JPS625112A - Distance-detecting apparatus - Google Patents

Distance-detecting apparatus

Info

Publication number
JPS625112A
JPS625112A JP14243785A JP14243785A JPS625112A JP S625112 A JPS625112 A JP S625112A JP 14243785 A JP14243785 A JP 14243785A JP 14243785 A JP14243785 A JP 14243785A JP S625112 A JPS625112 A JP S625112A
Authority
JP
Japan
Prior art keywords
light
integration
signal
time
inverse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14243785A
Other languages
Japanese (ja)
Inventor
Koji Takahashi
宏爾 高橋
Masamichi Toyama
当山 正道
Akihiro Fujiwara
昭広 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP14243785A priority Critical patent/JPS625112A/en
Publication of JPS625112A publication Critical patent/JPS625112A/en
Pending legal-status Critical Current

Links

Landscapes

  • Automatic Focus Adjustment (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)

Abstract

PURPOSE:To reduce distance measuring time, by locating an inverse integral indicating means on the input side of an integrating means and performing integration of the input signal at the time projection of 2 beams of light and inverse integration at the non-projecting time respectively. CONSTITUTION:An inverse integration indicating means 22 allowing inverse integration of the inverse integration value of an integrating means 25 to be performed at the non-projecting time of a light-projecting means 1 is installed. This means 22 feeds out to the means 25 through a switch 24 summation signal introduced from a gain control circuit 20 during the glowing period of the means 1 and a constant intensity of current i during the non-glowing period. Thus, in the means 25, the integration of the summation signal is performed at the glowing time and inverse integration of the integrated value of the summation signal by the current i at the non-glowing time. Thus, by performing the inverse integration taking advantage of the glowing time, reduction of the distance measuring time is attained.

Description

【発明の詳細な説明】 (発明の利用分野) 本発明は、カメラ等の自動焦点制御装置などに用いられ
る距離検出装置、特に2種の信号な演算して測距情報を
得るアクティブ方式の距離検出装置の改良に関するもの
である。
Detailed Description of the Invention (Field of Application of the Invention) The present invention relates to a distance detection device used in an automatic focus control device of a camera, etc. This invention relates to improvements in detection devices.

(発明の背景) 第8〜10図に従来のこの種の距離検出装置を有する自
動焦点制御装置の一例を示す。第8図において、投光素
子1より投光された信号光は、投光レンズ2を通過し、
被写体3面で反射され、受光レンズ4を通って受光素子
5へ入射する。この受光素子5の受光面は第9図からも
わかるよ5に二つの受光部5a、5bK分割されており
、該受光部5 a + 5 bで光電変換され、出力さ
れる各信号に基づいて測距情報を得るもので、第8図実
線で示される如く被写体3からの反射光が受光部5aと
5bの中心にスポット光S(第9図参照)として入射す
る場合は、第9図(イ)のように受光部5 a * 5
 bでの各受光量はほぼ等しくなり、被写体が3′に示
される如く遠くに位置する場合は、第9図(ロ)のよう
に受光部5aでの受光量は多く、受光部5bでの受光量
は少なくなり、又被写体かぎに示される如く近くに位置
する場合は、第9図(ハ)のように逆に受光部5bでの
受光量が多く、受光部5aでの受光量は少なくなる。即
ち、第9図(イ)の様に受光部5aと5bの受光量がほ
ぼ等しい時には合焦、第9図(ロ)の様な時には前側ピ
ント、第一9図(ハ)の様な時には後側ピントと判断し
、前側ピント或いは後側ピントの場合には後述する撮影
レンズを移動させると同時に受光素子5を移動(第8図
矢印方向)させ、自動焦点制御を行う。
(Background of the Invention) FIGS. 8 to 10 show an example of an automatic focus control device having a conventional distance detection device of this type. In FIG. 8, the signal light projected from the light projecting element 1 passes through the light projecting lens 2,
The light is reflected by the object 3 surface, passes through the light receiving lens 4, and enters the light receiving element 5. As can be seen from FIG. 9, the light-receiving surface of this light-receiving element 5 is divided into two light-receiving sections 5a and 5bK, and based on each signal that is photoelectrically converted and output by the light-receiving section 5a + 5b, When the reflected light from the subject 3 enters the center of the light receiving parts 5a and 5b as a spot light S (see FIG. 9) as shown by the solid line in FIG. b) As shown in the photo-receiving section 5 a * 5
The amount of light received at each point b is approximately equal, and when the subject is located far away as shown in 3', the amount of light received at the light receiving section 5a is large and the amount of light received at the light receiving section 5b is large, as shown in Fig. 9 (b). The amount of light received is small, and when the subject is located close to the subject as shown in the key, the amount of light received at the light receiving section 5b is large and the amount of light received at the light receiving section 5a is small, as shown in Fig. 9 (c). Become. That is, when the amount of light received by the light receiving sections 5a and 5b is almost equal as shown in Fig. 9(a), the focus is on, as shown in Fig. 9(b), the front side is in focus, and as shown in Fig. 19(c), the focus is on the front side. It is determined that the focus is on the rear side, and if the focus is on the front side or the rear side, the photo-taking lens, which will be described later, is moved and at the same time the light receiving element 5 is moved (in the direction of the arrow in FIG. 8) to perform automatic focus control.

