JPS6251111B2 - - Google Patents

Info

Publication number
JPS6251111B2
JPS6251111B2 JP59207356A JP20735684A JPS6251111B2 JP S6251111 B2 JPS6251111 B2 JP S6251111B2 JP 59207356 A JP59207356 A JP 59207356A JP 20735684 A JP20735684 A JP 20735684A JP S6251111 B2 JPS6251111 B2 JP S6251111B2
Authority
JP
Japan
Prior art keywords
water
oily
decomposition products
lipase
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59207356A
Other languages
Japanese (ja)
Other versions
JPS6185195A (en
Inventor
Yoshiji Kosugi
Noboru Tomizuka
Akio Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP59207356A priority Critical patent/JPS6185195A/en
Publication of JPS6185195A publication Critical patent/JPS6185195A/en
Publication of JPS6251111B2 publication Critical patent/JPS6251111B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

(イ) 産業上の利用分野 本発明は固定化リパーゼカラムを用いて油脂、
リン脂質、高級脂肪酸エステル等を加水分解し、
脂肪酸やモノグリセライド、ジグリセライド等の
油状分解産物と、グリセリン、グリセロリン酸、
アルコール等の水溶性分解産物を採取する方法に
関するものであり、油脂工業、医薬品産業、食品
工業等で利用できるものである。 (ロ) 従来の技術 固定化リパーゼの反応装置としては、光架橋性
ゲルに包括固定化したリパーゼをカラムに充填
し、予め水と油を撹拌混合しておき、その混合物
を充填塔に還流させる方法がある(Y.kimura et
al.Eur.J.Appl.Microl. Biotechnol.、17、107
(1983))。またオクチルセフアロースゲル等の両
媒性ゲルにリパーゼを固定化し液体脂肪酸と混ぜ
液体脂肪酸中の未分解のエステルを分解する方式
も報告されている(T.Yamane et al.J.Ferment.
Technol.60、517(1982))。 (ハ) 発明が解決しようとする問題点 既に報告されている固定化リパーゼカラムを用
いて脂質を分解するには、水と脂質を予め混合さ
せてエマルジヨン化することが必要不可欠であ
り、撹拌動力を要する他、エマルジヨン粒子がゲ
ル型固定化担体中に拡散する移動速度が著しく遅
い固定化リパーゼの充分な活性度を発揮させるた
めには、固定化カラムに何回も反応液を循環させ
る必要があり半連続型を越えることができない
(Y.Kimura et al.Eur.J.Appl.Microbiol.
Biotechnol.、17、107(1983))。また両親媒性含
水ゲルを用いる場合、分解産物がゲルの表面及び
ゲル内に蓄積するため、長期間の操り返し使用は
不可能であり、手数を要する再生操作を必要とす
る(T.Yamane et al.J.Ferment.Tchnol.60、517
(1982))。 (ニ) 問題点を解決するための手段 本発明者らは従来法の諸欠点を改良すべく鋭意
研究を重ねた結果、上端から下端に渡つて連続的
に基質及び反応産物を出入口設置可能な塔型固定
化リパーゼカラムを用いて油脂等の分解を行えば
水と基質をエマルジヨンとして供給する必要もな
く中上段より水溶液、中下段より油状基質を連続
的に供給でき、しかも上端より油状分解産物、下
端より水溶性分解産物を連続的に分別採取できる
ことを見い出した。 すなわち、本発明は、塔型固定化リパーゼカラ
ムで脂質を分解するにあたり、中上段より水溶
液、中下段より油状基質を連続的に供給し、上端
より油状分解産物、下端より水溶性分解産物を連
続的に採取することを特徴とする脂質の連続加水
分解法である。 本発明に用いる固定化リパーゼカラムとは上端
から下端にわたつて連続的に基質及び反応産物の
出入口設置可能な塔型固定化リパーゼカラムであ
る。通常は中上段、中下段、上端及び下端に出入
口のある垂直に立てた充填層型カラムである。こ
こでいう中上段、中下段とは上端及び下端の中間
と上端との間に中上段といい、中間と下端との間
を中下段という。反応生産物が油層及び水層の二
層以上に分かれる場合その夫々の層に回収口を取
るつけることにより夫々の反応生産物の分別が可
能となる。カラム中には固定化リパーゼを充填す
るので、この固定化リパーゼの至適温度に保持出
来るような装置をつける必要がある。通常は外套
管を用い、外套管内に熱交換水を流して一定温度
に保持する。上端あるいは下端の出入口の開口部
には夫々油状生産物しか通さない疎水性の膜ある
いは可溶性生産物しか通さない親水性の膜を通過
するようにすることにより、油状分解生産物ある
いは水溶性分解産物の分別採取が的確になるとと
もに固定化酵素の流出も防げる。 本発明における油状基質とはグリセリンと脂肪
酸のエステルである油脂、リン脂質あるいはアル
コールを高級脂肪酸のエステル等である。水溶液
とは水の他に必要ならば可溶性の添加物を溶かし
たものである。油状分解産物とは、脂肪酸、モノ
グリセライド、ジグリセライドであり、水溶性分
解産物とはグリセリン、グリセロリン酸、アルコ
ール等を含む水溶液である。本発明に使用される
リパーゼとは上記油状基質を加水分解する酵素な
らばいずれのものでも使用できる。しかし牛脂等
の高融点の基質を分解する場合、その融点以上で
働かせる必要があり、高温反応性かつ耐熱性のシ
ユウドモナス・フルオレセンス・バイオタイプ
No.1021(微工研菌寄5495号)や、シユウドモナ
ス・セパシア(微工研菌寄5494号)等を用いるこ
とが望ましい。耐熱性リパーゼは低融点の基質を
分解する場合でもPH反応液組成の変化に対して比
較的安定でありしかも反応槽を60℃付近の比較的
高い温度に保てるため、生物素材を用いるバイオ
リアクターで常に大きな問題となる微生物汚染が
防げ望しいリパーゼである。本発明で使用される
リパーゼの固定化法としては担体結合法や包括法
など酵素の固定化法として数多く報告されている
方法ならばいずれの方法でも採用しうる。本発明
の基質はエマルジヨンでなく連続層として供給す
るので、エマルジヨン粒子が担体内に結合してい
るリパーゼ分子に到達する過程が改善されている
ため、いずれの固定化法でも比較的高い生産性が
得られる。ポリカチオンに固定化したリパーゼを
用いると、リパーゼ分子周辺の微細環境が生産物
阻害を取り除くようになるともに、リパーゼが担
体に多点結合して安定するため望ましい固定化リ
パーセが得られる。(特許公告59−20357、特願昭
58−53285)。 本発明における固定化リパーゼカラムの運転方
式は中上段より水溶液、中下段より油状基質を連
続的に供給し、下端より水溶性分解産物、上端よ
り油状分解産物を連続的に回収する。水溶液の供
給量と水溶性分解産物の回収量はほぼ同じくらい
に調節すれば良い。水溶性分解産物であるアルコ
ールやグリセリンが溶けても体積変化がすくない
からである。一方、油状生産物の回収速度は油状
基質の供給量に影響され、水の供給量にはあまり
影響されない。基質の供給速度や分解産物の回収
