JPS625104A - Waveguide type photo-displacement sensor - Google Patents

Waveguide type photo-displacement sensor

Info

Publication number
JPS625104A
JPS625104A JP14263785A JP14263785A JPS625104A JP S625104 A JPS625104 A JP S625104A JP 14263785 A JP14263785 A JP 14263785A JP 14263785 A JP14263785 A JP 14263785A JP S625104 A JPS625104 A JP S625104A
Authority
JP
Japan
Prior art keywords
light
optical waveguide
optical
waveguide path
reflected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14263785A
Other languages
Japanese (ja)
Inventor
Junichi Takagi
高木 潤一
Maki Yamashita
山下 牧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Tateisi Electronics Co filed Critical Omron Tateisi Electronics Co
Priority to JP14263785A priority Critical patent/JPS625104A/en
Publication of JPS625104A publication Critical patent/JPS625104A/en
Pending legal-status Critical Current

Links

Landscapes

  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

PURPOSE:To obtain a photo-displacement sensor of long distance of displacement measurement, by installing a lens means to convert into parallel beams of light a signal light between discharging end of photo-waveguide path and reflecting surface on the specimen. CONSTITUTION:An asymmetrical X dividing type photo-waveguide path 20 is formed on a substrate 11, a beam of light guided into a waveguide path 21 is divided equally at the X-shaped jointing member, the beam on a waveguide path 23 is reflected as the reference beam of light by a reflecting film 12, that on a waveguide path 24 is reflected as a signal light by a movable mirror 14, and an output beam of light with an intensity corresponding to these two reflected beams is guided to a light-receiving element through waveguide path 22 and output fiber 32. As a rod lens 13 serves for parallelling of the beams of light, the light intensity can be maintained constant regardless of a displacement of the mirror 14 connected to the sample the film thickness of the film 12 controls reflecting and transmission coefficients. Consequently, distance displacement measurement becomes longer and amount of damping of the intensity of the signal light can be limited to a minimum.

Description

【発明の詳細な説明】 発明の要約 光干渉のための少なくとも1つの光導波路が基板に形成
されており、この基板の光導波路の出射端と被測定物体
上の反射面との間にレンズ手段が設けられ、このレンズ
手段によって上記出射端から出射される信号光がコリメ
ートされるとともに、上記反射面からの反射光が集光さ
れることを特徴とする導波型光変位センサ。
DETAILED DESCRIPTION OF THE INVENTION Summary of the Invention At least one optical waveguide for optical interference is formed on a substrate, and a lens means is provided between the output end of the optical waveguide of the substrate and a reflective surface on an object to be measured. A waveguide type optical displacement sensor characterized in that the signal light emitted from the output end is collimated by the lens means, and the reflected light from the reflective surface is collected.

発明の背景 この発明は、基板上に光導波路を用いてマイケルソン干
渉計を作製し、基板上の反射面で反射する参照先と基板
外の被測定物体上の反射面で反射する信号光との干渉に
よる光強度変化に基づいて被測定物体の変位量を計測す
る導波型光変位センサに関する。
BACKGROUND OF THE INVENTION This invention fabricates a Michelson interferometer using an optical waveguide on a substrate, and combines a reference target reflected by a reflective surface on the substrate and a signal beam reflected by a reflective surface on a measured object outside the substrate. The present invention relates to a waveguide type optical displacement sensor that measures the amount of displacement of an object to be measured based on changes in light intensity caused by interference.

このような導波型光変位センサにおいては、基板の3次
元光導波路から出射する信号光が拡散することは避けら
れず、したがって被測定物体の反射面で反射して基板の
光導波路に戻りかつ入射する光の量が少なくなってしま
うという問題がある。被測定物体の変位量がきわめてわ
ずか(たとえば数十μm程度)であればかなりの反射光
量が基板の光導波路に戻るが、被測定物体の変位が大き
くなるともはや測定可能な量の信号光が得られなくなっ
てしまう。
In such a waveguide type optical displacement sensor, it is inevitable that the signal light emitted from the three-dimensional optical waveguide of the substrate is diffused, and therefore is reflected by the reflective surface of the object to be measured and returned to the optical waveguide of the substrate. There is a problem in that the amount of incident light decreases. If the amount of displacement of the object to be measured is extremely small (for example, on the order of tens of micrometers), a considerable amount of reflected light will return to the optical waveguide of the substrate, but if the displacement of the object to be measured becomes large, it is no longer possible to obtain a measurable amount of signal light. I can't do it anymore.

