number of methionine and histidine, which are the minimum constituent amino acids of β, is 1, the number of other amino acids is the integer value in parentheses in Table 2, and the molecular weight of β calculated from this integer value and the molecular weight of each amino acid is 9392, which roughly matches 10500, and it can be said that the integer value of this amino acid and the molecular weight of 10500 are correct. Similarly, the molecular weight of P-2 calculated by SDS-polyacrylamide electrophoresis is 18,000, and the molecular weight of P-2 calculated from the number of each amino acid obtained with methion as 1 and its molecular weight is 17,038, which is a good match. do. In the amino acid composition thus obtained, both α and β have two half-cystines in one molecule. It can be understood that this is combined through an S-S bond to form P-2 (αβ). In the above analysis experiment, the sample was hydrolyzed using distilled HCI in a vacuum-sealed tube at 110°C for 20 hours. The amino acid content of the hydrolyzate was determined by the method of Spackman et al. (Spackman, DH, Stein, WH,
and moore, S. (1958) Anal.Chem. 30 , 1190−
1206) and Hitachi Aminosan Analyzer (KLA-
3B) was analyzed and calculated. Cysteine and cystine were obtained by the method of Liu et al. (Liu, TY, and Inglis AS,
“Methods in Enzymologry” ed, by Hirs, C.
HW, and TimaSkeff, SN, Acad, Press;
New York, New York, 25, P. 55, 1972). The total amount of neutral sugars was determined using the orcinol-sulfuric acid method (Winzler, RJ, “Method of Biochemical
Analysis”ed. by Glick, D., Interscience,
New York, New York, Vol., P.279, 1956
(year). The above experiment is not necessarily accurate as it did not analyze all amino acids, but it can be explained consistently with other results, and this value is within the error range of plus or minus an integer value of about 10% of the given integer value. It is thought that there is. Ouchterlony test: Ouchterlony test was performed using two antisera, antiserum #513 and antiserum #533, for the identification of P-1, P-2 and S-1. Figure 5a shows the pattern of Ouchterlony immunodiffusion gel using antiserum #513, with a hole in the center:
Antiserum #513, hole 1: P-1 (1 mg/ml), hole 2:
P-2 (1 mg/ml), hole 3: S-1 (1 mg/ml),
Hole 4: S-2 (1 mg/ml). The P-1 and P-2 sedimentation lines are both fused into each other. No sedimentation line was detected in either S-1 or S-2. That is, antiserum #513 reacts with P-1 and P-2 but does not react with S-1. Figure 5b shows the pattern of Ouchterlony immunodiffusion gel using antiserum #533, with a hole in the center:
Antiserum #533, hole 1: P-1 (1 mg/ml), hole 2:
P-2 (1 mg/ml), hole 3: S-1 (1 mg/ml),
Hole 4: S-2 (1 mg/ml) The sedimentation lines of P-1 and P-2 are completely fused, but the sedimentation line of S-1 is spurred out from that of P-2. No sedimentation line was detected for S-2.
That is, antiserum #533 is P-1, P-2 and S-
1 reacted. These results show that P-1 and P-2 have common antigenicity, which is different from that of S-1. One antiserum was made in rabbits against AS-40, and the other antiserum was made in rabbits against the sedimentation line formed between AS-40 and normal rabbit serum on an agarose gel plate. Rabbits were administered approximately 1 mg of AS-40 emulsion every week for two months and an emulsion that cut out the sediment lines after washing them with saline. Both emulsions are completely Freund
Contains Adju Band (manufactured by Kyokuto Pharmaceutical Co., Ltd.). The obtained antisera were designated as anti-AS-40 (antiserum #533) and anti-PL (antiserum #513), respectively. The immunoelectrophoresis method is the method of Hirschfeld (Hirschfeld, J. (1960) Sci.Tools, 7 ,
1825), and the immunodiffusion method is the Ouchterlony method (Ouchterlony, O. (1953) Acta Path.MiCrobiol
Scand 32 , 231-240). It was confirmed by the following test that alloctin A of the present invention has hemagglutinating activity. Hemagglutination activity test: Red blood cell specimens from humans, sheep, rabbits, etc. are tested in P-2 and S-
1 agglutinated and showed no A-BO-O blood group specificity in the hemagglutination activity test in human systems. The main experiments were conducted using human red blood cells.