速度を調節することにより固定化カラム充填層中
の油水分離層の位置を変えることが可能である。
反応が定常状態になれば、分解産物の回収量や油
水分離層の位置は一定になるが定常状態になるま
では水溶液及び油状基質の供給速度とともに水溶
性分解産物の回収速度を定量ポンプにより制御す
れば油状分解産物はおのずから固定化リパーゼカ
ラム上端より回収されるようになる。 (ホ) 作用 本発明においては、油状基質及び水溶液を連続
層として供給する。油状基質及び水溶液をエマル
ジヨンとして供給すると、エマルジヨン粒子が固
定担体内に拡散する律速過程が存在するため加水
分解速度が著しく低下する。 本発明においては、油層と水層をあえて混ぜる
ことなく分離したままで反応するので夫々の反応
槽内の滞留時間を別々に設定できる。すなわち水
層である水溶液の滞留時間は、水溶液の供給量あ
るいは水溶性分解産物の回収量及び反応槽の体積
によつて定まる。したがつて水溶液の滞留時間を
油状基質の滞留時間より長くして水溶性分解物の
濃度を高めることも可能となる。 本発明においては油状分離層が垂直に立てた充
填塔内に存在する。油水分離層の位置は基質及び
水溶液の供給量及び油状分解産物等の回収量を適
当に調節することにより移動可能であるが、反応
が定常状態に達するとほぼ一定の位置に留まる。
また油状基質に高級脂肪酸エステルであるワツク
ス等が含まれていると分解産物が二層以上になる
ことがある。その時は新しく出来た層にも回収口
を設けて高級脂肪酸等を分別回収できる特徴も有
している。 本発明においては、油状基質及び水溶液が固定
化リパーゼの存在する環境下で比重差により向流
的に混合する過程で加水分解が進行する。加水分
解により生成された油状分解産物及び水溶性分解
産物は比重差により上端及び下端より連続的に回
収される。加水分解中に生成した分解産物と基質
である油脂やエステルの間に平衡が起きて加水分
解が停止するのを防ぐため、常に連続的に生成物
を取り出し新しい基質及び水溶液を仕込むのであ
る。 (ヘ) 実施例1 シユウドモナス・フルオレセンス・バイオタイ
プ No.1021(微工研菌寄5495号)の生産した
98000単位のリパーゼを0.1MNaHCO3溶液90mlに
溶かし、Dowex MWA・1(ダウ・ケミカル社
製)80gを懸濁させ、2時間室温で振とうした。
次いでリパーゼが吸着した樹脂を
0.1MNaHCO3、蒸留水及び1/15Mマツクイルベ
イン緩衝液PHで洗浄した。洗浄液には63000単位
のリパーゼが検出された。すなわち35000単位の
リパーゼがDowex MWA−1に固定化されたこ
とになる。この固定化リパーゼを1/15Mマツクイ
ルベイン緩衝液PH5、200mlに懸濁し25%のグル
タールアルデヒド溶液8mlを加えて10℃で10分間
振とうした後20mlの亜硫酸ナトリウムを加えて更
に10分間振とうし、余分のグルタールアルデヒド
を還元した。得られた固定化リパーゼを水洗し後
の実験に供した。 リパーゼ活性の測定は通常オリーブオイルエマ
ルジヨンを用いるNordらの変法(日農化36巻860
(1962))で行い、60℃で1分間に1マイクロモル
の酸を遊離する酵素量を1単位とした。また活性
発現率の向上を図るため振とう法でも測定した。
すなわち50mlの三角フラスコに1gのオリーブ油
をとり0.2mlの0.1燐酸緩衝液PH7.0を加えて振とう
し、60℃で60分間反応させた、反応は8mlのクロ
ロホルム・メタノール(2:1)混液で停止し、
0.05N水酸化ナトリウムを95%のメタノールに溶
解した液で生じた脂肪酸を滴定した。
(a) Industrial application field The present invention uses an immobilized lipase column to
Hydrolyzes phospholipids, higher fatty acid esters, etc.
Oily decomposition products such as fatty acids, monoglycerides, diglycerides, glycerin, glycerophosphoric acid,
This relates to a method for collecting water-soluble decomposition products such as alcohol, and can be used in the oil and fat industry, pharmaceutical industry, food industry, etc. (b) Conventional technology As a reaction device for immobilized lipase, a column is filled with lipase entrappingly immobilized in a photocrosslinkable gel, water and oil are stirred and mixed in advance, and the mixture is refluxed to a packed column. There is a method (Y.kimura et
al.Eur.J.Appl.Microl.Biotechnol., 17, 107
(1983)). A method has also been reported in which lipase is immobilized on an amphipathic gel such as octylcephalose gel and mixed with liquid fatty acid to decompose undecomposed esters in the liquid fatty acid (T. Yamane et al. J. Ferment.
Technol. 60, 517 (1982)). (c) Problems to be solved by the invention In order to decompose lipids using the already reported immobilized lipase column, it is essential to mix water and lipids in advance to form an emulsion. In addition, it is necessary to circulate the reaction solution through the immobilization column many times in order to exert sufficient activity of the immobilized lipase, which has an extremely slow migration speed in which the emulsion particles diffuse into the gel-type immobilization carrier. Yes, semi-continuous type cannot be exceeded (Y.Kimura et al.Eur.J.Appl.Microbiol.
Biotechnol., 17, 107 (1983)). Furthermore, when using an amphiphilic hydrogel, decomposition products accumulate on the gel surface and inside the gel, making it impossible to use it repeatedly over a long period of time and requiring a laborious regeneration operation (T. Yamane et al. al.J.Ferment.Tchnol.60, 517