発明の概要 この発明は、変位測定距離の長い導波型光変位センサを
提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a waveguide type optical displacement sensor that can measure displacement over a long distance.

この発明による導波型光変位センサは、光干渉のための
少なくとも1つの光導波路が形成された基板、この基板
の光導波路の出射端と被測定物体上の反射面との間に設
けられ、上記出射端から出力される信号光をコリメート
するためのおよび上記反射面での反射光を集光するため
のレンズ手段、ならびに参照光を得るために、基板の光
導波路端面に形成された反射手段を備えていることを特
徴とする。
A waveguide type optical displacement sensor according to the present invention includes a substrate on which at least one optical waveguide for optical interference is formed, a substrate provided between the output end of the optical waveguide of this substrate and a reflective surface on a measured object, A lens means for collimating the signal light outputted from the output end and condensing the reflected light on the reflecting surface, and a reflecting means formed on the end face of the optical waveguide of the substrate for obtaining reference light. It is characterized by having the following.

信号光と参照光とが基板の光導波路を伝播する過程でこ
れらの2つの光が干渉し、これらの2つの光の位相差に
応じた強度の干渉光が得られる。
During the process in which the signal light and the reference light propagate through the optical waveguide of the substrate, these two lights interfere, and interference light with an intensity corresponding to the phase difference between these two lights is obtained.

参照光の位相は常に一定であり、信号光の位相は被測定
物体上位置によって変化する。したがって干渉光の強度
変化により被測定物体の変位量が測定される。
The phase of the reference light is always constant, and the phase of the signal light changes depending on the position on the object to be measured. Therefore, the amount of displacement of the object to be measured is measured based on the change in the intensity of the interference light.

上記レンズ手段により、基板の光導波路から出射する信
号光がコリメートされて被測定物体上の反射面にあたり
、この反射面からの反射光は上記レンズ手段により集光
されて基板の光導波路に入射する。基板の光導波路に入
射する信号光の光量は被測定物体が大きく変位してもほ
とんど変動しないので、長い測定距離を得ることができ
る。
The signal light emitted from the optical waveguide of the substrate is collimated by the lens means and hits a reflective surface on the object to be measured, and the reflected light from this reflective surface is collected by the lens means and enters the optical waveguide of the substrate. . Since the amount of signal light incident on the optical waveguide of the substrate hardly changes even if the object to be measured is largely displaced, a long measurement distance can be obtained.

基板の光導波路端面に形成される反射手段は金属薄膜の
蒸着等により実現することができる。この金属薄膜の厚
さを変えることにより金属薄膜で反射する光の光量、す
なわち参照光強度を制御することができる。参照光強度
を信号光の強度とほぼ同じ程度にすることにより干渉光
の光強度変化の消光比をよくすることができる。消光比
がよければ後段の光信号処理が容易となる。
The reflecting means formed on the end face of the optical waveguide of the substrate can be realized by vapor deposition of a metal thin film or the like. By changing the thickness of this metal thin film, it is possible to control the amount of light reflected by the metal thin film, that is, the reference light intensity. By setting the reference light intensity to approximately the same level as the signal light intensity, it is possible to improve the extinction ratio of the change in the light intensity of the interference light. A good extinction ratio facilitates subsequent optical signal processing.

実施例の説明 第1図はこの発明による導波型光変位センサの一例を、
第2図は変位測定システムの全体をそれぞれ示している
DESCRIPTION OF EMBODIMENTS FIG. 1 shows an example of a waveguide type optical displacement sensor according to the present invention.
FIG. 2 each shows the entire displacement measuring system.

センサ・ケース10に内臓された基板11.たとえばL
LNbOにTiを熱拡散することにより非対称X分岐型
光導波路20が形成されている。この光導波路20は4
つの光導波路21〜24を含み、光導波路20はこれら
の光導波路21〜24がそれらの一端でX字状に結合す
ることにより構成されており。
A board 11 built into the sensor case 10. For example, L
The asymmetrical X-branched optical waveguide 20 is formed by thermally diffusing Ti into LNbO. This optical waveguide 20 has 4
The optical waveguide 20 includes two optical waveguides 21 to 24, and the optical waveguide 20 is constructed by coupling these optical waveguides 21 to 24 at one end in an X-shape.