次に第10図を用いて自動焦点制御時の具体的な動作を
説明する。受光素子5は撮影レンズ6の移動と連動、即
ち駆動用モータ7の回転に連動してカム等を介して移動
するようになっており、該受光素子5を構成する受光部
5aと56の後段には、それぞれセンサアンプ8a、8
b1直流直流線去用のバイパスフィルタ9a。
Next, specific operations during automatic focus control will be explained using FIG. 10. The light-receiving element 5 moves in conjunction with the movement of the photographing lens 6, that is, in conjunction with the rotation of the drive motor 7, via a cam or the like. are sensor amplifiers 8a and 8, respectively.
b1 Bypass filter 9a for direct current removal.

9b、検波回路の役割をするアナログスイッチ10a、
10b及び積分回路11a、11bが接続される。マイ
クロコンピュータ12はffi動回路13を介して投光
素子1及び前記アナログスイッチ10a、10bヘパル
ス信号を出力しており、投光素子1はこのパルス信号に
従ってパルス発光し、アナログスイッチ10a、10b
は投光素子1が発光する期間のみオンしてバイパスフィ
ルタ9a、9bを介してセンサアンプ8a、8bより入
力する信号A、Bを積分回路11a、11bへ供給する
。積分回路11a。
9b, analog switch 10a serving as a detection circuit;
10b and integrating circuits 11a and 11b are connected. The microcomputer 12 outputs a pulse signal to the light emitting element 1 and the analog switches 10a, 10b via the FFI circuit 13, and the light emitting element 1 emits pulse light according to this pulse signal, and the analog switches 10a, 10b
is turned on only during the period when the light projecting element 1 emits light, and supplies the signals A and B input from the sensor amplifiers 8a and 8b to the integrating circuits 11a and 11b via the bypass filters 9a and 9b. Integrating circuit 11a.

11bへ入力した信号A、Bは該積分回路11a、11
bにより積分された後、それぞれ次段の加算回路14及
び減算回路15へ出力され、rA+BJ 、rA−BJ
成る演算がなされ、マイクロコンビエータ12へ送られ
る。スルト、マイクロコンピュータ12は、和信号(A
=+B)の積分値が例えば所定値隻に達したか否か、差
信号(A−B)の積分値が例えば閾値上込を越えたか否
かにより合焦、非合焦(前側ピント、後側ピント)の判
断、つまり和信号(A+B)が所定値V、に達した時点
で差信号(A−B)がまだ閾値上■を越えていない時は
合焦と判断し、逆に和信号(A+B)が所定値隻に達す
る前に差信号(A−B)が既に閾値上■を越えた時には
非合焦と判断して直ちに駆動用モータ7へ自動焦点制御
信号Nを出力し、撮影レンズ6及び受光素子5を任意の
方向に移動させ、受光部5aと5bにほぼ等しく被写体
からの反射光が入射するようになったら撮影レンズ6の
移動を停止、即ち自動焦点制御信号Nの出方を停止する
Signals A and B input to 11b are connected to the integration circuits 11a and 11.
After being integrated by b, they are output to the next-stage addition circuit 14 and subtraction circuit 15, respectively, and rA+BJ, rA-BJ
The calculation is performed and sent to the micro combinator 12. The microcomputer 12 outputs a sum signal (A
=+B) has reached a predetermined value, and whether or not the integral value of the difference signal (A-B) has exceeded a threshold value, for example, the focus can be determined as in-focus or out of focus (front side in focus, rear side in focus). In other words, when the sum signal (A+B) reaches the predetermined value V, and the difference signal (A-B) has not yet exceeded the threshold (■), it is determined that the focus is in focus, and conversely, the sum signal If the difference signal (A-B) already exceeds the threshold (■) before (A+B) reaches the predetermined value, it is determined that the focus is out of focus, and the automatic focus control signal N is immediately output to the drive motor 7, and the image is taken. When the lens 6 and the light-receiving element 5 are moved in an arbitrary direction, and the reflected light from the subject is almost equally incident on the light-receiving parts 5a and 5b, the movement of the photographing lens 6 is stopped, that is, the automatic focus control signal N is output. Stop the direction.