(1982)). (d) Means for Solving the Problems The present inventors have conducted intensive research to improve the various shortcomings of conventional methods, and as a result, we have developed a method that allows continuous entry and exit of substrates and reaction products from the upper end to the lower end. If oils and fats are decomposed using a tower-type immobilized lipase column, there is no need to supply water and substrate as an emulsion, and an aqueous solution can be continuously supplied from the upper middle stage and an oily substrate from the lower middle stage. It was discovered that water-soluble decomposition products could be continuously collected and fractionated from the bottom end. That is, in decomposing lipids with a column-type immobilized lipase column, the present invention continuously supplies an aqueous solution from the middle upper stage and an oily substrate from the middle lower stage, and continuously supplies oily decomposition products from the upper end and water-soluble decomposition products from the lower end. This is a continuous hydrolysis method for lipids, which is characterized by the fact that lipids are collected continuously. The immobilized lipase column used in the present invention is a tower-type immobilized lipase column in which entrances and exits for substrates and reaction products can be installed continuously from the upper end to the lower end. Usually, it is a vertical packed bed type column with entrances and exits at the middle upper stage, middle lower stage, upper end, and lower end. The middle upper tier and middle lower tier referred to here are referred to as the middle upper tier between the upper and lower ends and the middle upper tier, and the middle lower tier between the middle and the lower end. When the reaction products are separated into two or more layers, an oil layer and an aqueous layer, each reaction product can be separated by providing a recovery port in each layer. Since the column is filled with immobilized lipase, it is necessary to install a device that can maintain the immobilized lipase at its optimum temperature. Usually, a jacket tube is used, and heat exchange water is flowed through the jacket tube to maintain a constant temperature. Oily decomposition products or water-soluble decomposition products can be removed by passing through a hydrophobic membrane that allows only oily products to pass through or a hydrophilic membrane that allows only soluble products to pass through the openings of the upper and lower ends, respectively. This makes it possible to accurately separate and collect the enzymes, and also prevents the immobilized enzymes from leaking out. The oily substrate in the present invention is an oil or fat that is an ester of glycerin and a fatty acid, a phospholipid, or an ester of an alcohol and a higher fatty acid. An aqueous solution is a solution containing water and, if necessary, soluble additives. The oily decomposition products are fatty acids, monoglycerides, and diglycerides, and the water-soluble decomposition products are aqueous solutions containing glycerin, glycerophosphoric acid, alcohol, and the like. The lipase used in the present invention can be any enzyme that hydrolyzes the above-mentioned oily substrate. However, when decomposing a substrate with a high melting point such as beef tallow, it is necessary to work at a temperature above the melting point.