光導波路24の巾は他の光導波路21〜23の巾よりも
狭くつくられている。このような非対称X分岐型光導波
路の詳細は、導波形光ビーム・スプリッタとして特開昭
58−2024H(特願昭57−88178)に開示さ
れている。
The width of the optical waveguide 24 is made narrower than the widths of the other optical waveguides 21 to 23. Details of such an asymmetrical X-branch type optical waveguide are disclosed in Japanese Patent Application Laid-Open No. 58-2024H (Japanese Patent Application No. 57-88178) as a waveguide optical beam splitter.

この実施例に関連する範囲でこの非対称X分岐型光導波
路20の動作を説明すると次のようになる。光導波路2
1を伝播する光は2つの光導波路23と24に等しく分
岐して進行していく。光導波路23と24をX字詰合部
に向って伝播する光は、これらの光の位相が等しい場合
には光導波路21に戻る。
The operation of this asymmetrical X-branched optical waveguide 20 will be explained as follows within the scope related to this embodiment. Optical waveguide 2
The light propagating through 1 is split equally into two optical waveguides 23 and 24 and proceeds. The light propagating through the optical waveguides 23 and 24 toward the X-shaped packing section returns to the optical waveguide 21 when the phases of these lights are equal.

光導波路23と24の光が逆位相(位相が180°異な
る)場合にはこれらの光は光導波路22に進む。したが
って、光導波路22には光導波路23.24をX字詰合
部に向う光の位相差に応じた強度の光が得られる。
When the lights in the optical waveguides 23 and 24 have opposite phases (the phases differ by 180°), these lights proceed to the optical waveguide 22. Therefore, in the optical waveguide 22, light having an intensity corresponding to the phase difference of the light traveling through the optical waveguides 23 and 24 toward the X-shaped packing portion is obtained.

上述の説明は、光導波路21.22と光導波路23と2
4とを交換しても同じようにあてはまる。
The above description is based on the optical waveguides 21 and 22 and the optical waveguides 23 and 2.
The same holds true even if 4 is exchanged.

光導波路21.22の端部にはコネクタ33.34をそ
れぞれ介して入力用、出力用光ファイバ31.32が接
続されている。入力用光ファイバ31としては偏波面保
存光ファイバが用いられている。レーザ光源4Iか番の
レーザ光がアイソレータ42およびレンズ43を介して
光ファイバ31に導入される。アイソレータ42はレー
ザ41から光ファイバ31への光の進行を許し、これと
は逆方向に進む光を遮断するものであり、光の偏波方向
に基づいてこの作用を行なう。出力用光ファイバ32と
してはマルチモード光ファイバが用いられている。この
光ファイバ32によって導かれる出力光は受光素子44
に入射し2その光強度を表わす電気信号に変換される。
Input and output optical fibers 31.32 are connected to the ends of the optical waveguides 21.22 via connectors 33.34, respectively. As the input optical fiber 31, a polarization maintaining optical fiber is used. Laser light from laser light source 4I is introduced into optical fiber 31 via isolator 42 and lens 43. The isolator 42 allows light to travel from the laser 41 to the optical fiber 31 and blocks light traveling in the opposite direction, and performs this action based on the polarization direction of the light. A multimode optical fiber is used as the output optical fiber 32. The output light guided by this optical fiber 32 is transmitted to a light receiving element 44.
2 is converted into an electrical signal representing the light intensity.

基板11の光導波路23の端面にはAuを蒸着すること
により反射膜12が形成されている。光導波路21に導
かれかつ光導波路23と24に等しく分岐した光のうち
光導波路23を進む光はこの反射膜12で反射してX字
詰合部に向う。この光が参照光である。参照先の強度は
反射膜12の膜厚により定めることができる。
A reflective film 12 is formed on the end face of the optical waveguide 23 of the substrate 11 by depositing Au. Of the light guided to the optical waveguide 21 and equally branched into the optical waveguides 23 and 24, the light traveling through the optical waveguide 23 is reflected by the reflective film 12 and heads toward the X-shaped junction. This light is the reference light. The intensity of the reference target can be determined by the thickness of the reflective film 12.