以上述べたように第10図従来例では、受光部5a、5
bからの信号A、Bを同時にそれぞれ積分し、これら二
つの積分値に基づいて測距情報を演算し、自動焦点制御
を行うような構成となっている。この為、信号Aを処理
する回路(センサアンプ8aから積分回路11aまで)
と信号Bを処理する回路(センサアンプ8bから積分回
路11bまで)の2系列が必要となり、回路規模が大き
くなると同時に、2系列の特性(ゲイン、オフセット電
圧)をそろえなければならないといった欠点があった。
As described above, in the conventional example shown in FIG.
The configuration is such that signals A and B from b are simultaneously integrated, distance measurement information is calculated based on these two integrated values, and automatic focus control is performed. For this reason, the circuit that processes signal A (from sensor amplifier 8a to integration circuit 11a)
and a circuit for processing signal B (from the sensor amplifier 8b to the integrating circuit 11b), which increases the circuit scale and has the disadvantage that the characteristics (gain, offset voltage) of the two series must be made the same. Ta.

そこで、本願出願人は、前述のような欠点を解消すべく
、時分割に信号A、Bを処理、つまり一方の信号、例え
ば信号Aのみをまず公知のミラー積分回路に【所定の1
.時間積分しく第11図参照)、次に和信号(A+B)
により逆積分する方式の装置を提案(特開昭60−68
19号など)している。しかしながら、該提案の装置に
おいては、回路規模が小さく、2系列の特性をそろえな
げればならないといった必要はなくなる反面、従来の2
某列タイプの装置に比べ、測距時間が長くなるといった
問題点を有している。
Therefore, in order to eliminate the above-mentioned drawbacks, the applicant of the present application has proposed that the signals A and B be processed in a time-division manner, that is, only one signal, for example, the signal A, is first sent to a known Miller integration circuit [predetermined 1
.. (see Figure 11 for time integration), then the sum signal (A+B)
proposed a device for inverse integration using
19 etc.). However, in the proposed device, the circuit scale is small and there is no need to match the characteristics of the two series.
This method has the problem that the distance measurement time is longer than that of a certain row type device.

(発明の目的) 本発明の目的は、測距時間を短縮することができる距離
検出装置を提供することである。
(Object of the Invention) An object of the present invention is to provide a distance detection device that can shorten distance measurement time.

(発明の特徴) 上記目的を達成するために、本発明は、投光手段の非投
光時に、積分手段により投光時に積分された積分値の逆
積分を行わせる逆積分指示手段を、積分手段の入力側に
設け、以て、前記投光手段の投光時には、受光手段から
入力する信号の積分を、非投光時には、その逆積分を、
それぞれ行うようにしたことを特徴とする特(発明の実
施例) 以下、本発明を図示の実施例に基づいて詳細に説明する
(Features of the Invention) In order to achieve the above object, the present invention provides an inverse integral instruction means that causes the integrating means to perform inverse integration of the integral value integrated when the light is emitted, when the light emitting means is not emitting light. is provided on the input side of the light emitting means, so that when the light emitting means emits light, the integral of the signal input from the light receiving means is obtained, and when the light emitting means does not emit light, the inverse integral thereof is calculated.
DESCRIPTION OF THE PREFERRED EMBODIMENTS (Embodiments of the Invention) The present invention will be described in detail below based on illustrated embodiments.

第1図は本発明の一実施例を示すブロック図である。第
10図と同じ部分は同一符号にて表す。16はマイクロ
コン、ビ為−夕17の出力端子O1よりハイレベルの信
号が入力することによりオンするアナログスイッチで、
該アナログスイッチ16がオンしている時は受光部5a
、5bの両方が被写体からの反射光を受光し、オフ時に
は受光部5aのみが受光することになる。
FIG. 1 is a block diagram showing one embodiment of the present invention. The same parts as in FIG. 10 are represented by the same symbols. 16 is an analog switch that is turned on when a high level signal is input from the output terminal O1 of the microcontroller and bit controller 17;
When the analog switch 16 is on, the light receiving section 5a
, 5b both receive the reflected light from the subject, and only the light receiving section 5a receives the light when it is off.