When red blood cells were treated with 0.1% trypsin, P-2 and P-1 increased their agglutination by approximately five times.
The minimum amount of red blood cell aggregation for the trypsin-treated human red blood cells is shown in Table 1. S-1 showed strong hemagglutination activity, and P-2 showed approximately one-fourth the hemagglutination activity of S-1. Subunit β of P-1 and P-2 did not show hemagglutination activity. Hemagglutination titration is performed using microtiter equipment (Cooke Laf.Prod.,
Virginia, USA) using a 2% red blood cell suspension in 2% saline. 0.14MNaCl
Sample dissolved in 0.01M phosphate buffer containing (1.0
mg/ml) were diluted stepwise. After 60 minutes of incubation, the degree of aggregation increased to a level that was visible to the naked eye. Titer values were measured as timer/mg protein. It was confirmed through the following experiment that alloctin A of the present invention has tumor cell aggregation activity. If the agglutination when a certain concentration of P-2 is added to a certain number (1 x 105 ) of human red blood cells treated with trypsin is defined as (+), the agglutination value of each cell determined visually and under a microscope, P -2 S-1 Human red blood cells 〓 〓 Mol+4B 〓 〓 〓 P3HR-1 〓 〓 HNG-100 〓 〓 〓 NC-37 〓 〓 Ehritzch ascites liver cancer 〓 〓 AH-130 〃 〓 〓 Alloctin A of the present invention has a lymphocyte inducing effect This was confirmed in the following experiment. Lymphocyte blastogenesis: Pure human lymphocytes are almost always prepared by the method of Kawaguchi et al. (Kawaguchi, T., Matsumoto, I., and
Osawa, T. (1973) J.Biol.Chem. 249 , 2786−
2792). Human venous blood was placed in a heparinized syringe, and the heparinized blood was transferred to a glass cylinder, allowing the red blood cells to sink to the bottom. The leukocyte-rich plasma was removed and placed over an equal volume of the following solution in a glass centrifuge tube. 9.1 g of Ficoll (manufactured by Pharmacia), 25 ml of urographine solution (60%, manufactured by Schering), 125 ml of double-distilled water, centrifuged for 20 minutes with 400 g of water. The white interface layer between the serum layer and its urographine-ficoll layer was removed by aspiration. The average percentage of lymphocytes in this layer is over 98%, and the viability is 90% and 100% by trypan blue exclusion test.
It was found that it was between %. Lymphocytes then
0.25% Bovine Serum Albumin
The cells were washed with 0.15M NaCl-5M phosphate buffer (PH=7) and used for a lymphocyte regeneration test. The lymphocyte blastogenesis activity was measured as follows. Morphological tests were performed by calculating the percentage of transformed cells from Giemsa-stained specimens by counting approximately 1000 cells per test specimen. In the [ 3 H] thymidine uptake experiment, 1 × 10 6 lymphocytes were placed in each test tube, [ 3 H] thymidine (2.0 μC, Radiochemical Center, UK) was added, and samples (P-1, P- 2, S-1, etc.) and incubated for 60 hours. The cells were then collected and washed three times with isotonic phosphate buffer (PH7.2) at 4°C. Then, 1.5 ml of chilled 5% TCA (trichloroacetic acid) followed by 2 ml of chilled methanol was added to the cell pellet, followed by 3% bovine serum albumin (BSA) as the carrier protein.