被測定物体であるまたは被測定物体に取付けられもしく
は接触しているアクチュエータ15のロッド1Bがケー
スIOの孔をゆるく通ってケース10内に突出し、この
ロッドlBの先端に可動ミラー14が取付は固定されて
いる。基板11の光導波路24の端面と可動ミラー14
との間にロッド・レンズ(屈折率分布型レンズ)13が
設けられかつケース10に適当な固定手段により固定さ
れている。このロッド・レンズ13の焦点面は光導波路
24の出射端に位置している。すなわち、第4図(B)
に示されているように、光導波路24を伝播しその端部
から出射した光はロッド・レンズ13でコリメートされ
て可動ミラー14に当り、その反射光はロッド・レンズ
13によって光導波路24の出射端付近に丁度集光され
The rod 1B of the actuator 15, which is the object to be measured or is attached to or in contact with the object to be measured, passes loosely through the hole in the case IO and protrudes into the case 10, and the movable mirror 14 is fixedly attached to the tip of the rod 1B. has been done. The end face of the optical waveguide 24 of the substrate 11 and the movable mirror 14
A rod lens (gradient index lens) 13 is provided between the two and fixed to the case 10 by suitable fixing means. The focal plane of this rod lens 13 is located at the output end of the optical waveguide 24. That is, FIG. 4(B)
As shown in , the light propagating through the optical waveguide 24 and exiting from the end thereof is collimated by the rod lens 13 and hits the movable mirror 14 , and the reflected light is reflected by the rod lens 13 and exiting from the optical waveguide 24 . The light is focused exactly near the edge.

光導波路24に入射しかつX字詰合部に向って伝播して
いく。この光が信号光である。
The light enters the optical waveguide 24 and propagates toward the X-shaped packing section. This light is signal light.

上述したように、光導波路23の参照光と光導波路24
の信号光との位相差に応じた強度の出力光が光導波路2
2に得られ、この出力光は光ファイバ32により受光素
子44に導かれる。参照光と信号光の位相差は、これら
2つの光の間の光路差、すなわち可動ミラー14の変位
量に依存している。出力光強度の変位量(光路差)に対
する変化が第3図に示されている。出力光強度は光路差
の変化に対してλ(光の波長)の周期で正弦的に変化す
る。信号光はロッド・レンズ13と可動ミラー14との
間を往復するので光路差は可動ミラー14の変位量の2
倍に等しい。
As described above, the reference light of the optical waveguide 23 and the optical waveguide 24
The output light with an intensity corresponding to the phase difference with the signal light is outputted to the optical waveguide 2.
2, and this output light is guided to the light receiving element 44 by the optical fiber 32. The phase difference between the reference light and the signal light depends on the optical path difference between these two lights, that is, the amount of displacement of the movable mirror 14. FIG. 3 shows the change in output light intensity with respect to the amount of displacement (optical path difference). The output light intensity changes sinusoidally with a period of λ (light wavelength) with respect to changes in the optical path difference. Since the signal light travels back and forth between the rod lens 13 and the movable mirror 14, the optical path difference is 2 times the amount of displacement of the movable mirror 14.
equals twice.

出力光信号は受光素子44で電気信号に変換されたのち
、高、低2つのスレシホールドψレベルSl、S2をも
つ回路45でレベル弁別され、2値化される(第3図参
照)。この2値信号の立上りおよび/または立下りがカ
ウンタ46によって計数される。したがって、可動ミラ
ー14の変位量はλ/2またはλ/4単位で測定される
。たとえば光源41として波長λ−0,8μmのレーザ
・ダイオードを用いた場合には0.4μmまたは0.2
μm単位で変位n1定が可能となる。
The output optical signal is converted into an electric signal by the light receiving element 44, and then level-discriminated and binarized by a circuit 45 having two high and low threshold ψ levels Sl and S2 (see FIG. 3). A counter 46 counts the rise and/or fall of this binary signal. Therefore, the amount of displacement of the movable mirror 14 is measured in units of λ/2 or λ/4. For example, when a laser diode with a wavelength λ-0.8 μm is used as the light source 41, the wavelength is 0.4 μm or 0.2 μm.
Displacement n1 can be constant in μm units.