18はセンサアンプ、19は太陽光などの直流の成分を
とり除くバイパスフィルタ、20はインバータ21を介
して入力する信号に応じてその時入力する和信号(A十
B)又は信号Aのゲインをコントロールする、即ち出力
端子0.よりローレベルの信号が入力している時(この
場合は和信号(A+B)が入力している)にはそのまま
のレベルで次段へ出力し、逆にノ・イレベルの信号が入
力している時(この場合は信号Aが入力している)には
2倍のレベルにゲインアップして次段へ出力するゲイン
コントロール回路、22はマイクロコンピュータ17の
出力端子0゜から出力される投光制御信−号であるパル
ス信号に従ってその接触子が切り換わるスイッチ回路で
、ハイレベルの信号が入力している時には接点a側が、
ローレベルの信号が入力している時には接点す側が、そ
れぞれ接触子によって選択される。23は信号A、Bと
は逆極性の、例えば負の一定電流iを発生する定電流源
で、和信号(A十B)又は信号2人の積分値を逆積分す
る場合に用いられる。24はマイクロコンビ為−タ17
の端子0.よりハイレベルの信号が入力することにより
オンするアナログスイッチ、25は積分回路で、端子0
4より積分リセット信号が入力することによってリセッ
トする。26は積分出力が零に達した時で内部にパルス
をカウントするカウント部を有するマイクロコンビ2−
タ17ヘローレベルの信号を出カスるコンパレータであ
る。
18 is a sensor amplifier, 19 is a bypass filter that removes direct current components such as sunlight, and 20 is for controlling the gain of the sum signal (A + B) or signal A that is input at that time according to the signal that is input via the inverter 21. , that is, output terminal 0. When a lower level signal is input (in this case, the sum signal (A+B) is input), it is output to the next stage at the same level, and conversely, a no-level signal is input. (in this case, signal A is input), the gain control circuit increases the gain to twice the level and outputs it to the next stage, and 22 is a light projection control circuit that is output from the output terminal 0° of the microcomputer 17. This is a switch circuit whose contacts switch according to a pulse signal, and when a high level signal is input, the contact a side is
When a low level signal is input, the contact side is selected by each contactor. Reference numeral 23 denotes a constant current source that generates, for example, a negative constant current i having a polarity opposite to that of the signals A and B, and is used when inversely integrating the sum signal (A + B) or the integral value of the two signals. 24 is microcombi data 17
terminal 0. An analog switch that turns on when a higher level signal is input, 25 is an integrating circuit, and terminal 0
It is reset by inputting the integral reset signal from 4. Reference numeral 26 denotes a microcombination unit 2-2, which has a counting section that counts pulses when the integral output reaches zero.
This is a comparator that outputs a signal at a low level.

次に第2.3図を用いて動作の説明を行う。Next, the operation will be explained using FIG. 2.3.

先ず、マイクロコンピータ17の出力端子0゜より1時
間(第2図参照)ハイレベルの信号が出力されることか
ら、この間アナログスイッチ16がオン状態となる。こ
のようにアナログスイッチ16がオンすること(より、
投光素子1より投光され被写体から戻ってくる反射光は
受光部5a、5bの両方にて受光され、センサアンプ1
8より和信号(A+B)として出力され、バイパスフィ
ルタ19及びゲインコントロール回路20を介してスイ
ッチ回路22へ入力する。
First, a high level signal is output from the output terminal 0° of the microcomputer 17 for one hour (see FIG. 2), and the analog switch 16 is turned on during this period. In this way, the analog switch 16 turns on (from
The reflected light emitted from the light emitting element 1 and returned from the subject is received by both the light receiving parts 5a and 5b, and is then sent to the sensor amplifier 1.
8 as a sum signal (A+B), and input to the switch circuit 22 via the bypass filter 19 and gain control circuit 20.

スイッチ回路22は、前述したようにマイクロコンピュ
ータ17の出力端子O1より出力されるパルス信号(第
2.3図参照)に同期して、即ちハイレベルの信号が入
力している時(発光時)には接点a側を、ローレベルの
信号が入力している時(非発光時)には接点す側を、そ
の接触子が選択するものであるため、投光素子1が発光
している期間は前記ゲインコントロール回路20より入
力する相信号(A+B)を、発光していない期間は負の
一定電流iを、アナログスイッチ24を介して積分回路
25へ出力することになる。尚、この時マイクロコンピ
ュータ17の出力端子O3よりハイレベルの信号が出力
されているため、アナログスイッチ24はオンしている
(第3図参照)。従って、積分回路25では、第3図に
示されるように、発光時には和信号(A−+ B )t
の積分がなされ、非発光時には負の一定電流iにて前記
和信号(A+B)1の積分値の逆積分がなされる。この
逆積分はコンパレータ26よりローレベルの信号が出力
されるまでの間貸われる。即ちこのようにローレベルの
信号が出力されることにより、マイクロコンピュータ1
7の出力端子O8から出力されているハイレベルの信号
がローレベルの信号に反転し、アナログスイッチ24が
オフするからである。
As described above, the switch circuit 22 operates in synchronization with the pulse signal (see Figure 2.3) output from the output terminal O1 of the microcomputer 17, that is, when a high-level signal is input (during light emission). Since the contact selects the contact a side when a low level signal is input (when not emitting light), the contact side selects the contact a side when a low level signal is input (when not emitting light), so the period when light emitting element 1 is emitting light outputs the phase signal (A+B) inputted from the gain control circuit 20, and a constant negative current i during the period when no light is emitted, to the integration circuit 25 via the analog switch 24. At this time, since a high level signal is being output from the output terminal O3 of the microcomputer 17, the analog switch 24 is on (see FIG. 3). Therefore, in the integrating circuit 25, as shown in FIG.
is integrated, and the integral value of the sum signal (A+B)1 is inversely integrated with a constant negative current i when no light is emitted. This inverse integral is used until the comparator 26 outputs a low level signal. That is, by outputting a low level signal in this way, the microcomputer 1
This is because the high-level signal output from the output terminal O8 of the switch 7 is inverted to a low-level signal, and the analog switch 24 is turned off.