Added a drop of. Precipitate “Manifold”Multiple
It was washed on a membrane (CF/C 2.5 cm; Watmann) in a sample collector (Millipore). After drying, the membrane was placed in a scintillation vial. After incubation at 37°C with addition of 0.3 ml of solbilizer (Soluene TM 100, Packard) or 2 h incubation at 55°C, 5 ml of scintillation solution (5 g
PPO and 0.1 g POPOP/toluene) were added to each vial. Vials were kept at 4°C overnight and then counted on a Beckman LS-200B liquid scintillation counter. In culture of human lymphocytes with P-2 and acidic Ppt, large lymphocytes with morphologically transformed features were found in other fractions, P-1,
Compared to the culture system of S-1 and cells cultured without additives, the number of cells was increased. When approximately 1000 cells were counted, approximately 70% of the lymphocytes were observed to be transformed after 72 hours of culture. This rate of transformation was almost the same as PHA-W, which was used as a positive control. In order to demonstrate the function of the rejuvenating substance under test in a [ 3 H]thymidine incorporation experiment, lymphocytes were incubated with acidic Ppt and Ppt.
-1, P-2, S-1, S-2, etc., in different amounts. As can be seen from Table 1, lymphocyte priming activity was detected in both acidic Ppt and P-2, but P-
1, S-1 and S-2. It was confirmed through the following experiment that alloctin A of the present invention has an effect of promoting lymphocyte membrane fluidity. P-2 and FITC (Fluorecene.iso thiocyanate)
Next, in the cells at 37℃ for 5 minutes, 10 minutes, and 30 minutes.
Perform Incubat. The patch-cap Formation was observed and photographed under a fluorescence microscope.
【表】
本発明のアロクチンAが血清蛋白の或る種蛋白
と反応しアガロース平板上で沈降線を形成する作
用を有することは次の実験より確かめた。
血清蛋白との反応性試験:
アロエの粗抽出物の反応性をゲル拡散テスト
(オークタロニーテスト)により各種動物(人、
ウサギ、山羊、犬、猫、馬、豚、ラツト、胎児ラ
ツト、牛、胎児牛、へび、スツポン)の血清に対
して試験した。
これら血清のうち10個の血清、及び卵黄はオー
クタロニーテスト反応陽性を示した。
アロエの抽出物P−2は哺乳動物の血清のみな
らず、卵黄、魚、両性類、爬虫類の血清とも反応
した。すべての試料のなかで卵白のみが反応しな
かつた。
さらにほとんどすべての血清及び卵黄について
二つ以上の沈降線が検出できた。
P−1、P−2、S−1及びS−2について、
上記と同じ実験を行つた。
図5cはP−2と免疫していない動物の血清蛋
白との免疫拡散平板による反応結果のパターン図
である。
中心穴、正常ウサギ血清;穴1、P−1(1
mg/ml);穴2、P−2(1mg/ml);穴3、S
−1(1mg/ml);穴4、S−2(1mg/ml)。
P−2と人血清蛋白間の沈降反応を示す二つの
沈降線が観察される。すなわち、P−2のみ人血
清蛋白と反応し、二本の沈降線が検出された。
どの種類の血清蛋白がP−2と反応するかを決
定するために人血清を用いて免疫電気泳動を行つ
た。
図5dは人血清のα2−マクログロブリンの免
疫電気泳動パターン図である。ベロナール緩衝液
(PH=8.6、μ=0.05)中で1.4%アガロースを用い
て行つた。右が陽極であり、左が陰極である。沈
降線はウサギ抗−人血清(上部)、ウサギ抗−人
α2−マクログロブリン(下部)、及びP−2
(中部、矢印)に対して形成された。免疫電気泳
動パターンによるとP−2(矢印)に対する人血
清蛋白の沈降線の電気的移動度は完全にα2−マ
クログロブリンのそれと一致していることがわか
る。
図は上から下へ;穴1と2、人血清;溝aウサ