It is preferable to use No. 1021 (Feikoken Bibori No. 5495), Pseudomonas cepacia (Feikokuken Bibiri No. 5494), or the like. Thermostable lipase is relatively stable against changes in the PH reaction solution composition even when decomposing a substrate with a low melting point, and the reaction tank can be maintained at a relatively high temperature around 60°C, making it suitable for use in bioreactors using biological materials. This lipase is desirable because it prevents microbial contamination, which is always a big problem. As the method for immobilizing lipase used in the present invention, any of the many methods reported for immobilizing enzymes, such as carrier binding method and entrapment method, can be employed. Since the substrate of the present invention is supplied as a continuous layer rather than an emulsion, the process by which the emulsion particles reach the lipase molecules bound within the carrier is improved, resulting in relatively high productivity with either immobilization method. can get. By using lipase immobilized on polycations, the microenvironment around the lipase molecule eliminates product inhibition, and the lipase is stably bonded to the carrier at multiple points, resulting in a desirable immobilized lipase. (Patent Publication No. 59-20357, Patent Application Sho
58−53285). The operation method of the immobilized lipase column in the present invention is to continuously supply an aqueous solution from the upper middle stage and an oily substrate from the lower middle stage, and to continuously collect water-soluble decomposition products from the lower end and oily decomposition products from the upper end. The amount of aqueous solution supplied and the amount of water-soluble decomposition products recovered may be adjusted to be approximately the same. This is because even when alcohol and glycerin, which are water-soluble decomposition products, dissolve, the volume does not change much. On the other hand, the recovery rate of the oily product is affected by the amount of oily substrate fed and is less affected by the amount of water fed. By adjusting the substrate supply rate and the recovery rate of decomposition products, it is possible to change the position of the oil-water separation layer in the immobilized column packed bed.
Once the reaction reaches a steady state, the amount of recovered decomposition products and the position of the oil-water separation layer become constant, but until a steady state is reached, the supply rate of the aqueous solution and oily substrate as well as the recovery rate of water-soluble decomposition products are controlled by a metering pump. Then, the oily decomposition products will naturally be recovered from the upper end of the immobilized lipase column. (e) Effect In the present invention, the oily substrate and the aqueous solution are supplied as a continuous layer. When the oily substrate and aqueous solution are supplied as an emulsion, the rate of hydrolysis is significantly reduced due to the existence of a rate-limiting process in which the emulsion particles diffuse into the immobilized carrier. In the present invention, since the oil layer and the water layer are reacted while being separated without intentionally mixing them, the residence time in each reaction tank can be set separately. That is, the residence