そして、この逆積分に要する時間がマイクロコンピュー
タ17内に配置されるカウント部にてカウントされる。
Then, the time required for this inverse integration is counted by a counting section disposed within the microcomputer 17.

この時のパルス数をP(A+l)lとすると、P(A+
1l)1は和信号(A+B)tの積分値に相当するA/
D変換値となる。なお、次のP(All)gは該P6.
+幻、の値に続けて加算される。前述のような積分動作
が1時間内のパルス信号が出力されている間、連続的に
行われ、和信号(All)の積分値に相当するパルス数
Pa+s (P(All)1 + P(All)!・・
・)が求められ、マイクロコンピュータ17内の記憶部
にてその値が記憶される。
If the number of pulses at this time is P(A+l)l, then P(A+
1l) 1 is A/corresponding to the integral value of sum signal (A+B)t
This becomes the D conversion value. Note that the following P(All)g is the P6.
It is added continuously to the value of +phantom. The above-mentioned integration operation is performed continuously while the pulse signal within one hour is output, and the number of pulses Pa+s (P(All)1 + P(All) corresponding to the integral value of the sum signal (All) is )!...
) is determined, and the value is stored in the storage section within the microcomputer 17.

次ニ、マイクロコンピュータ17の出力端子OIより1
時間ローレベルの信号が出力されることから、この間ア
ナログスイッチ16はオフとなり、この場合被写体から
戻ってくる反射光は受光部5aのみで受光されることに
なる。よって、センサアンプ18からは信号Aが出力さ
れ、該信号人はバイパスフィルタ19を介してゲインコ
ントロール回路20より信号2人として(この時インバ
ータ21を介してハイレベルの信号が入力しているため
)次段のスイッチ回路22へ送られる。以後は前述した
和信号(All )の積分動作時と同様、所定の周期に
てパルス信号が出力されている間、信号(2A)、の積
分及び負の一定電流による逆積分が行われ、マイクロコ
ンビエータ1フ0カウント部にてパルス数P!□(P(
!A)l e P(2□)よ・・・)が求められる。
Next, 1 from the output terminal OI of the microcomputer 17
Since a low level signal is output for a certain period of time, the analog switch 16 is turned off during this time, and in this case, the reflected light returning from the subject is received only by the light receiving section 5a. Therefore, the signal A is output from the sensor amplifier 18, and this signal is passed through the bypass filter 19 to the gain control circuit 20 as two signals (because at this time, a high level signal is input via the inverter 21). ) is sent to the next stage switch circuit 22. Thereafter, as in the integration operation of the sum signal (All) described above, while the pulse signal is output at a predetermined period, the integration of the signal (2A) and the inverse integration using a constant negative current are performed. Number of pulses P at combiator 1f0 count section! □(P(
! A) l e P(2□)...) is found.

以上のようにして求めら−れたパルス数PALMとT2
.はマイクロコンビエータ17内で演算され、FA+l
 =p、、の関係にあれば合焦、それ以外の時は非合焦
と判定される。つまり、パルス数FA+4とT8.に基
づいて測距情報が求められる。そして、このようにして
得られた判定結果に基づいて、マイクロコンピュータ1
7の出力端子Osよりパルス幅の変調された自動焦点制
御信号Nが駆動用モータ7へ出力される。これによって
、駆動用モータ7の回転方向及び回転速度が制御され、
撮影レンズ6が意図した位置まで移動する。
The number of pulses PALM and T2 obtained as above
.. is calculated in the micro combinator 17, and FA+l
=p, it is determined that the image is in focus, and otherwise it is determined that the image is out of focus. That is, the number of pulses FA+4 and T8. Distance information is determined based on. Then, based on the determination result obtained in this way, the microcomputer 1
An automatic focus control signal N whose pulse width is modulated is outputted from an output terminal Os of 7 to a drive motor 7. As a result, the rotational direction and rotational speed of the drive motor 7 are controlled,
The photographic lens 6 moves to the intended position.