ギ抗−人血清;溝b、0.05M燐酸緩衝液に溶かし
たP−2溶液(300μg/ml);溝c、ウサギ抗
−α2−マクログロブリン。すなわち、α2−マ
クログロブリンはP−2と反応した血清蛋白の一
つであつた。(図5d参照)。
本発明のアロクチンAが補体第三成分(C3成
分)活性化作用を有することは次の試験により確
かめた。
P−2による血清補体成分(補体第三成分、
C3)活性化試験:
C3成分又はC3プロアクチベーターが活性化さ
れるとき、免疫電気泳動移動度に変化がみられ
C3成分(β1A/β1C)がβ領域へ移動する。C3
プロアクチベーターの免疫沈降線はアガロース平
板電気泳動におけるβ領域にみられ、またこれが
活性化されるとγ領域に移動する。
図5eと5fはP−2を1時間32℃でインキユ
ベートした人血清のC3成分とC3プロアクチベー
ターの免疫電気泳動移動度を示す。
図5eは、P−2を加えインキユベートした人
血清中のC3の免疫電気泳動のパターン図であ
る。試験方法は本実験においては右が陰極、左が
陽極とし、それ以外は図5dで記載したと同様の
方法で行つた。沈降反応はウサギ抗−人C3(β
1C/β1A)血清に対して行つた。記載の穴の
各々は人血清1mlと300μg/mlP−2溶液1ml
(穴1)、と0.85%生理食塩水(穴2)より成る試
料5μを含む。
図5fはP−2を加えインキユベートした人血
清中のC3プロアクチベーターの免疫電気泳動の
パターン図である。図5eで述べたと同様の方法
で実験を行つた。沈降反応はウサギ抗−人C3プ
ロアクチベーターに対して行われた。穴1,2は
それぞれ図5eにおいて穴1,2において記載し
たと同じ試料を含む。
P−2で前処理した人血清の場合は抗−人C3
プロアクテイベーター(ウサギ)に対する沈降線
がγ−領域に見られた。P−2で前処理しない対
照血清においては、沈降線はβ−領域にのみ見ら
れた。抗−人C3(ウサギ)に対する沈降線はα
−領域に見られた。沈降線は対照血清補体成分の
ためのβ−領域に見られた。
補体系はClassical pathway又はalternative
pathwayのいずれかを経由して活性化される。そ
して、Mg++のみがalternative pathwayに必要で
あり、一方Mg++とCa++の両方はclassical
pathwayにとつて必須であることは知られてい
る。
P−2は補体系に関しclassical pathwyあるい
はalternative pathwayを経由して活性化される
のか次の実験により決めた。
新鮮人血清0.9mlへP−2けんだく液(1mg/
ml)0.1mlを加えた。混合物を37℃1時間反応さ
せた後、冷却下に遠心分離(5000回転、30分間)
操作を行つた。
補体活性を試験するため上清液を用いて免疫電
気泳動分析を行つた。EGTAの存在下にコンバー
トしたC3プロアクチベーターの沈降線はγ領域
に見られた一方、EDTAの存在下で実験を行つた
ものはγ領域に見られなかつた。また補体成分の
活性化は温度にも依存していた。これらの結果か
ら、P−2による補体成分の活性化はalternative
pathwayを経由して起つていることがわかる。
本発明のアロクチンAが強い制癌活性を有して
いることは実の実験により確かめた。
制癌活性試験:
制癌活性試験のために、約100g体重のドンリ
ユーラツトを用いた。
生後30〜40日のラツトへ5×103〜2×106細胞
の腹腔内移植後のAH−130細胞の癌原性を図6
に示した。すべての動物は8〜27日間で癌のため
死亡した。
植継後7日経過したAH−130癌細胞、0.5ml
(5×103個の癌細胞を含む)の腹水をラツトへ腹
腔内に移植した。癌細胞移植の前後の異つた各時
間に投与したアロエ抽出物質の癌成長に対する影
響を試験した。結果を図7に示した。
a:ラツト酸性Pptの2mg(2mg蛋白)/ラツ
ト/日を毎日7時間腹腔内へ投与した後、5×
103AH−130細胞を酸性Pptの最後の投与日後
7日後に移植した。
b:対照。ラツトには何らアロエ抽出物は投与せ
ず5×103AH−130の細胞を移植した。
図7から、酸性Pptについて制癌活性があるこ
とがわかる。さらに検討した結果P−1とP−2
の間ではP−2のみに制癌活性があることを確認
した。
次に、癌細胞移植動物の生存時間に対応するP
−2の投与量を決定するための実験を行つた。
種々の量のP−2を5×103AH−130癌細胞移
植以前14〜7日の7日間毎日投与した。結果を80
日間すなわち癌で対照動物がすべて死亡後54日間
記録し、これを図8に示した。図8から、癌をも
たない生存動物数、すなわちP−2の制癌活性は
その投与量によつて変化する。各%値は三つの実
験からの25〜30ぴきのラツトについての平均値を
示してある。
さらに7日間毎日P−2の50μgを投与し、癌
細胞移植後120日間生存した10ぴきのラツトにつ
いて再度1×105AH−130細胞を移植した実験で
は癌はすべてのラツトについて完全に退縮した。
一方、JCL−1CRマウス(体重約30g)雄雌各
5匹を一群として、これにザルコーマ180を腹水
型でメインテインしたものをマウスの右肩に皮下
移植(2×105細胞)し固形腫瘍として実験を行
つた。ザルコーマ180移植後より毎日アロクチン
A30γ/1匹(食塩により等張としたリン酸緩衝
液、PH7.2に溶解して使用)を2週間投与したと
ころ、60日後のinhibition ratio(腫瘍阻止率)は
80%であり、また10匹中2匹で腫瘍が完全に退縮
していた。
本発明のアロエ抽出物、アロクチンAは無毒で
あるからこれにより癌を完全に退縮せしめた後特
に処置する必要がない。
上記実験結果から、特にアロクチンAの制癌活
性は癌細胞に対して直接細胞毒効果ではなく、宿
主細胞を介した反応による免疫効果であることが