光導波路23の出射端における光の反射率と透過率は反
射膜12の膜厚によって定まる。したがって2反射膜1
2の厚さを制御することにより参照光と信号光の強度の
比を任意に定めることができ。
The reflectance and transmittance of light at the output end of the optical waveguide 23 are determined by the thickness of the reflective film 12. Therefore, 2 reflective films 1
By controlling the thickness of 2, the intensity ratio of the reference light and the signal light can be arbitrarily determined.

これを1=1とすることもできる。このことにより、出
力光の光強度変化の消光比を良好にすることができる。
This can also be set to 1=1. This makes it possible to improve the extinction ratio of changes in the light intensity of the output light.

光導波路24の出射端と可動ミラー14との間にはロッ
ド・レンズ13が設けられ、光導波路24から出射した
光はこのレンズ13によって平行光に変換される。可動
ミラー14が動くことによりレンズ13とミラー14と
の間の距離が変動しても、ミラー14に向いかつ反射さ
れる光は平行光であるからほとんど拡散しない。また、
ミラー14の反射光はレンズ13により集光されて光導
波路24に入射する。したがってミラー14の位置にほ
とんど関係なく光導波路24に戻る反射光強度をほぼ一
定に保持することができる。可動ミラー14の変位に対
して信号光強度をほぼ一定に保持できるので正確な変位
測定が可能となるとともに、変位量の測定可能範囲が拡
大される。
A rod lens 13 is provided between the output end of the optical waveguide 24 and the movable mirror 14, and the light emitted from the optical waveguide 24 is converted into parallel light by this lens 13. Even if the distance between the lens 13 and the mirror 14 changes due to the movement of the movable mirror 14, the light directed toward and reflected by the mirror 14 is parallel light, so it is hardly diffused. Also,
The reflected light from the mirror 14 is focused by the lens 13 and enters the optical waveguide 24 . Therefore, the intensity of the reflected light returning to the optical waveguide 24 can be kept almost constant regardless of the position of the mirror 14. Since the intensity of the signal light can be maintained substantially constant with respect to the displacement of the movable mirror 14, accurate displacement measurement becomes possible, and the measurable range of the amount of displacement is expanded.

第4図は、この発明によって光導波路24の出射端と可
動ミラー14との間にロッド・レンズ13を介在させた
状態と(第4図(B))、介在させない状態(第4図(
A))とを示している。レンズなしの従来例(第4図(
A))では、光導波路24から出射した光が拡散し−、
可動ミラー14の反射光のほとんどが光導波路24の端
面以外の場所に向っていってしまう。
FIG. 4 shows a state in which the rod lens 13 is interposed between the output end of the optical waveguide 24 and the movable mirror 14 according to the present invention (FIG. 4(B)), and a state in which it is not interposed (FIG. 4(B)).
A)) is shown. Conventional example without lens (Fig. 4)
In A)), the light emitted from the optical waveguide 24 is diffused.
Most of the reflected light from the movable mirror 14 is directed to a location other than the end face of the optical waveguide 24.

第5図は、従来例であるレンズなしの場合とこの発明に
よるレンズありの場合とにおける光導波路24に戻る信
号光強度の変化を可動ミラー14の変位量に対して示す
ものである。この実験結果によると、レンズなしの従来
例においては、光導波路24端面と可動ミラー14との
間の距離が50μm程度でも信号光強度は半減してしま
うのに対して(黒丸)、この発明のレンズありの場合に
は距離が10mmに達しても信号光強度の減衰量はきわ
めて小さい。
FIG. 5 shows changes in the intensity of the signal light returning to the optical waveguide 24 with respect to the amount of displacement of the movable mirror 14 in the conventional case without a lens and in the case of the present invention with a lens. According to the experimental results, in the conventional example without a lens, the signal light intensity is halved even when the distance between the end face of the optical waveguide 24 and the movable mirror 14 is about 50 μm (black circle), whereas in the present invention, the signal light intensity is halved (black circle). When a lens is used, the amount of attenuation of the signal light intensity is extremely small even when the distance reaches 10 mm.