次に、第4図に示されるように、和信号(A十Bルの積
分レベルが高いために負の一定電流iによる積分値の逆
積分が所定時間内に完全に放電できず、徐々に電位が上
昇していく場合が考えられる。よって、この時マイクロ
コンビネータ17内のカウント部にて求められるパルス
数P(All):をすべて加算したとしても、和信号(
A十B)に相当する正確なパルス数P(All )は得
ることはできない。そこで、このような場合、残留電位
を第5図に示すようなタイミングで逆積分する必要があ
る。つまり、先ず前述と同様所定の周期にてパルス信号
が出力されている間第4図のような積分及び逆積分を行
わせ、各パルス数P(All)−の和のパルス数P(、
□)′を得、続けてT1時間残留電位の逆積分を行わせ
(第5図参照)、この逆積分時のパルス数と前記パルス
数P(All)’とを加算する。これにより、正確な和
信号(All)のパルス数P(All)が得られること
になる。信号2人も同様に行う。このようにして正確な
和信号(All )と信号2人のパルス数が求まったら
、前述と同様パルス数P(、□)とP2□とを演算し、
測距情報を得る。
Next, as shown in Figure 4, because the integral level of the sum signal (A + B) is high, the inverse integration of the integral value by the constant negative current i cannot be completely discharged within a predetermined time, and gradually There may be a case where the potential increases. Therefore, even if all the pulse numbers P (All) determined by the counting section in the microcombinator 17 are added up, the sum signal (
The exact number of pulses P(All) corresponding to A+B) cannot be obtained. Therefore, in such a case, it is necessary to inversely integrate the residual potential at the timing shown in FIG. That is, first, as described above, integration and inverse integration as shown in FIG.
□)' is obtained, and then the T1 time residual potential is inversely integrated (see FIG. 5), and the number of pulses during this inverse integration is added to the number of pulses P(All)'. As a result, the accurate number of pulses P(All) of the sum signal (All) can be obtained. Do the same for the two signalers. Once the accurate sum signal (All) and the number of pulses for the two signals are determined in this way, calculate the number of pulses P(,□) and P2□ in the same way as above,
Obtain ranging information.

第1図実施例では、第6図(alの上図の如く入力信号
にのっている太陽光などの外光による直流成分(DCノ
イズ)を除去するために、バイパスフィルタ19を設け
ている。尚、第6図(a)の下図は直流成分ののった入
力信号を積分した時の積分出力状態を示している。とこ
ろが、第6図tblの上図に示されるように発光時の信
号に影響を与え(該信号を積分した場合、第6図tb>
の下図の如く積分出力状態となる)、好ましくない。又
完全にDCノイズを取り除けない場合もある。そこで、
一般に非発時のDCノイズ値を逆積分−する事が行われ
ている(第6図(C1参照)。
In the embodiment of FIG. 1, a bypass filter 19 is provided in order to remove the direct current component (DC noise) due to external light such as sunlight that is present in the input signal as shown in the upper diagram of FIG. 6 (al). Note that the lower diagram in Figure 6(a) shows the integrated output state when an input signal with a DC component is integrated.However, as shown in the upper diagram in Figure 6 tbl, when light is emitted, influence the signal (if the signal is integrated, Fig. 6 tb>
(The result is an integral output state as shown in the figure below), which is not desirable. Furthermore, there are cases where DC noise cannot be completely removed. Therefore,
Generally, the DC noise value during non-occurrence is inversely integrated (see FIG. 6 (C1)).

このような方式におい【も、本発明は有効である。この
ような場合の実施例を第7図に示す。
The present invention is also effective in such a system. An example of such a case is shown in FIG.

第1図と同じ部分は同一符号を用いている。The same parts as in FIG. 1 are designated by the same reference numerals.

ゲインコントロール回路20からの直流成分を反転回路
27で反転(第6図(C)の上図参照)し、次段に配置
される加算回路28で該反転信号と定電流源23より流
れてくる負の一定電流iとを加算し、得られる加算信号
により和信号(All)及び信号2人の逆積分を行う。
The DC component from the gain control circuit 20 is inverted by the inverting circuit 27 (see the upper diagram in FIG. 6(C)), and the inverted signal and the constant current source 23 are sent to the adder circuit 28 arranged in the next stage. A constant negative current i is added, and the sum signal (All) and the two signals are inversely integrated using the resulting sum signal.

これにより、直流成分が完全に除去された積分出力を得
ることができる。即ち、第6図(C1の下図に示される
ような積分出力状態となる。
This makes it possible to obtain an integral output from which DC components are completely removed. That is, the integral output state is as shown in the lower diagram of FIG. 6 (C1).