理解される。[Table] It was confirmed through the following experiment that alloctin A of the present invention has the effect of reacting with certain serum proteins to form a sedimentation line on an agarose plate. Reactivity test with serum proteins: The reactivity of the crude extract of aloe was tested in various animals (human, human,
Tested on serum from rabbits, goats, dogs, cats, horses, pigs, rats, fetal rats, cows, fetal cows, snakes, and stupa. Of these sera, 10 sera and egg yolk showed positive Ouchterlony test reactions. Aloe extract P-2 reacted not only with mammalian serum but also with egg yolk, fish, amphibian, and reptile serum. Of all the samples, only egg white did not react. Furthermore, two or more sedimentation lines were detected for almost all serum and egg yolks. Regarding P-1, P-2, S-1 and S-2,
The same experiment as above was performed. FIG. 5c is a pattern diagram of the reaction results of P-2 and serum proteins of non-immunized animals by immunodiffusion plate. Center hole, normal rabbit serum; hole 1, P-1 (1
mg/ml); Hole 2, P-2 (1 mg/ml); Hole 3, S
-1 (1 mg/ml); hole 4, S-2 (1 mg/ml). Two sedimentation lines are observed indicating a sedimentation reaction between P-2 and human serum proteins. That is, only P-2 reacted with human serum proteins, and two sedimentation lines were detected. Immunoelectrophoresis was performed using human serum to determine which types of serum proteins react with P-2. FIG. 5d is an immunoelectrophoretic pattern diagram of α 2 -macroglobulin in human serum. It was performed using 1.4% agarose in veronal buffer (PH=8.6, μ=0.05). The right side is the anode and the left side is the cathode. The sedimentation lines are rabbit anti-human serum (top), rabbit anti-human α2 -macroglobulin (bottom), and P-2.
(middle, arrow) formed against. The immunoelectrophoretic pattern shows that the electrical mobility of the human serum protein precipitation line for P-2 (arrow) completely matches that of α 2 -macroglobulin. Diagram from top to bottom: Holes 1 and 2, human serum; groove a, rabbit anti-human serum; groove b, P-2 solution (300 μg/ml) in 0.05M phosphate buffer; groove c, rabbit anti-human serum; α 2 -macroglobulin. That is, α 2 -macroglobulin was one of the serum proteins that reacted with P-2. (See Figure 5d). It was confirmed by the following test that alloctin A of the present invention has an activating effect on the third component of complement ( C3 component). Serum complement component (third complement component,
C3) Activation test: When the C3 component or C3 proactivator is activated, changes in immunoelectrophoretic mobility are observed.