time of the aqueous solution, which is the aqueous layer, is determined by the amount of the aqueous solution supplied or the amount of water-soluble decomposition products recovered, and the volume of the reaction tank. Therefore, it is also possible to increase the concentration of water-soluble decomposition products by making the residence time of the aqueous solution longer than the residence time of the oily substrate. In the present invention, the oily separation layer is present in a vertically erected packed column. Although the position of the oil-water separation layer can be moved by appropriately adjusting the amounts of substrate and aqueous solution supplied and the amount of oily decomposition products recovered, it remains at a substantially constant position once the reaction reaches a steady state.
Furthermore, if the oily substrate contains wax, which is a higher fatty acid ester, the decomposition products may form two or more layers. At that time, a recovery port is also provided in the newly created layer, allowing higher fatty acids to be separated and recovered. In the present invention, hydrolysis progresses during the process in which the oily substrate and the aqueous solution are mixed countercurrently due to the difference in specific gravity in an environment in which immobilized lipase is present. Oily decomposition products and water-soluble decomposition products produced by hydrolysis are continuously recovered from the upper and lower ends due to the difference in specific gravity. In order to prevent hydrolysis from stopping due to equilibrium occurring between the decomposition products produced during hydrolysis and the substrates such as fats and esters, the products are constantly removed and new substrates and aqueous solutions are added. (f) Example 1 The production of Pseudomonas fluorescens biotype No. 1021 (Feikoken Bacteria No. 5495)
98,000 units of lipase were dissolved in 90 ml of 0.1 M NaHCO 3 solution, 80 g of Dowex MWA-1 (manufactured by Dow Chemical Company) was suspended therein, and the mixture was shaken at room temperature for 2 hours.
Next, the resin adsorbed with lipase is
Washed with 0.1M NaHCO 3 , distilled water and 1/15M pine quill vain buffer PH. 63,000 units of lipase were detected in the washing solution. In other words, 35,000 units of lipase were immobilized on Dowex MWA-1. This immobilized lipase was suspended in 200 ml of 1/15M pine quill vain buffer PH5, 8 ml of 25% glutaraldehyde solution was added, and the mixture was shaken at 10°C for 10 minutes. After that, 20 ml of sodium sulfite was added and the mixture was further shaken for 10 minutes. , to reduce excess glutaraldehyde. The obtained immobilized lipase was washed with water and then used for experiments. Lipase activity is usually measured using a modified method by Nord et al. (Nichino Kagaku Vol. 36, 860
(1962)), and the amount of enzyme that liberated 1 micromole of acid per minute at 60°C was defined as 1 unit. In addition, in order to improve the activity expression rate, the shaking method was also used for measurement.
That is, 1 g of olive oil was placed in a 50 ml Erlenmeyer flask, 0.2 ml of 0.1 phosphate buffer PH7.0 was added, shaken, and reacted at 60°C for 60 minutes. The reaction consisted of 8 ml of a chloroform/methanol (2:1) mixture. Stop at
The fatty acids produced in a solution of 0.05N sodium hydroxide in 95% methanol were titrated.