第1〜7図実施例によれば、従来は何の動作も行ってい
なかった非発光時間を利用して、逆積分を行うようにし
たから、従来の1系列タイプの装置に比べて大幅に測距
時間を短縮することが可能となった。また、積分回路2
5のダイナミックレンジ保証のために、通常は仮測距、
つまり予め設定された一定時間和信号(A+B )の積
分を行い、次いでその積分値が零に達するまで逆積分を
行い、この逆積分に要する時間をカウントし、該カウン
ト値に基づ〜・て1測距あたりのパルス信号のパルス数
(本実施例では、1時間内に出力されるパルス数)を決
定(例えば、プリ発光時の積分値と1測距あたりのパル
ス数が一定になるように)するといった仮測距が行われ
るが、前述したように非発光時毎罠逆積分を行うような
構成にしているので、積分回路25に広いダイナミック
レンジを必要とせず、仮測距を行わなくてもよいといっ
た利点もある。
According to the embodiments shown in Figs. 1 to 7, inverse integration is performed using the non-emission time when no operation was performed in the past, so the performance is significantly improved compared to the conventional one-line type device. It became possible to shorten distance measurement time. Also, the integration circuit 2
In order to guarantee the dynamic range of 5, usually temporary distance measurement,
In other words, the sum signal (A+B) is integrated for a predetermined period of time, then inverse integration is performed until the integral value reaches zero, the time required for this inverse integration is counted, and based on the count value... Determine the number of pulses of the pulse signal per distance measurement (in this example, the number of pulses output within one hour) (for example, set the integral value during pre-flash and the number of pulses per distance measurement to be constant). However, as mentioned above, since the configuration is such that inverse integration is performed every time the light is not emitted, the integration circuit 25 does not require a wide dynamic range, and the provisional distance measurement is performed. There is also the advantage that it is not necessary.

(発明と実施例の対応) 第1〜7図実施例において、投光素子1が本説明の投光
手段に、受光素子5が受光手段に、積分回路25が積分
手段に、マイクロコンピ−タ17が演算手段に、スイッ
チ回路22が逆積分指示手段に、それぞれ相当する。
(Correspondence between Invention and Embodiment) In the embodiment shown in FIGS. 1 to 7, the light emitting element 1 serves as the light emitting means described in this explanation, the light receiving element 5 serves as the light receiving means, the integrating circuit 25 serves as the integrating means, and the microcomputer Reference numeral 17 corresponds to calculation means, and switch circuit 22 corresponds to inverse integration instruction means.

(変形例) 本実施例では、和信号(A+B)と信号Aとを時分割に
て積分し、各積分値より測距情報を得るようにしたが、
信号AとBとを時分割にて積分し、この各積分値により
例えば、2A/(A+B)。
(Modification) In this embodiment, the sum signal (A+B) and signal A are integrated in a time-division manner, and distance measurement information is obtained from each integrated value.
Signals A and B are integrated in a time division manner, and each integrated value is, for example, 2A/(A+B).

(A−B)/(A十B)を演算して測距情報を得るよう
にしてもよい。また、1系列より成る装置に本発明を適
用したが、2系列より成る装置に用いれば、回路構成の
面に関しては難があるものの、本発明の主旨である測距
時間短縮の面では大なる効果があることは言うまでもな
いであろうO (発明の効果) 以上説明したように、本発明によれば、投光手段の非投
光時に、積分手段により投光時に積分された積分値の逆
積分を行わせる逆積分指示手段を、積分手段の入力側に
設け、以て、前記投光手段の投光時には、受光手段から
入力する信号の積分を、非投光時には、その逆積分を、
それぞれ行うようにしたから、測距時間を短縮すること
ができる。
The distance measurement information may be obtained by calculating (AB)/(A + B). Furthermore, although the present invention has been applied to a device consisting of one series, if it is applied to a device consisting of two series, although there will be some difficulties in terms of circuit configuration, it will be significant in terms of shortening distance measurement time, which is the gist of the present invention. It goes without saying that it is effective. (Effect of the invention) As explained above, according to the present invention, when the light projecting means is not projecting light, the inverse integral of the integral value integrated at the time of projecting light is calculated by the integrating means. A means for instructing inverse integration to be carried out is provided on the input side of the integrating means, so that when the light emitting means emits light, the integration of the signal input from the light receiving means is performed, and when the light is not emitted, the inverse integration is performed.
Since this is done separately, the distance measurement time can be shortened.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示すブロック図、第2図は
同じくそのタイムチャ・−ト、第3図は同じく主要部分
のタイムチャート、第4図は同じく入力信号レベルが高
く、逆積分が完全に行えない場合の一部を拡大したタイ
ムチャート、ぎ 第5図は第4図の如碕状態時の各回路のタイムチャート
、第6図(a)〜(C1は同じく入力信号と積分出力と
の関係を説明する図、第7図は本発明の他の実施例を示
すブロック図、第8図は一般的な自動焦点制御装置に配
置される測距光学系の一部を示す図、第9図(イ)〜(
ハ)は第8図に示される各被写体位置からのスポット光
の入射状態を説明する図、第10図は従来の2系列の回
路より成る自動焦点制御装置を示すブロック図、第11
図は従来の1系列の回路より成る自動焦点制御装置にお
ける2種の信号の積分状態を説明する図である。 1・・・投光素子、5・・・受光素子、17・・・マイ
クロコンピュータ、22・・・スイッチ回路、23・・
・定電流源、24・・・アナログスイッチ、25・・・
積分回路、26・・・コンバレー/、A。 B・・・−信号、P(A+1) 、pz*・・・パルス
数。
Fig. 1 is a block diagram showing an embodiment of the present invention, Fig. 2 is a time chart thereof, Fig. 3 is a time chart of the main part, and Fig. 4 is a block diagram showing an embodiment of the present invention. Figure 5 is an enlarged time chart of a part of the case when the operation cannot be performed completely. Figure 5 is a time chart of each circuit in the normal state of Figure 4. Figures 6 (a) to (C1 are the input signal and integral FIG. 7 is a block diagram showing another embodiment of the present invention, and FIG. 8 is a diagram showing a part of a distance measuring optical system arranged in a general automatic focus control device. , Figure 9 (a) ~ (
c) is a diagram explaining the incident state of spot light from each subject position shown in FIG. 8; FIG. 10 is a block diagram showing a conventional automatic focus control device consisting of two series of circuits;
The figure is a diagram illustrating the integration state of two types of signals in a conventional automatic focus control device consisting of one series of circuits. DESCRIPTION OF SYMBOLS 1... Light emitting element, 5... Light receiving element, 17... Microcomputer, 22... Switch circuit, 23...
・Constant current source, 24...Analog switch, 25...
Integral circuit, 26... Combaret/, A. B...-signal, P(A+1), pz*...number of pulses.