The C3 component (β1A/β1C) moves to the β region. C3
The proactivator immunoprecipitation line is seen in the β region in agarose plate electrophoresis, and when activated, it migrates to the γ region. Figures 5e and 5f show the immunoelectrophoretic mobilities of the C3 component and C3 proactivator of human serum incubated with P-2 for 1 hour at 32°C. FIG. 5e is a pattern diagram of immunoelectrophoresis of C3 in human serum incubated with P-2. In this experiment, the test method was the same as that described in FIG. 5d except that the right side was the cathode and the left side was the anode. The precipitation reaction was performed using rabbit anti-human C3 (β
1C/β1A) serum. Each hole described contains 1 ml of human serum and 1 ml of 300 μg/ml P-2 solution.
(hole 1), and 0.85% saline (hole 2). FIG. 5f is an immunoelectrophoretic pattern diagram of C3 proactivator in human serum incubated with P-2. Experiments were performed in a similar manner as described in Figure 5e. Precipitation reactions were performed against rabbit anti-human C3 proactivator. Holes 1 and 2 contain the same samples as described in holes 1 and 2 in FIG. 5e, respectively. In the case of human serum pretreated with P-2, use anti-human C3.
A sedimentation line for the proactivator (rabbit) was seen in the γ-region. In control serum not pretreated with P-2, sedimentation lines were seen only in the β-region. The sedimentation line for anti-human C3 (rabbit) is α
- seen in the area. A sedimentation line was seen in the β-region for control serum complement components. Complement system is classical pathway or alternative
activated via either pathway. And only Mg ++ is required for the alternative pathway, while both Mg ++ and Ca ++ are required for the classical
It is known that it is essential for the pathway. The following experiment determined whether P-2 is activated via the classical pathway or alternative pathway regarding the complement system. P-2 suspension (1 mg/
ml) 0.1 ml was added. After reacting the mixture at 37℃ for 1 hour, centrifugation (5000 rpm, 30 minutes) under cooling.
I performed the operation. Immunoelectrophoretic analysis was performed using the supernatant to test complement activity. A sedimentation line for the C3 proactivator converted in the presence of EGTA was seen in the γ region, whereas no sedimentation line was seen in the γ region for the C3 proactivator converted in the presence of EDTA. Activation of complement components was also dependent on temperature. These results suggest that activation of complement components by P-2 is an alternative.
It can be seen that this occurs via a pathway. It was confirmed through actual experiments that alloctin A of the present invention has strong anticancer activity. Anticancer activity test: For the anticancer activity test, Dongli rats weighing about 100 g were used. Figure 6 shows the carcinogenicity of AH-130 cells after intraperitoneal transplantation of 5 x 103 to 2 x 106 cells into rats 30 to 40 days old.
It was shown to. All animals died of cancer between 8 and 27 days. AH-130 cancer cells 7 days after transplantation, 0.5ml
Ascites (containing 5 x 103 cancer cells) was intraperitoneally transplanted into rats. The effects of aloe extracts administered at different times before and after cancer cell transplantation on cancer growth were tested. The results are shown in FIG. a: After intraperitoneal administration of 2 mg (2 mg protein)/rat/day of rat acidic Ppt for 7 hours daily, 5x
10 3 AH-130 cells were transplanted 7 days after the last administration of acidic Ppt. b: control. Rats were transplanted with 5×10 3 AH-130 cells without administering any aloe extract. From FIG. 7, it can be seen that acidic Ppt has anticancer activity. Further examination results P-1 and P-2
Among them, only P-2 was confirmed to have anticancer activity. Next, P corresponding to the survival time of cancer cell-implanted animals
An experiment was conducted to determine the dosage of -2. Various amounts of P-2 were administered daily for 7 days, 14 to 7 days before transplantation of 5 x 103 AH-130 cancer cells. 80 results
Data were recorded for 54 days after the death of all control animals due to cancer, and are shown in Figure 8. From FIG. 8, the number of surviving cancer-free animals, that is, the anticancer activity of P-2 changes depending on the dose. Each percentage value represents the average value for 25-30 rats from three experiments. Furthermore, in an experiment in which 50 μg of P-2 was administered daily for 7 days, and 1 x 10 5 AH-130 cells were again transplanted to 10 rats that survived 120 days after cancer cell transplantation, the cancer completely regressed in all rats. . On the other hand, a group of 5 male and female JCL-1CR mice (weighing approximately 30 g) was subcutaneously implanted (2 x 10 5 cells) into the right shoulder of the mice with Sarcoma 180 maintained in the ascites form to form a solid tumor. I conducted an experiment as Alloctin daily after Sarcoma 180 transplant
When A30γ/1 animal (dissolved in phosphate buffer, pH 7.2 made isotonic with saline) was administered for 2 weeks, the inhibition ratio (tumor inhibition rate) after 60 days was
The tumor regression rate was 80%, and the tumor had completely regressed in 2 out of 10 animals. Since the aloe extract of the present invention, alloctin A, is non-toxic, no special treatment is required after the cancer is completely regressed. From the above experimental results, it is understood that the anticancer activity of alloctin A in particular is not a direct cytotoxic effect on cancer cells, but an immune effect due to a reaction mediated by host cells.