【表】 第1表から解るようにオリーブオイルエマルジ
ヨンを基質とするNordらの変法で固定化酵素活
性を測ると著しく低い値を示すが、振とう法によ
ると高くなる。振とう法ではエマルジヨンにした
基質を用いないのでエマルジヨン粒子のリパーゼ
分子に到達する律速過程が改善されていることを
示す。 実施例 2 恒温水を循環できるような外套管のついている
ガラス円筒管を用意した。円筒管は長さ40cmで、
内径4cm、長さ28cmの太い部分がありそこに実施
例1で得られた固定化リパーゼを充填した。上端
は油状分解物の回収口であるが、その回収口を疎
水性の膜(ジユラガード3501、ポリプラスチツク
社製)でおおい、固定化リパーゼの流出及び可溶
性分解物の流出を防いだ。長い注射針を用い上端
より12cmの中上段に水溶液の供給口を設けた。下
端には水溶性分解産物の回収口を設けた。固定化
リパーゼは下端より10cmの所にあるグラスフイル
ターで保持した。同じく長い注射針を用いた下端
より9cmの中下段に油状基質の供給口を設けた。 固定化リパーゼは水に懸濁して円筒管に充填し
た。水がよく切れたら、中上段よりオリーブ油を
6ml/hr中上段より水を4ml/hrで供給した。カ
ラム内に反応液が充満されるまでは、下端からの
水溶性分解産物の回収口は閉じておいた。外套管
に60℃の温水を流し、加水分解実験を続ける基間
中カラムを60℃に保温した。カラム内に反応液が
充満されると上端から5cmくらいのところに油水
分離層が出現した。 カラム内に反応液が充満されたら、オリーブ油
の供給速度を0.6ml/hr、水の供給速度を0.4ml/
hrとし、水溶性の分解産物の回収速度を0.4ml/
hrとすると、油状分解産物は0.61ml/hrの速度で
上端から回収された。 上記の条件で116時間運転後の油状分解産物を
分画しその分解率を求めると71.7%であつた。
165時間後の油状分解産物の分解率は68.8%、285
時間後に69.9%、315時間後に72.5%、645時間後
に69.3%となつた。 油状分解産物の分解率はその酸化価とケン化価
の比から求めた。165時間後の油状分解産物の組
成を薄層クロマトグライーで見ると、トリグリセ
ライド及び脂肪酸が主で若干のジグリセライド、
モノグリセライドを含んでいた。 165時間後の水溶液分解産物には薄層クロマト
グラフイーで検出できる油状分解物はなかつた。
過ヨウ素酸酸化法によるグリセリンに定量法
(D.J.Hanahan et al.J.Biol.Chem.231、813
(1958))によると、mlあたり0.092gのグリセリ
ンが含まれていた。 (ト) 発明の効果 本発明は油状基質及び水溶液を連続層として供
給するため、エマルジヨン状基質を供給する方法
と比較して高い生産性をあげることが出来た。す
なわち15単位の実施例1で示した固定化リパーゼ
を用い予め80gのオリーブ油と20gの水を撹拌し
ておき、この混合液を固定化リパーゼカラムに環
流さす方法(Y.Kimura et al.Eur.J.Appl.
Microl.Biotechnol.17、107(1983))だと、分解
率30%にするには94時間要したが、本発明によれ
ば、15単位の固定化リパーゼカラムを使い分解率
30%にするにはオリーブ油を8ml/hr、水を2
ml/hrで連続的に供給することが出来94時間には
752gのオリーブ油が処理出来た。 本発明は基質をエマルジヨンにする撹拌動力を
省ける他、加水分解と同時に分解生産物を比重差
により分別採取することが出来るため、生産工程
の短縮、省エネルギー化等を図れる。また油状基
質と水溶液の反応槽内の滞留時間を独立に決定出
来るため、高濃度のグリセリン溶液の回収が可能
となり、グリセリンを蒸留して回収する熱量も節
減できる。 固定化リパーゼ及び分解物とも空気と接触する
ことがすくなく、しかも固定化リパーゼの安定化
作用のある(村上幸子他油化学32巻第9号
(1983))グリセリン溶液中に維持して長時間の加
水分解を行なわせることも可能である。また加水
分解により生成された分解産物は連続的に分別回
収されるため反応中平衡が起きて加水分解が停止
することを防げ、高品質のものが連続的に採取出
来る等固定化リパーゼを使つた油脂分解法として
も好適なものである。
[Table] As can be seen from Table 1, when the immobilized enzyme activity is measured by the modified method of Nord et al. using olive oil emulsion as a substrate, it shows a significantly low value, but when the shaking method is used, it shows a high value. Since the shaking method does not use an emulsion of substrate, this shows that the rate-determining process in which the emulsion particles reach the lipase molecules has been improved. Example 2 A glass cylindrical tube with a jacket tube capable of circulating constant temperature water was prepared. The cylindrical tube is 40cm long,
There was a thick part with an inner diameter of 4 cm and a length of 28 cm, and the immobilized lipase obtained in Example 1 was filled therein. The upper end was the collection port for the oily decomposition product, and the collection port was covered with a hydrophobic membrane (Jyuraguard 3501, manufactured by Polyplastics) to prevent the immobilized lipase from flowing out and the soluble decomposition product from flowing out. Using a long syringe needle, an aqueous solution supply port was provided at the middle upper level, 12 cm from the top end. A collection port for water-soluble decomposition products was provided at the bottom end. The immobilized lipase was retained with a glass filter placed 10 cm from the bottom end. Using the same long syringe needle, a supply port for the oily substrate was provided at the middle and lower level, 9 cm from the lower end. The immobilized lipase was suspended in water and filled into a cylindrical tube. When the water was well drained, olive oil was supplied from the middle upper stage at a rate of 6 ml/hr, and water was supplied from the middle upper stage at a rate of 4 ml/hr. The collection port for water-soluble decomposition products from the bottom end was kept closed until the column was filled with the reaction solution. Warm water at 60°C was poured into the jacket tube, and the column during the hydrolysis experiment was kept at 60°C. When the column was filled with the reaction solution, an oil-water separation layer appeared about 5 cm from the top. Once the column is filled with the reaction solution, increase the olive oil supply rate to 0.6ml/hr and the water supply rate to 0.4ml/hr.