Claims (1)

【特許請求の範囲】[Claims] 1、所定周期をもつて投光、非投光を繰り返す投光手段
と、該投光手段より投光され、測距対象から反射して戻
つてくる光を受光し、測距対象の距離に依存して相対的
に変化する2種の信号を出力する受光手段と、該受光手
段から入力する信号を積分し、定電流により逆積分する
積分手段と、逆積分の時間に基づいて測距情報を演算す
る演算手段とを備えた距離検出装置において、前記投光
手段の非投光時に、前記積分手段により投光時に積分さ
れた積分値の逆積分を行わせる逆積分指示手段を、前記
積分手段の入力側に設けたことを特徴とする距離検出装
置。
1. A light emitting means that repeats emitting and non-emitting light at a predetermined period, and receiving the light emitted from the light emitting means, reflected from the object to be measured, and measuring the distance of the object to be measured. A light-receiving means outputs two types of signals that vary depending on each other, an integrating means integrates the signal input from the light-receiving means and inverse-integrates the signal using a constant current, and a distance-measuring information is generated based on the time of the inverse-integration. In the distance detecting device, the inverse integral instructing means causes the integrating means to perform inverse integration of the integral value integrated at the time of light emitting when the light emitting means is not emitting light; A distance detection device characterized in that it is provided on the input side of a means.
JP14243785A 1985-07-01 1985-07-01 Distance-detecting apparatus Pending JPS625112A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14243785A JPS625112A (en) 1985-07-01 1985-07-01 Distance-detecting apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14243785A JPS625112A (en) 1985-07-01 1985-07-01 Distance-detecting apparatus

Publications (1)

Publication Number Publication Date
JPS625112A true JPS625112A (en) 1987-01-12

Family

ID=15315293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14243785A Pending JPS625112A (en) 1985-07-01 1985-07-01 Distance-detecting apparatus

Country Status (1)

Country Link
JP (1) JPS625112A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63292016A (en) * 1987-05-26 1988-11-29 Matsushita Electric Works Ltd Distance-measuring type photoelectric switch
JPH01260309A (en) * 1988-04-11 1989-10-17 Sharp Corp Operation circuit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63292016A (en) * 1987-05-26 1988-11-29 Matsushita Electric Works Ltd Distance-measuring type photoelectric switch
JPH01260309A (en) * 1988-04-11 1989-10-17 Sharp Corp Operation circuit

Similar Documents

Publication Publication Date Title
US4623237A (en) Automatic focusing device
US6084658A (en) Distance measuring apparatus
JPS59165012A (en) Auto-focusing detector
JPH0474648B2 (en)
US4384199A (en) Incident position detector for radiation beam
US4758082A (en) Distance detection apparatus
US4538892A (en) Automatic focus control system
US4573783A (en) Focusing controlling device
JPS625112A (en) Distance-detecting apparatus
US4723073A (en) Light emission quantity control device for focus detection
JP2002107145A (en) Range finder and adjuster therefor
US5264893A (en) Auto focus camera
JPH0743803A (en) Camera-shake preventing device
JPH0894920A (en) Range finder
GB2272125A (en) Distance measurement
JP3051031B2 (en) Distance measuring device
US4673806A (en) Automatic focus adjusting device
US4668068A (en) Automatic focus adjustment apparatus
JPS6251442B2 (en)
JPS61240108A (en) Range finding device
JP2888492B2 (en) Distance information output device
JP3749638B2 (en) Ranging device
JP2942593B2 (en) Subject distance detection device
JPS61250513A (en) Apparatus for detecting focus
JP2731159B2 (en) Camera multipoint ranging device