図1a〜c及び図2はアロクチンAの分離方法
の一実施例におけるゲルクロマトグラフイー溶出
パターン図であり、図3はアロクチンAに関する
SDS−ポリアクリルアミド・ゲル電気泳動パター
ン図であり、図4a,bはアロクチンAに関する
分子量測定結果を示したものであり、図5a〜c
はアロクチンAに関するオークタロニー免疫拡散
ゲルのパターン図であり、図5d〜fはアロクチ
ンAに関する免疫電気泳動パターン図である。図
6〜8はアロクチンAに関する制癌活性試験結果
を示したものである。
1a-c and FIG. 2 are gel chromatography elution pattern diagrams in an example of a method for separating alloctin A, and FIG.
Figures 4a and 4b are SDS-polyacrylamide gel electrophoresis pattern diagrams, and Figures 4a and 4b show the molecular weight measurement results for alloctin A, and Figures 5a to c
5 is a pattern diagram of an Ouchterlony immunodiffusion gel for alloctin A, and FIGS. 5d-f are immunoelectrophoresis patterns for alloctin A. Figures 6 to 8 show the results of anticancer activity tests regarding alloctin A.
Claims (1)
クチンA。 (1) 分子量 1.8×104 (2) 構造:蛋白と糖の比が約8対2(重量)であ
るグリコプロテイン (3) ソデイウムドデシルサルフエート存在下にお
けるポリアクリルアミド・ゲル電気泳動で単一
バンドを与え、これを2−メルカプトエタノー
ルによりS−S結合を切断した場合は二バンド
を与える。 (4) リンパ球幼若化作用及びリンパ球膜流動性促
進作用を有する。 (5) 赤血球及び腫瘍細胞凝集活性を有する。 (6) 血清蛋白の或る種蛋白と反応しアガロース平
板上で沈降線を形成する作用を有する。 (7) 補体第3成分活性化作用を有する。[Scope of Claims] Alloctin A which has the following properties and can be isolated from aloe vera. (1) Molecular weight: 1.8×10 4 (2) Structure: Glycoprotein with a protein to sugar ratio of approximately 8:2 (weight) One band is given, and when the S--S bond is cleaved with 2-mercaptoethanol, two bands are given. (4) It has a lymphocyte blastogenic effect and a lymphocyte membrane fluidity promoting effect. (5) Has red blood cell and tumor cell agglutination activity. (6) It has the effect of reacting with certain serum proteins to form sedimentation lines on an agarose plate. (7) Has a complement third component activation effect.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2040278A JPS54113413A (en) | 1978-02-25 | 1978-02-25 | Acrotin a |
DE7878101416T DE2862218D1 (en) | 1977-11-21 | 1978-11-20 | Glycoprotein isolated from aloe |
US05/961,864 US4225486A (en) | 1977-11-21 | 1978-11-20 | Aloctin A |
EP78101416A EP0002452B1 (en) | 1977-11-21 | 1978-11-20 | Glycoprotein isolated from aloe |
IT30011/78A IT1192589B (en) | 1977-11-21 | 1978-11-21 | ALOCTINA A |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2040278A JPS54113413A (en) | 1978-02-25 | 1978-02-25 | Acrotin a |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS54113413A JPS54113413A (en) | 1979-09-05 |
JPS625128B2 true JPS625128B2 (en) | 1987-02-03 |
Family
ID=12026020
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2040278A Granted JPS54113413A (en) | 1977-11-21 | 1978-02-25 | Acrotin a |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS54113413A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0269622U (en) * | 1988-11-15 | 1990-05-28 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08208678A (en) * | 1995-02-01 | 1996-08-13 | Senka:Kk | Substance (srt) existing in plant world has basic structure of life, its characteristic eliminates animal cancer (in vivo) and human cancer (in vitro) and it itself degrades naturally |
-
1978
- 1978-02-25 JP JP2040278A patent/JPS54113413A/en active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0269622U (en) * | 1988-11-15 | 1990-05-28 |