hr, and the recovery rate of water-soluble decomposition products is 0.4ml/
hr, the oily decomposition products were collected from the top at a rate of 0.61 ml/hr. After 116 hours of operation under the above conditions, the oily decomposition products were fractionated and the decomposition rate was determined to be 71.7%.
The decomposition rate of oily decomposition products after 165 hours was 68.8%, 285
After hours, it was 69.9%, after 315 hours it was 72.5%, and after 645 hours it was 69.3%. The decomposition rate of the oily decomposition product was determined from the ratio of its oxidation value to saponification value. When looking at the composition of the oily decomposition product after 165 hours using thin layer chromatography, it was found that triglycerides and fatty acids were the main components, with some diglycerides and
Contains monoglycerides. There was no oily decomposition product detected by thin layer chromatography in the aqueous decomposition product after 165 hours.
Determination of glycerin by periodate oxidation method (DJHanahan et al.J.Biol.Chem.231, 813
(1958)), it contained 0.092 g of glycerin per ml. (G) Effects of the Invention Since the present invention supplies an oily substrate and an aqueous solution as a continuous layer, it is possible to achieve higher productivity compared to a method of supplying an emulsion-like substrate. That is, using 15 units of the immobilized lipase shown in Example 1, 80 g of olive oil and 20 g of water are stirred in advance, and this mixed solution is refluxed through an immobilized lipase column (Y. Kimura et al. Eur. J.Appl.
Microl.Biotechnol.17, 107 (1983)), it took 94 hours to achieve a degradation rate of 30%, but according to the present invention, a 15 unit immobilized lipase column was used to increase the degradation rate.
To make it 30%, add 8 ml/hr of olive oil and 2 ml/hr of water.
It can be supplied continuously at ml/hr in 94 hours.
752g of olive oil was processed. The present invention not only eliminates the need for stirring power for turning the substrate into an emulsion, but also enables the separation and collection of decomposition products based on the difference in specific gravity at the same time as hydrolysis, thereby shortening the production process and saving energy. Furthermore, since the residence time of the oily substrate and the aqueous solution in the reaction tank can be determined independently, it is possible to recover a highly concentrated glycerin solution, and the amount of heat required to distill and recover glycerin can also be reduced. Immobilized lipase and decomposed products are not likely to come into contact with air, and they can be maintained in a glycerin solution for a long time, which has a stabilizing effect on immobilized lipase (Sachiko Murakami et al., Oil Chemistry, Vol. 32, No. 9 (1983)). It is also possible to carry out hydrolysis. In addition, since the degradation products produced by hydrolysis are continuously separated and collected, it is possible to prevent hydrolysis from stopping due to equilibrium occurring during the reaction, and high quality products can be continuously collected. It is also suitable as a method for decomposing fats and oils.