第6図は、可動ミラー14を周期的に振動させた実験に
おいて、出力光強度の変化とこの振動におけるミラー1
4の移動量とをオシロスコープに映し出し、これを写真
撮影したものをトレースしたものである。Aは可動ミラ
ー14の移動量を、Bは出力光強度の変化をそれぞれ示
している。可動ミラー14の移動量に対して出力光強度
(振中値)がほとんど変化していないことが分るであろ
う。
FIG. 6 shows changes in the output light intensity and mirror 1 during this vibration in an experiment in which the movable mirror 14 was periodically vibrated.
The amount of movement shown in Figure 4 was reflected on an oscilloscope, and this was photographed and traced. A indicates the amount of movement of the movable mirror 14, and B indicates a change in the output light intensity. It will be seen that the output light intensity (midrange value) hardly changes with respect to the amount of movement of the movable mirror 14.

上記実施例では基板11に非対称X分岐型光導波路20
が形成されているが、他の光導波路によりマイケルソン
型の干渉計を構成することもできる。
In the above embodiment, an asymmetrical X-branched optical waveguide 20 is provided on the substrate 11.
is formed, but a Michelson type interferometer can also be constructed using other optical waveguides.

たとえば、第7図(A)に示すようなY字型の光導波路
、同図(B)に示すような方向性結合器を含む光導波路
、同図(C)に示すような単なる1本の光導波路でもよ
い。第7図(C)の構成においては。
For example, a Y-shaped optical waveguide as shown in Figure 7(A), an optical waveguide including a directional coupler as shown in Figure 7(B), and a single optical waveguide as shown in Figure 7(C). An optical waveguide may also be used. In the configuration of FIG. 7(C).

反射膜12はかなり透過率の高いものとし、この反射膜
12を透過した光が信号光となる。またこれらの図にお
いてロッド中レンズは省略されている。
The reflective film 12 has a fairly high transmittance, and the light transmitted through the reflective film 12 becomes signal light. In addition, the lens in the rod is omitted in these figures.

レンズ手段もロッド・レンズ以外に通常の凸レンズ、マ
イクロ・レンズ等を使用することができる。
As for the lens means, in addition to rod lenses, ordinary convex lenses, micro lenses, etc. can be used.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は導波型光変位センサの一例を示す斜視図、第2
図は光変位測定システム全体を示す構成図、第3図は出
力光強度とそれに基づ°いて作成された2値信号を示す
波形図、第4図は従来例とこの発明の構成の相違を示す
図、第5図はこの構成の相違が光強度に及ぼす影響を示
すグラフ、第6図はオシロスロープの波形をトレースし
た図であって変位量と出力光強度変化を示しており、第
7図は基板上の光導波路の他の例を示す概略平面図であ
る。 11・・・基板、  12・・・反射膜、  13・・
・ロッド・レンズ。 14・・・可動ミラー、20・・・非対称X分岐光導波
路。 21〜24・・・光導波路。 以  上 特許出願人  立石電機株式会社 代  理  人   牛  久  健  司   外1
名第3FI!J 第4図 第6図 ム 第5図 0 50 100 150 200 250Qam)1
3m足巨山葭 Q宴−aり 第7図
Figure 1 is a perspective view showing an example of a waveguide type optical displacement sensor;
The figure is a configuration diagram showing the entire optical displacement measurement system, Figure 3 is a waveform diagram showing the output light intensity and a binary signal created based on it, and Figure 4 shows the difference between the configuration of the conventional example and the present invention. Figure 5 is a graph showing the influence of this difference in configuration on the light intensity, Figure 6 is a diagram tracing the waveform of the oscilloscope and shows the displacement and output light intensity change, and Figure 7 is a graph showing the influence of this difference in configuration on the light intensity. The figure is a schematic plan view showing another example of the optical waveguide on the substrate. 11... Substrate, 12... Reflective film, 13...
・Rod lens. 14... Movable mirror, 20... Asymmetrical X-branch optical waveguide. 21-24... Optical waveguide. Patent applicant: Tateishi Electric Co., Ltd. Agent: Kenji Ushiku et al.
Name 3rd FI! J Figure 4 Figure 6 Figure 5 Figure 5 0 50 100 150 200 250 Qam) 1
3m foot giant mountain reed Q Banquet-a-ri Figure 7