Also Published As
Publication number | Publication date |
---|---|
JPS54113413A (en) | 1979-09-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KICKHÖFEN et al. | Isolation and characterisation of γG type immunoglobulins from bovine serum and colostrum | |
Robbins et al. | Proteins associated with the thyroid hormones | |
Underdown et al. | Isolation and characterization of an allergen from short ragweed pollen | |
Suzuki et al. | Purification and characterization of two lectins from Aloe arborescens Mill | |
Pras et al. | Isolation of a non-collagenous reticulin component and its primary characterization | |
Bressan et al. | Isolation and characterization of a 115,000-dalton matrix-associated glycoprotein from chick aorta. | |
Shome et al. | Human and porcine thyrotropins: a comparison of electrophoretic and immunological properties with the bovine hormone | |
Dahl et al. | Heterogeneity of the glial fibrillary acidic protein in gliosed human brains | |
Annison et al. | Studies in immunochemistry. 10. The isolation and properties of Lewis (Lea) human blood-group substance | |
Intrator et al. | Purification, immunological and biochemical characterization of rat 28 kDa cholecalcin (cholecalciferol-induced calcium-binding proteins). Identity between renal and cerebellar cholecalcins | |
MORI | Antigenic structure of human gonadotropins: importance of protein moiety to the antigenic structure of human chorionic gonadotropin | |
Rifai et al. | Glomerular deposition of immune complexes prepared with monomeric or polymeric IgA. | |
Abraham et al. | Purification and properties of a human plasma endogenous modulator for the platelet tricyclic binding/serotonin transport complex | |
Marhaug et al. | Characterization of human amyloid-related protein SAA as a polymorphic protein: association with albumin and prealbumin in serum. | |
Cooper | Hemagglutinating 7 S Subunits of 19 S Cold Agglutinins | |
Tomasi et al. | Characterization and Immunochemical Localization of a Basic Protein from Pig Brain: II. Peptide Maps and Tissue-Specific Nuclear Localization | |
Brandtzaeg | Human secretory component—IV. Aggregation and fragmentation of of free secretory component | |
Stahmann et al. | Immunochemistry of Synthetic Polypeptides and Polypeptidyl Proteins: I. Qualitative Studies on the Modified Proteins | |
EP0002452B1 (en) | Glycoprotein isolated from aloe | |
Gonatas et al. | The significance of circulating and cell-bound antibodies in experimental allergic encephalomyelitis | |
JPS625128B2 (en) | ||
Beall et al. | Inhibition of the long-acting thyroid stimulator (LATS) by soluble thyroid fractions | |
Burton et al. | Progesterone-binding globulin from the serum of pregnant guinea pigs, a polydisperse glycoprotein | |
Carnegie et al. | Fractionation of encephalitogenic polypeptides from bovine spinal cord by gel filtration in phenol—acetic acid—water | |
Shochat et al. | Characterization of colon-specific antigen-p and isolation of immunologically active tryptic peptides. |