Claims (1)

【特許請求の範囲】[Claims] 1 塔型固定化リパーゼカラムで脂質を分解する
にあたり、中上段より水溶液、中下段より油状基
質を連続的に供給し、上端より油状分解産物、下
端より水溶性分解産物を連続的に採取することを
特徴とする脂質の連続加水分解法。
1. When decomposing lipids with a tower-type immobilized lipase column, an aqueous solution is continuously supplied from the middle upper stage and an oily substrate is supplied from the middle lower stage, and oily decomposition products are continuously collected from the upper end and water-soluble decomposition products from the lower end. A continuous lipid hydrolysis method characterized by:
JP59207356A 1984-10-02 1984-10-02 Continuous hydrolysis of lipid Granted JPS6185195A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59207356A JPS6185195A (en) 1984-10-02 1984-10-02 Continuous hydrolysis of lipid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59207356A JPS6185195A (en) 1984-10-02 1984-10-02 Continuous hydrolysis of lipid

Publications (2)

Publication Number Publication Date
JPS6185195A JPS6185195A (en) 1986-04-30
JPS6251111B2 true JPS6251111B2 (en) 1987-10-28

Family

ID=16538372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59207356A Granted JPS6185195A (en) 1984-10-02 1984-10-02 Continuous hydrolysis of lipid

Country Status (1)

Country Link
JP (1) JPS6185195A (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61287989A (en) * 1985-06-14 1986-12-18 花王株式会社 Hydrolysis of oils and fats
JPH07106154B2 (en) * 1986-05-28 1995-11-15 花王株式会社 Enzyme or microbial reaction method
JPH0198494A (en) * 1987-10-09 1989-04-17 Agency Of Ind Science & Technol Continuous reaction process with immobilized lipase
US6258575B1 (en) 1998-11-26 2001-07-10 Kao Corporation Hydrolyzing fats and oils using an immobilized enzyme column and substrate-feeding chamber that separates phases
JP3764855B2 (en) 2001-06-22 2006-04-12 花王株式会社 Method for hydrolysis of fats and oils
US8241875B2 (en) 2005-06-21 2012-08-14 Kao Corporation Method for producing fatty acids with an immobilized enzyme packed column
US8377664B2 (en) 2005-10-05 2013-02-19 Kao Corporation Method for producing a useful substance by use of an immobilized enzyme
KR20090097870A (en) 2006-12-15 2009-09-16 카오카부시키가이샤 Process for producing useful substance with immobilized enzyme
JP4915732B2 (en) 2006-12-15 2012-04-11 花王株式会社 Method for producing useful substance using immobilized enzyme

Also Published As

Publication number Publication date
JPS6185195A (en) 1986-04-30

Similar Documents

Publication Publication Date Title
Mozammel Hoo et al. Continuous synthesis of glycerides by lipase in a microporous membrane bioreactor
US7517674B2 (en) Process of hydrolyzing oil or fat using a packed layer of immobilized enzyme
JPH0198494A (en) Continuous reaction process with immobilized lipase
JPS59154999A (en) Method for biochemical reaction and biochemical reactor
JPS6251111B2 (en)
JPH08291188A (en) Transesterification of phospholipid
CN1253578C (en) Method for preparing lysophosphatidylethanolamine
EP1004662B1 (en) A process for hydrolyzing fats and oils
Zuyi et al. Lipase-catalyzed alcoholysis to concentrate the n-3 polyunsaturated fatty acid of cod liver oil
CHEN et al. Hydrolysis of milk fat with lipase in reversed micelles
Xu Modification of oils and fats by lipase‐catalyzed interesterification: Aspects of process engineering
Diaz et al. Effect of nonionic surfactants on Rhizopus homothallicus lipase activity: a comparative kinetic study
EP1736549B1 (en) Process for producing fatty acids
US8323934B2 (en) Process for producing fatty acids
JP4279939B2 (en) Fat hydrolysis method
Hayes et al. 1, 3‐specific lipolysis ofLesquerella fendleri oil by immobilized and reverse‐micellar encapsulated enzymes
JP2554469B2 (en) Method for producing fatty acid esters
JPH0412711B2 (en)
Giorno et al. Influence of OR ester group length on the catalytic activity and enantioselectivity of free lipase and immobilized in membrane used for the kinetic resolution of naproxen esters
JP5080797B2 (en) Method for producing useful substance using immobilized enzyme
Gek Kee et al. Studies on the kinetics of isopropyl palmitate synthesis in packed bed bioreactor using immobilized lipase
JP5242236B2 (en) Method for producing fatty acids
JPH0528114B2 (en)
JPS6251593B2 (en)
JPS63245685A (en) Process for allowing phospholipase to act on phospholipid

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term