Claims (1)

【特許請求の範囲】 光干渉のための少なくとも1つの光導波路が形成された
基板、 この基板の光導波路の出射端と被測定物体上の反射面と
の間に設けられ、上記出射端から出力される信号光をコ
リメートするためのおよび上記反射面での反射光を集光
するためのレンズ手段、ならびに 参照光を得るために、基板の光導波路端面に形成された
反射手段、 を備えた導波型光変位センサ。
[Claims] A substrate on which at least one optical waveguide for optical interference is formed, which is provided between an output end of the optical waveguide of this substrate and a reflective surface on a measured object, and outputs from the output end. a lens means for collimating the reflected signal light and for condensing the reflected light on the reflecting surface, and a reflecting means formed on the end face of the optical waveguide of the substrate to obtain a reference light. Wave type optical displacement sensor.
JP14263785A 1985-07-01 1985-07-01 Waveguide type photo-displacement sensor Pending JPS625104A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14263785A JPS625104A (en) 1985-07-01 1985-07-01 Waveguide type photo-displacement sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14263785A JPS625104A (en) 1985-07-01 1985-07-01 Waveguide type photo-displacement sensor

Publications (1)

Publication Number Publication Date
JPS625104A true JPS625104A (en) 1987-01-12

Family

ID=15319978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14263785A Pending JPS625104A (en) 1985-07-01 1985-07-01 Waveguide type photo-displacement sensor

Country Status (1)

Country Link
JP (1) JPS625104A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0293317A (en) * 1988-09-30 1990-04-04 Anritsu Corp Optical displacement measuring apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5316449B2 (en) * 1972-03-22 1978-06-01
JPS6011103A (en) * 1983-06-30 1985-01-21 インタ−ナショナル ビジネス マシ−ンズ コ−ポレ−ション Remote measuring device
JPS6085312A (en) * 1983-10-17 1985-05-14 Hitachi Ltd Solid state interferometer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5316449B2 (en) * 1972-03-22 1978-06-01
JPS6011103A (en) * 1983-06-30 1985-01-21 インタ−ナショナル ビジネス マシ−ンズ コ−ポレ−ション Remote measuring device
JPS6085312A (en) * 1983-10-17 1985-05-14 Hitachi Ltd Solid state interferometer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0293317A (en) * 1988-09-30 1990-04-04 Anritsu Corp Optical displacement measuring apparatus

Similar Documents

Publication Publication Date Title
US5017010A (en) High sensitivity position sensor and method
US4969736A (en) Integrated fiber optic coupled proximity sensor for robotic end effectors and tools
JP2755757B2 (en) Measuring method of displacement and angle
JPS625104A (en) Waveguide type photo-displacement sensor
JPH0712826A (en) Interferometer, optical scanning tunnel microscope, and optical probe
JPS625105A (en) Waveguide type photo-displacement sensor
Hellesø et al. Interferometric displacement sensor made by integrated optics on glass
JP3337624B2 (en) Micro displacement measuring device and method
Helleso et al. Displacement sensor made by potassium diffusion on glass
JP3187041B2 (en) Optical pickup device
JPS62242805A (en) Optical fiber displacement sensor
JPS59166873A (en) Optical applied voltage and electric field sensor
JPS6347603A (en) Optical fiber displacement sensor
Yamashita et al. Integrated optic microdisplacement sensor using two asymmetric X junctions and a rod lens
JPS6281505A (en) Wave-guiding type optical displacement sensor
JPS6281506A (en) Wave-guiding type optical displacement sensor
JPH0684884B2 (en) Waveguide optical displacement sensor
JPH1137718A (en) Instrument and method for measuring microdisplacement
JPH0652163B2 (en) Waveguide optical displacement sensor
JPS61256203A (en) Displacement sensor of optical fiber
JP2024056589A (en) Optical distance meter
JPS6235657B2 (en)
JP2002311137A (en) Doppler speedometer
JPS62163905A (en) Light displacement measuring apparatus
JPH0572337A (en) Laser doppler speedometer